

LBWco Pty Ltd

ABN 58 126 992 274 184 Magill Road, Norwood SA 5067 PO Box 225 Stepney SA 5069 08 8331 2417 www.lbwco.com.au

Riverlea Development - Proposed Saltwater Lakes Dewatering Investigation and Risk Assessment Report

Report for Walker Buckland Park Developments Pty Ltd

Document Control	
File	231445-01 R01.docx
Revision	0
Date issued	15.10.2024
Author(s)	T O'Leary
Principal review	J Bishop, J Larkin
Approved for issue	93:64

Distribution Record			Revision No. and Date Issued			
		DRAFT	0			
Organisation	Contact Name	04.10.2024	15.10.2024			
Walker Buckland Park Developments Pty Ltd	Pat Mitchell	•	•			

Table of Contents

Exe	cutive	Summary	
1	Intro	duction	1
	1.1	Objectives	1
2	The	Dewatering Proposal	3
3	Back	kground	5
	3.1	Geology	5
	3.2	Hydrogeology	5
4	Regi	ulatory Framework	6
	4.1	Discharge to the Environment	6
	4.2	Waste Management Hierarchy	7
	4.3	Discharge to sewer	7
	4.4	Dewatering decision-making flowchart	7
5	Scop	be of Work and Methodology	9
	5.1	Guidance Documents	9
	5.2	Soil Bore Investigation	9
		5.2.1 Scope of Work and Rationale	9
		5.2.2 Methodology	9
	5.3	Groundwater Investigation	10
		5.3.1 Scope of Work and Rationale	10
		5.3.2 Methodology	14
	5.4	Surface Water Investigation	17
		5.4.1 Scope of Work and Rationale	17
		5.4.2 Methodology	18
6	Resu	lts	20
	6.1	Drilling and Well Installation	20
	6.2	Soil Lithology	20
	6.3	Groundwater Elevations and Flow Direction	23
		6.3.1 Hydrographs	23
	6.4	Water Quality Parameters	26
		6.4.1 Groundwater	26
		6.4.2 Surface Water	26
	6.5	Aquifer Testing	26
		6.5.1 Slug Testing	26
		6.5.2 Pump Testing	27
7	Asse	ssment of Environmental Values of Groundwater	29
	7.1	Step 1: Determination of Prescribed EVs of groundwater using the EPP-WQ	29
	7.2	Step 2: Application of a buffer distance for the protection of surface waters	29
	7.3	Step 3: Review of groundwater data using WaterConnect	30
	7.4	Application of EPA Recognised Criteria	31
8	Labo	oratory Analytical Results	32
	8.1	Comparison with Water Quality Criteria	32

	8.1.1 Groundwater	32
	8.1.2 Surface Water	33
8	.2 Data Quality Assessment	33
9 [Discussion	36
	.1 Hydrogeological Modelling	36
	.2 Dewatering Flow and Volume Estimation	36
	Onsite Management of Dewatering WastewaterModelling of Dewatering Management for Construction	37 38
	.5 Contingency Plan – Disposal of Dewatering Wastewater	41
10 R	Pisk Assessment for Dewatering	42
11 (Conclusions and Recommendations	50
12 L	imitations	51
List o	f Tables and Plates	
Table 1	Soil Bore Location Rationale	9
Table 2	Soil Bore Investigation Methodology	10
Table 3	Groundwater Monitoring Network	12
Table 4	Groundwater Investigation Methodology	14
Table 5	Surface Water Investigation Methodology	18
Plate 1	Groundwater level hydrographs	23
Table 6	Summary of Groundwater Elevations and Water Quality Parameters	24
Table 7	Summary of Slug Testing Results	27
Table 8	Summary of Pump Testing Results – Transmissivity Estimates (m²/day)	28
Plate 2	Steps 1 to 3 to determine EVs of groundwater at a site (EPA 2019)	29
Table 9	Environmental Values Relative to TDS	29
Table 1	0 Environmental Values Relative to Surface Waters	30
Table 1	1 Application of WaterConnect data to determine EVs	30
Table 1	2 EPA Recognised Criteria References	31
Table 1	3 Data Validation	34
Table 1	4 Summary of Dewatering Volume Calculation Parameters	38
Table 1	5 Modelled dewatering volumes	40
Table 1	6 Likelihood Descriptor Matrix	42
Table 1	7 Consequence Descriptor Matrix	43
Table 1	8 Risk Ranking Matrix	44
Table 1	9 Risk Assessment	45

List of Appendices

- A Figures
- B Soil Bore Logs
- C Groundwater Well Logs and Well Construction Permits
- D Calibration Certificates
- E Water Quality Parameters and WaterConnect Output
- F Slug Test Data
- G Pump Test Data
- H Dewatering Modelling Report
- I Well Survey Data
- J Chemical Summary Tables
- K Laboratory Certificates and Chain of Custody Documentation
- L Dewatering Storage Modelling

Abbreviations

ANZECC Australian and New Zealand Guidelines for Fresh and Marine Water Quality 2000

ANZG Australian and New Zealand Guidelines for Fresh and Marine Water Quality 2018

ASC NEPM National Environment Protection (Assessment of Site Contamination) Measure 1999 (amended 2013)

BTEX benzene, toluene, ethylbenzene, xylenes
CEMP Construction Environmental Management Plan

DEW Department for Environment and Water, Government of South Australia

DO dissolved oxygen EC electrical conductivity

DMP Dewatering Management Plan EHS Environment, health and safety

EPA Environment Protection Authority, Government of South Australia

EP Act Environment Protection Act 1993 (SA)

EV Environmental Value

GAR Guidelines for the assessment and remediation of site contamination (EPA 2019)

GED General Environmental Duty
GME Groundwater monitoring event

GMRRW Guidelines for Managing Risks in Recreational Water 2008

HCL Hydrogeology Consulting Ltd

LBWco LBW co Pty Ltd LOR Limit of reporting

mAHD metres Australian Height Datum mBGL metres below ground level mBTOC metres below top of casing

mg/L milligrams per litre

NATA National Association of Testing Authorities

OCP organochlorine pesticides

QA/QC Quality assurance / quality control

RL relative level

RPD relative percentage difference

SA South Australia
SWL Standing water level
SWL1 Saltwater Lake 1
SWL2 Saltwater Lake 2
SWL3 Saltwater Lake 3
TDS Total Dissolved Solids

TOC top of casing

TRH Total recoverable hydrocarbons

TSS Total suspended solids

Walker Buckland Park Developments Pty Ltd

WEP Water Engineering Projects

WQP Environment Protection (Water Quality) Policy 2015 (SA)

Executive Summary

LBW co Pty Ltd (LBWco) was engaged by Walker Buckland Park Developments Pty Ltd (Walker) to undertake environmental and hydrogeological investigations at Riverlea (the site), to support the assessment and approvals processes for groundwater dewatering that will be required for construction of the proposed saltwater lakes.

Three saltwater lakes are proposed to be constructed at the site and will provide a range of functions and benefits to the Riverlea development.

Walker advised that the three saltwater lakes are nominally proposed to be constructed and filled per the program below. The progression of lakes construction will be informed by the progression of the Riverlea development.

- Saltwater Lake 1 (SWL1) to be constructed by 2030
- Saltwater Lake 2 (SWL2) to be constructed by 2035
- Saltwater Lake 3 (SWL3) to be constructed by 2040
- Shallow groundwater has been identified beneath the site through previous assessment works, indicating that excavation of the proposed lakes to invert levels ranging from 0.5 1.5 m
 Australian Height Datum (mAHD) will penetrate one or more saturated zones. Therefore, dewatering of groundwater will be required to facilitate lake construction.

This report details the soil and groundwater assessment undertaken at the site to characterise the projected dewatering works and to support the assessment of appropriate management of dewatering wastewater.

The scope of work broadly included the following:

- Drilling of 17 soil bores across the site to characterise the soil lithology, depth(s) to saturated zone(s) and the presence/thickness of clay aguitard beneath shallow saturated zones.
- Three stages of groundwater well installation:
 - Stage 1: broad groundwater assessment across the Riverlea site, with focus on characterising groundwater conditions within and around the dewatering area.
 - Stage 2: targeted assessment of groundwater at four locations in the vicinity of proposed SWL1. Assessment beyond the maximum saltwater lake excavation depth of 0.5 mAHD was required to investigate the potential for intersection/upward leakage from deeper groundwater (Q2 aquifer) and possibility for heave following lake excavation.
 - Stage 3: installation of four large diameter (100 mm) wells of varying depths (EX10-EX13) to be used for pump testing. Pump test wells were installed to target the saturated zones that were anticipated to contribute the greatest flows during dewatering, based on results of slug testing in nearby wells.
- Two groundwater monitoring events to characterise groundwater quality at the site.
- Aquifer testing using both slug tests and pump tests to determine estimates of hydraulic conductivity and transmissivity for the site.
- Generation of hydrographs to investigate variation in standing water levels over time.
- A surface water monitoring event and collation of existing surface water testing data to characterise the potential receiving environment in the event that offsite disposal of dewatering wastewater is required.

- Development of a hydrogeological model for the site to estimate the required dewatering rates for construction, estimate dewatering volumes and assess potential impacts on existing users of shallow groundwater.
- Modelling of onsite storage and reuse of dewatering wastewater to determine if there is like to be a need for offsite disposal of dewatering wastewater.

Specifically, the following two questions were required to be answered to address the objectives of this dewatering investigation and inform regulatory approval considerations for the taking of the shallow groundwater:

- What pumping flow rate is required to provide control of groundwater to the level required to construct SWL1?
- What is the estimated volume of groundwater to be pumped to facilitate construction of SWL1?

Based on the investigation works undertaken, LBWco concluded the following:

- Dewatering during construction of SWL1 will be required and the wastewater produced by dewatering must be reused or disposed appropriately.
- Options under consideration by Walker for the lake lining include clay and a synthetic
 polymer system. Assessing the merits of either lining system was not addressed in this report,
 but the longer construction timeframe for a synthetic liner was adopted for dewatering
 modelling purposes. Based on the proposed construction methodology and hydrogeological
 modelling of dewatering flows, it was estimated that:
 - Dewatering during construction of SWL1 would likely be required for a period of 147 days
 - The volume of dewatering wastewater generated would be approximately 436,000 m³.
- The modelling was conservative, so actual dewatering pumping requirements may be below those simulated. Higher pumping rates are also possible at times where preferential flows may occur through more permeable strata.
- Modelling of drawdown during and after dewatering activities indicated low risk of unacceptable impact to nearby registered users of shallow groundwater from the dewatering activity. There are no registered users of shallow groundwater within 2 km of the proposed saltwater lakes locations.
- Based on the likely onsite storage capacity and projected onsite demand for water during construction activities, it was predicted that all dewatering wastewater from SWL1 can be managed onsite through onsite storage and reuse.
 - Contingency modelling undertaken for an additional 90 days of dewatering, simulating a
 potential unforeseen project delay, indicated the total volume of groundwater extracted
 would still be within the onsite capacity.
 - In the unlikely event that onsite storage and reuse capacity is exceeded, it may be necessary to dispose dewatering wastewater offsite to Thompson Creek. Comparison of groundwater and surface water data indicated that discharge to Thompson Creek would not cause environmental harm in the receiving environment, provided that flow and suspended solids were managed appropriately.
- Modelling simulated several different approaches to groundwater extraction for dewatering
 of SWL1. To achieve the necessary control of groundwater across the full width of the lake, a
 series of horizontal well points at regular spacings are likely to be needed through the base of
 the lake. A network of extraction bores will also be needed around the perimeter of the lake.

LBWco recommends that a comprehensive Dewatering Management Plan (DMP) be prepared as part of the detail design process and part of the Construction Environmental Management Plan (CEMP) for the project. The DMP should be agreed by the key stakeholders relevant to the proposed activity.

The information in this report is subject to the limitations expressed in Section 12. The reader should make themselves aware of the limitations and how they relate to the conclusions provided above.

1 Introduction

LBW co Pty Ltd (LBWco) was engaged by Walker Buckland Park Developments Pty Ltd (Walker) to undertake environmental and hydrogeological investigations at Riverlea (the site), to support the assessment and approvals processes for groundwater dewatering that will be required for construction of the proposed saltwater lakes.

Three saltwater lakes are proposed to be constructed at the site and will provide a range of functions and benefits to the Riverlea development.

Walker advised that the three saltwater lakes are nominally proposed to be constructed and filled per the program below. The progression of lakes construction will be informed by the progression of the Riverlea development.

- Saltwater Lake 1 (SWL1) to be constructed by 2030
- Saltwater Lake 2 (SWL2) to be constructed by 2035
- Saltwater Lake 3 (SWL3) to be constructed by 2040

A site locality plan is presented on Figure 1 in Appendix A.

Shallow groundwater has been identified beneath the site through previous assessment works, indicating that excavation of the proposed lakes to invert levels ranging from 0.5 - 1.5 m Australian Height Datum (mAHD) will penetrate one or more saturated zones. Therefore, dewatering of groundwater will be required to facilitate lake construction.

EPA guideline Environmental management of dewatering during construction activities (2021), defines dewatering as

'the process of removal of any water that accumulates in earthwork excavations or below ground structures as a result of, for example, intersecting aquifers, seepage of soil water / groundwater, storm events or rainfall (including surface water runoff). The water removed during dewatering is classified as wastewater'.

Walker required an assessment of the groundwater to support decision-making on a range of matters relating to management of the dewatering process, including appropriate disposal options for the wastewater, whether through stormwater, sewer or an alternative method. An assessment of surface waters in Thompson Creek, which was identified as a potential receiving environment for dewatering wastewater discharge, was also required.

This report details the soil, groundwater and surface water assessments undertaken at the site to address the objectives described below.

1.1 Objectives

The objective of the soil bore investigation was to characterise:

- The presence of shallow unconfined perched groundwater, soil lithology and saturated thickness
- The presence, lithology and thickness of an aquitard beneath the perched zone
- The lithology and saturated thickness of the Q1 aquifer underlying the shallow perched zone.

The objectives of the hydrogeological investigation were to:

- Characterise the groundwater conditions in the vicinity of the saltwater lakes with higher resolution than was evident in previous hydrogeological investigations at Riverlea
- Estimate dewatering extraction rate(s) required to lower and control groundwater to a target level suitable for construction of the lakes
- Advise on dewatering methodology to achieve the required groundwater control for construction
- Estimate total take of groundwater during predicted construction dewatering, and total dewatering wastewater reuse/disposal, to inform regulatory approvals from the Department for Environment and Water (DEW) and the Environment Protection Authority (EPA).
- Support a risk assessment of potential environmental impacts from the proposed dewatering activity.

The objectives of the groundwater and surface water quality assessments were to:

- · Characterise ambient background groundwater quality entering the site from upgradient
- Characterise groundwater quality in the area of the saltwater lakes where dewatering will occur
- Assess groundwater quality downgradient of the site to assess for influence from historical site
 activities and to understand conditions at and near the groundwater-marine mixing zone
- Characterise surface water quality downgradient of the site to assess for ambient conditions in creeks that may receive dewatering discharge in the future.
- Support a risk assessment regarding potential for environmental harm in the receiving environment(s), if dewatering wastewater were to be disposed in this matter.

2 The Dewatering Proposal

The planned locations of the saltwater lakes are shown on Figure 2 in Appendix A. This dewatering investigation report relates mainly to SWL1, which is located within the Precinct 2 area of Riverlea. Walker is currently seeking approval for a revised masterplan within Precinct 2.

Construction of SWL1 is proposed to occur in stages, via the excavation and separation of lake segments via temporary coffer dams. The lake segments are shown as Bays 1 to 5 on the drawing extract below (WGA Bulk Earthworks Plan, preliminary issue 27.10.2023).

Groundwater dewatering will be implemented sequentially for each bay to drawdown the water table to a sufficient level for bulk earthworks to be undertaken. The drawdown target for construction is at least 1.0 m below the lake subgrade level, which Walker expects to be sufficient based on advice from civil contractors.

Lake construction is currently expected to include a liner system to support retention of saltwater within the lakes to the extent reasonable and practicable, and therefore minimising mixing of saltwater with underlying groundwater.

Liner systems are under consideration by Walker and may include modifying existing clay and adding clay to seal up permeable zones in the base and walls of the lakes, or the installation of a polymer liner. A decision has not been made on a specific liner type at the time of reporting.

In support of the waste management hierarchy, prescribed at section 4B of the *Environment Protection Act 1993* (SA) and discussed in section 4.2 below, Walker intends to minimise the production of dewatering wastewater and maximise the onsite reuse of the wastewater.

Initial reuse of the dewatering wastewater may include (but may not limited to) the following purposes including:

- Wetting of clay liner during construction
- Progressive filling of completed lake bays to balance pressure against a polymer liner once dewatering pumping has ceased
- Filling of polymer aqua dams (coffer dams)
- Soil moisture conditioning for compaction onsite

Dust control

The sequence of construction of bays 1-5 was assessed relative to the results of this investigation and consideration of other factors by Walker.

If dewatering activity produces wastewater that is surplus to the reuse demand onsite, alternative wastewater management measures will need to be implemented. Options for wastewater management are assessed in this report.

3 Background

Site investigations of the geology and hydrogeology of the Riverlea development area had been undertaken prior to this dewatering investigation, including:

- REM (2008), Aquifer Storage and Recovery Potential for Buckland Park, 30 October 2008
- REM-SKM (2008), Buckland Park EIS Groundwater Investigations, 17 December 2008
- SKM (2009), Further Groundwater Monitoring, Buckland Park Proposal, 6 March 2009
- Golder (2009), Preliminary Acid Sulphate Soil Investigation, Buckland Park, South Australia, Draft Report, 31 March 2009
- AGT (2011), Buckland Parks Drain Model, 4 May 2011.

LBWco carried out a review of the above reports prior to this dewatering investigation. A summary of the key outcomes relating to site geology and hydrogeology is provided in the sections below.

3.1 Geology

The ground surface is relatively flat in the vicinity of the site, with a gentle slope down towards the coast, which is located approximately 3 km west of the planned location of SWL1.

The near surface stratigraphy of the area is comprised of Quaternary sediments of the Pooraka Formation, with the St Kilda and Glanville Formations towards the coast. The Pooraka Formation is described as mottled clay and silt inter-bedded with sand, gravel and thin sandstone layers. The St Kilda formation is characterised by estuarine muds, sands, peats and shelly beds and often contains permeable sand lenses.

These Quaternary sediments overlie the older sediments of the Hindmarsh Clay, which is described as a layered sequence of mottled red-brown sandy clay with sand and gravel lenses.

3.2 Hydrogeology

The REM (Oct 2008) report indicates that four Quaternary aquifers (Q1 to Q4) are generally present in the Northern Adelaide Plains region. The top three (Q1 to Q3) have thicknesses ranging from 3 to 15 m, and can be quite discontinuous with lateral extents often less than 2 km. The Hindmarsh Clay unit encloses these aquifers. Clay generally underlies the Q3 aquifer and forms a confining bed above the Q4 aquifer, which is a sandy, confined aquifer within the Carisbrooke Sand, with an average thickness of about 20 m. The Q4 near Buckland Park (and Riverlea) is interpreted to directly overlie the top Tertiary aquifer (T1), although the Q4 itself thins out towards the coast.

4 Regulatory Framework

4.1 Discharge to the Environment

In South Australia, dewatering wastewater disposal is regulated by the:

- Environment Protection Act 1993 (EP Act), and
- Environment Protection (Water Quality) Policy 2015 (WQP).

In accordance with Section 25 of the EP Act, there is a General Environmental Duty (GED) on all persons to '... take all reasonable and practical measures to prevent or minimise any resulting environmental harm' resulting from an activity. The GED requires a person to take 'reasonable and practical' actions to prevent further environmental harm from any existing site contamination.

Schedule 1 of the EP Act specifies the threshold for an earthworks drainage licence:

"The conduct of earthworks operations in the course of which more than 100 kL of wastewater containing suspended solids in a concentration exceeding 25 mg/L is discharged directly or indirectly to marine waters or inland waters."

The purpose of the WQP is to protect and maintain beneficial uses of water resources in South Australia by regulating discharges to those water sources. The WQP assigns Environmental Values (EVs) for all inland, surface waters and groundwater. The default EVs for groundwater as set out in the WQP include the following:

- Drinking water for human consumption;
- Primary industries: irrigation and general water uses; livestock drinking water; aquaculture and human consumption of aquatic foods.

The default EVs for public stormwater systems include aquatic ecosystems and recreation and aesthetics.

Collectively, these are the applicable EVs for the context of this dewatering investigation.

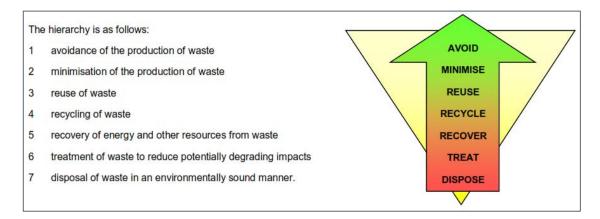
Clause 9 of the WQP refers to the GED at section 25 of the EP Act, and requires (in part) that a person must:

- apply the Waste Management Hierarchy
- in the case of waters with an EV of aquatic ecosystems, avoid activating a trigger value published in relevant Water Quality Guidelines
- in the case of waters with an EV of recreation and aesthetics, have regard to NHMRC 2008, Guidelines for Managing Risks in Recreational Water (GMRRW).
- follow standards, codes and guidelines prescribed in Schedule 4 of the WQP.

The WQP prescribes Water Quality Guidelines as:

ANZECC 2000, Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

In 2018 these guidelines were revised and published online as the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018) Water Quality Guidelines (https://www.waterquality.gov.au/anz-guidelines). Nevertheless, the WQP contains a fixed reference to the ANZECC 2000 guidelines as relevant water quality criteria for application in South Australia.

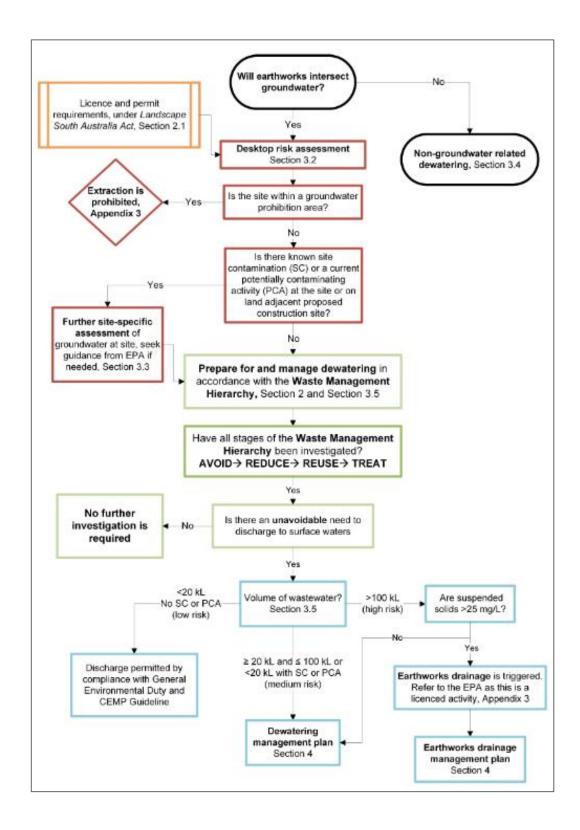


Activation of trigger values for an indicator specified in the Water Quality Guidelines is described at Clause 7 of the WQP and states that for aquatic ecosystems a basis of a 95% level of protection of species must be applied. ANZECC (2000) and ANZG (2018) recommend that 99% level of protection for species be applied for toxicants with a bioaccumulating nature, but no chemicals of this nature were listed for freshwater aquatic ecosystems.

Further guidance on how to meet the requirements of the above is provided in EPA 2021, Environmental management of dewatering during construction activities. Water Quality Guideline (June 2021).

4.2 Waste Management Hierarchy

The obligation of a proponent of an activity to apply the waste hierarchy is embedded in the environmental regulatory instruments administered by the EPA. An extract of the hierarchy from EPA (2021) is provided below. These principles are applicable to all dewatering projects.


4.3 Discharge to sewer

The flow rate and volume of dewatering wastewater to be managed during construction of SWL1 were expected to be too large for discharge to sewer to be a feasible option for wastewater management. Therefore, no further assessment of this discharge option was provided.

4.4 Dewatering decision-making flowchart

EPA (2021) provides a decision-making flow chart to assist proponents to understand their dewatering requirements and the regulatory controls in place. An extract is provided below.

5 Scope of Work and Methodology

5.1 Guidance Documents

Dewatering investigation works were undertaken with reference to regulatory requirements and/or guidance in the following publications:

- EPA 2019a, Guidelines for the assessment and remediation of site contamination (GAR)
- EPA 2019b, Guidelines for regulatory monitoring and testing Groundwater sampling
- EPA 2021, Environmental management of dewatering during construction activities
- International Association of Hydrogeologists Australia (IAHA) 2020, Minimum construction requirements for water bores in Australia (4th Edition)
- Landscape South Australia Act 2019 (SA) and relevant regulations
- National Environment Protection Council (NEPM) 1999, National Environment Protection (Assessment of Site Contamination) Measure (ASC NEPM, as amended 2013).

5.2 Soil Bore Investigation

5.2.1 Scope of Work and Rationale

Between 28 and 31 March 2023, 17 soil bores were drilled across the site area to characterise the soil lithology, depth(s) to saturated zone(s) and the presence/thickness of clay aquitard beneath shallow saturated zones. Soil bore locations were selected to assess conditions within the proposed excavation areas, and hydraulically up and down-gradient of the excavation. Soil bores were drilled to depths of between 4.5 m below ground level (mBGL) and 9.0 mBGL.

A soil bore location plan is provided as Figure 2 in Appendix A. The rationale for each location is described in Table 1 below.

Table 1 Soil Bore Location Rationale

Soil Bore	Rationale
SL01, SL02	Upgradient soil bores to the north and east of the dewatering area
SL03-SL06	Soil bores within/adjacent to the proposed dewatering area for SWL1
SL07-SL13	Soil bores within/adjacent to the proposed dewatering area for SWL2
SL14, SL15	Soil bores within the proposed dewatering area for SWL3
SL16, SL17	Soil bores downgradient of the proposed dewatering area

5.2.2 Methodology

The soil bore investigation was undertaken in general accordance with the methodology described in Table 2.

Table 2 Soil Bore Investigation Methodology

Activity	Details
Environment, Health and Safety (EHS) Plan	LBWco prepared a project specific EHS plan to identify hazards that may be encountered in the field and document the appropriate risk mitigation measures to be implemented.
Water Affecting Activity Permits	Permits to drill and backfill soil bores that intersected multiple saturated layers were obtained from DEW prior to commencement of works.
Drilling of soil bores	Between 28 and 31 March 2023, soil bores SL01-SL14 were drilled by experienced environmental driller A&S Drilling under the full-time supervision of LBWco. Soil bores SL15-SL17 were drilled by Williams Drilling and Sampling (WDS) on 31 March 2023.
	Soil bores were drilled using push-tube methodology and were extended to depths of between 4.5 mBGL at SL05 and 9.0 mBGL at SL06.
	Soil bore logs are provided in Appendix B.
Soil bore logging	Recovered soils were placed into clean core trays and logged in general accordance with AS1726-2017.
	Field indicators of contamination (e.g. foreign inclusions, staining, odour) were recorded.
Soil sampling	Soil samples were collected at locations SL13-SL16 as part of the Precinct 3 Preliminary Site Investigation. These results are reported separately and are not discussed further here.
Soil bore abandonment	Following completion of drilling, the saturated zones of boreholes were grouted to restore aquifer conditions and prevent the introduction of vertical connectivity.

5.3 Groundwater Investigation

5.3.1 Scope of Work and Rationale

Groundwater Well Installation

The installation of groundwater wells for use in the dewatering investigation was undertaken in three stages, as follows:

- Stage 1 consisted of a broad groundwater assessment across the Riverlea site, with focus on characterising groundwater conditions within and around the dewatering area. Groundwater well locations, depths and well constructions were refined based on the results of the soil bore investigation.
 - Four wells (SLMW01-P, SLMW04-P, SLMW05-P and SLMW09-P) were installed to target the shallow saturated zone or inferred 'perched' water.
 - Seven wells (SLMW01-Q1-SLMW03-Q1, SLMW05-Q1-SLMW08-Q1) were installed to target deeper saturated zones in what was assessed to be the Q1 aquifer.
- Stage 2 consisted of a targeted assessment of groundwater at four locations (SLMW10-SLMW13) in the vicinity of proposed SWL1. Assessment beyond the maximum saltwater lake excavation depth of 0.5 mAHD was required to investigate the potential for intersection/upward leakage from deeper groundwater (Q2 aquifer) and possibility for heave following lake excavation. Nested wells of varying depths were installed at each location to target different saturated zones, as follows:

- 'A' wells were installed to target the shallow saturated zone at each drilling location.
 No shallow saturated zone was present at location SLMW11, so an 'A' well was not installed.
- 'B' wells were installed to target the second saturated zone at each location, which
 included several saturated lenses at some locations.
- 'C' wells were installed to target the saturated zone at or below the maximum excavation depth of the saltwater lake.
- Stage 3 consisted of the installation of four large diameter (100 mm) wells of varying depths (EX10-EX13) to be used for pump testing. Pump test wells were installed to target the saturated zones that were anticipated to contribute the greatest flows during dewatering, based on results of slug testing in nearby wells (see below).

Groundwater well locations are shown on Figure 3 in Appendix A.

Groundwater Sampling

Two groundwater monitoring events (GMEs) were undertaken as part of the dewatering investigation. The first event was undertaken from 2-8 May 2023 following installation of the wells in Stage 1 with the objective of assessing water quality across, upgradient and downgradient of the development area. The second GME was undertaken from 31 October to 7 November 2023 following Stage 2 well installations and was focussed on water quality in the vicinity of SWL1.

Existing groundwater wells on and offsite were utilised for the GMEs in addition to newly installed wells. A summary of the groundwater monitoring network for the dewatering investigation is provided in Table 3.

Groundwater samples were also recovered from wells EX10, EX12 and EX13 at the completion of pump tests, to provide additional data on likely water quality during dewatering activities. Samples were analysed for total dissolved solids (TDS), heavy metals and nutrients, which were identified as key contaminants of potential concern from the previous groundwater monitoring events.

Aquifer Testing - Slug Tests

Falling and rising slug tests were performed on a subset of monitoring wells within the proposed SWL1 dewatering area, as indicated in Table 3.

Aquifer Testing - Pump Testing

Pump testing was undertaken on three of the four pump test wells, EX10, EX12 and EX13. Pump testing was undertaken between 6 and 19 December 2023.

Hydrographs

In addition to gauging of groundwater levels during the GMEs in 2023, groundwater level data loggers (pressure transducers) were deployed in selected onsite monitoring wells (SLMW01-P, SLMW05-P, SLMW08-Q1 and SLMW13-A) to record groundwater levels over a three-week period in August 2024. Data loggers were programmed to record at three-hour intervals.

Groundwater level data for onsite wells was interrogated together with publicly available level data (waterconnect.sa.gov.au) for selected offsite monitoring wells, to prepare and assess hydrographs representing the shallow groundwater system onsite and within the surrounding area.

Unit numbers of the offsite wells interrogated were 6628-2501, 6628-2515, 6628-19991, 6628-19995 and 6628-19999. These wells were selected based on recorded well completion depths consistent with the shallow groundwater system and to provide a spread of locations around Riverlea Precinct 2 at distances ranging from 1 km to 6 km.

Table 3 Groundwater Monitoring Network

Well ID	DEW Permit	Drill Data	Easting	Northing	TOC RL	Total Depth	Base of well	Screen	Sampled	Sampled	Slug Test
Well ID	No.	Dilli Date	Easility	Northing	TOC KL	rotal Depth	RL	Interval	May-23	Oct-23	slug rest
			GDA20	GDA20	(mAHD)	(mBTOC)	(mAHD)	(mBGL)			
SLMW01-P	439417	18/04/2023	272971.881	6163709.803	9.674	4.727	4.947	2.5 - 4	Y	Υ	05.10.23
SLMW01-Q1	439270	17/04/2023	272973.019	6163706.174	9.685	7.943	1.742	5.65 - 7.15	Υ	Υ	05.10.23
SLMW02-Q1	439269	18/04/2023	272446.646	6163233.766	8.643	8.159	0.484	3 - 7.5	Υ	Υ	05.10.23
SLMW03-Q1	439272	18/04/2023	272721.032	6163226.168	9.469	7.420	2.049	4 - 6.5	Υ	Υ	05.10.23
SLMW04-P	439418	20/04/2023	273255.325	6162771.465	8.518	5.423	3.095	3 - 5	Υ	Υ	05.10.23
SLMW05-P	439413	18/04/2023	271804.955	6162843.62	8.086	7.013	1.073	3.25 - 6.25	Υ	Υ	N
SLMW05-Q1	439266	17/04/2023	271806.178	6062845.203	8.138	9.949	-1.811	7 - 9	Υ	Υ	N
SLMW06-Q1	439420	18/04/2023	272522.86	6162784.453	7.27	6.873	0.397	2 - 6.5	Υ	Υ	05.10.23
SLMW07-Q1	439414	19/04/2023	272105.585	6162180.002	6.51	6.491	0.019	2 - 6	Υ	Υ	N
SLMW08-Q1	439268	19/04/2023	271652.554	6161771.683	6.426	6.696	-0.27	2 - 6	Υ	N	N
SLMW09-P	439994	19/04/2023	270586.501	6161442.812	5.563	3.797	1.766	1 - 3	Υ	N	N
SLMW10-A	448912	23/10/2023	272772.577	6163179.029	9.588	7.185	2.403	5.3 - 6.3	-	Υ	08.11.23
SLMW10-B	448913	23/10/2023	272774.531	6163178.4	9.559	10.100	-0.541	8.2 - 9.2	-	Υ	08.11.23
SLMW10-C	448918	18/10/2023	272776.768	6163177.594	9.591	13.185	-3.594	10 - 13	-	Υ	08.11.23
SLMW11-B	448915	23/10/2023	272799.342	6162987.626	9.294	8.780	0.514	5.1 - 7.8	-	Υ	08.11.23
SLMW11-C	448919	16/10/2023	272800.36	6162985.507	9.292	13.970	-4.678	10 - 13	-	Υ	08.11.23
SLMW12-A	448916	23/10/2023	272727.468	6162776.055	8.31	5.020	3.29	2.5 - 4	-	Υ	08.11.23
SLMW12-B	448917	23/10/2023	272728.233	6162773.82	8.312	9.080	-0.768	6.5 - 8	-	Υ	08.11.23
SLMW12-C	448920	19/10/2023	272729.249	6162771.629	8.272	12.455	-4.183	10.5 - 13	-	Υ	08.11.23
SLMW13-A	448909	24/10/2023	273247.115	6162805.068	8.643	5.340	3.303	3 - 4.5	-	Υ	08.11.23
SLMW13-B	448910	24/10/2023	273247.281	6162802.55	8.654	9.540	-0.886	7 - 8.8	-	Υ	08.11.23

Well ID	DEW Permit No.	Drill Date	Easting	Northing	TOC RL	Total Depth	Base of well RL	Screen Interval	Sampled May-23	Sampled Oct-23	Slug Test
			GDA20	GDA20	(mAHD)	(mBTOC)	(mAHD)	(mBGL)			
SLMW13-C	448911	20/10/2023	273247.768	6162800.651	8.582	13.380	-4.798	9.5 - 12.5	-	Υ	08.11.23
6528-2628		Unknown	270674.02	6160219.69	3.836	3.947	-0.111	Unknown	Υ	N	N
6628-21445		Unknown	-*	-*	_*	7.623	_*	Unknown	Υ	N	N
6628-23298		Unknown	272961.817	6164329.647	12.199	5.982	6.217	Unknown	Υ	Υ	N

mBGL – metres below ground level; mAHD – metres Australian Height Datum; mBTOC – metres below top of casing *Precise well coordinates and top of casing elevation unknown – not surveyed.

5.3.2 Methodology

The groundwater investigation was undertaken in accordance with the methodology described in Table 4.

Table 4 Groundwater Investigation Methodology

Activity	Details
EHS Plan	LBWco prepared a project specific EHS plan to identify hazards that may be encountered in the field and document the appropriate risk mitigation measures to be implemented.
Drilling of monitoring wells	Permits to install the new groundwater wells were obtained from DEW prior to commencement of works. 18-20 April 2023 Experienced drilling contractor, Underdale Drillers oz (Underdale), was engaged
	to drill and install wells SLMW01-SLMW09 under the full-time supervision of LBWco. Wells were installed using hollow auger drilling method to the depths indicated in Table 3.
	At locations SLMW01-Q1 and SLMW05-Q1, 177 mm diameter pre-collars were installed to prevent connection of the perched groundwater and Q1 aquifer. The pre-collars were installed by drilling through the shallow perched groundwater and penetrating the underlying formation by 0.5-1 m. The PVC pre-collar was then installed and the borehole annulus and base were grouted and the grout left to cure for a minimum of 24 hours. Following curing the well was installed by drilling through the pre-collar to the target depth.
	16-24 October 2023 Monitoring wells at locations SLMW10-SLMW13 were drilled and installed by
	Underdale under the full-time supervision of LBWco.
	Deep monitoring wells SLMW10-C, SLMW11-C, SLMW12-C and SLMW13-C were drilled using a sonic drilling method, to produce a continuous core. At each location, drilling was installed past the maximum excavation depth of the proposed saltwater lake (0.5 mAHD) to investigate the presence of saturated layers in proximity to the base of the excavation.
	'A' and 'B' monitoring wells were drilled using hollow augers to provide borehole support and prevent connection of shallow saturated zones.
	Groundwater well construction logs and DEW permits are provided in Appendix C.
Monitoring well installation	Monitoring wells were constructed using Class 18 PVC casing with screw-threaded joints and slotted screens. At each location, the well annulus was backfilled with a filter pack to 0.5 m above the top of the screen, with a minimum 1 m bentonite seal and then grouted to the surface.
	Wells were finished above ground level with lockable steel standpipe covers.
	Soil cuttings from groundwater wells were retained onsite.
Logging of well lithology	Recovered soils were placed into clean core trays for logging. Soil cores were photographed and logged onsite with reference to AS1726-2017.
	Field indicators of potential contamination (e.g. foreign inclusions, staining, odour) were recorded.
Well development	Following installation, wells were developed by gentle agitation with a steel bailer to remove sediment. Extraction of groundwater was undertaken until the groundwater turbidity was low.
	As the sonic drilling method required the addition of large volumes of water to the boreholes, wells SLMW10-C, SLMW11-C, SLMW12-C and SLMW13-C were developed using air lift to remove larger volumes of water.
	Extracted groundwater was disposed to grade on site.
	Following development, wells were allowed to equilibrate for 7 days prior to groundwater sampling.

Activity Details Aquifer testing was undertaken by LBWco on 5 October 2023 and 8 November Slug testing 2023 at wells indicated in Table 3. On each occasion, following gauging of wells, rising and falling head slug tests were undertaken to enable an estimate of the hydraulic conductivity of the shallow groundwater. Slug testing was undertaken as follows: Slug testing involved causing the downwards displacement of groundwater in the well by removing water using a disposable bailer, then measuring the response of water level in the well on return to equilibrium conditions. The test was repeated in reverse by adding a known volume of water to the well over a short period of time to cause upwards displacement of groundwater. Where time permitted, the tests were repeated to provide additional data. Water level data on 5 October 2023 was recorded down hole via a vented In-situ LevelTROLL pressure transducer with built-in correction for atmospheric pressure. Water level data on 8 November 2023 was recorded via a Levelogger 5 pressure transducer, with simultaneous monitoring of atmospheric pressure via a Barologger 5, which was used to correct water levels with respect to atmospheric pressure. The testing regimes were performed under the instruction of LBWco's Senior Principal Consultant and the guidance of sub-consultant Principal Hydrogeology (Mr Jonathan Larkin - Hydrogeology Consulting Ltd). Slug testing data was assessed by the Hydrogeology Consulting Ltd. Aquifer slug testing results are presented in Section 6.5 and Appendix F. Pump testing Pump testing was undertaken 6 December 2023 (EX10), 14 December 2023 (EX12) and 18 December 2023 (EX13). The pump testing methodology is described below. At least 24 hours prior to the planned pump test: Standing water level (SWL) at selected wells was measured and recorded. At the pump test location, data loggers were deployed in the extraction well and adjacent monitoring wells to record groundwater levels at hourly A barometric pressure logger was also deployed to record barometric pressure before the pump test. On the day of pump testing: Data loggers were retrieved and data from the background monitoring was downloaded. Loggers were redeployed in the extraction and monitoring wells to record data at every 0.5 cm of pressure head change. Data loggers were deployed to approximately 0.1 m above the bottom of the well casing. SWL was gauged following deployment of the data loggers. An electric submersible pump was deployed in the extraction well to 0.5 m above the bottom of the well casing. The pump was secured at this position

• A flow meter was connected to the discharge pipe to measure flow rate during the pump test.

to prevent movement during the pump test.

- A groundwater disposal location (SWL1 excavation) was identified at least 20 m from the extraction and monitoring wells and discharge hose laid out.
- SWL was gauged in the extraction and monitoring wells to confirm return to equilibrium prior to commencing the pump test.
- A step test was undertaken to determine the maximum sustainable flow rate. Flow rate was varied by adjusting the valve position. SWL in the extraction well was monitored in real time (via the downhole data logger) during the step test to support active flow control while targeting a head of at least 0.5 m of water over the pump intake. Flow rates and water levels in nearby monitoring wells were recorded at regular intervals during the step test.
- When apparent steady-state flow rate and SWL conditions were achieved in the extraction well, continuous pumping for up to 6 hours was undertaken.
 Flow rates and SWLs in nearby wells were monitored and recorded regularly throughout the pump test.

Activity Details Due to the relatively low flow rates achievable from pumping of the extraction wells, very small adjustment to pump flow rate resulted in material change to drawdown in the extraction wells. Achieving steady-state between extraction and recharge rate in each well proved to be quite difficult. LBWco made best endeavours to manage pumping flow rate at or near steady-state conditions for each well. When the pump test was completed, a groundwater sample was collected from the discharge hose and the pump was turned off. The pump was left in place overnight. Data loggers were also left in the monitoring and extraction wells overnight to monitor aquifer recovery following the test. On the day following the pump test: Data loggers were retrieved from the monitoring wells and data downloaded Pump was removed from the extraction well. Data logger was retrieved from the extraction well and data downloaded. Groundwater Following a period of equilibration after monitoring well installation events, LBWco undertook groundwater sampling of the monitoring wells indicated in Table 3 sampling from 3-8 May 2023 and 31 October-2 November 2023. For each event, the sampling methodology adopted was as follows: SWL was measured and recorded for each well prior to any purging. Wells were purged and sampled using the low-flow method with QED Micro purging bladder pump, with the exception of well 6628-23298 which was sampled via peristaltic pump due to an obstruction downhole that prevented the QED pump from passing through the casing. Between 3 and 10 L of groundwater was removed from each well prior to sampling. Water quality parameters were recorded using a calibrated water quality meter and parameter concentrations assessed within a closed flow cell at approximately 1 L intervals. Once water quality parameters had stabilised to within acceptable tolerances (per EPA 2019b) over three consecutive readings (as shown below), a groundwater sample was collected using the low-flow sampling pump. Parameter Temp(°C) 5% ±0.1 0.2 10% +10 my Acceptable range Groundwater samples were collected in bottles supplied by the testing laboratory, including appropriate preservatives where required. All reusable equipment was thoroughly decontaminated and rinsed between sample locations. Groundwater gauging and sampling records are presented in Appendix E. Calibration certificates for the field instruments used during sampling are presented in Appendix D. Quality control Three blind-coded intra-laboratory duplicate and two blind-coded samples interlaboratory duplicate samples were collected to comply with the recommended frequency of ≥ 1 in 20 primary samples and to assess the precision of laboratory results. One equipment rinse blank sample was prepared per day of sampling to assess the effectiveness of decontamination procedures. One trip blank sample was also prepared for each batch of samples dispatched to the primary laboratory to assess the potential for cross contamination of samples to have occurred during sample handling and transit. Chain of custody All samples were handled and dispatched to the laboratory under LBWco controls standard protocol. Laboratory testing at Primary lab - Eurofins NATA accredited Secondary lab - ALS

laboratory

Activity	Details
Groundwater laboratory analysis	 Groundwater samples were analysed for: Petroleum hydrocarbons (TRH/BTEXN) Organochlorine pesticides (OCP) Phenolic compounds Metals and metalloids Biological oxygen demand Nutrients – total nitrogen, total kjeldahl nitrogen, NOx, NO2, NO3, ammonia, total phosphorus, reactive phosphorus Cyanide Sulphate, sulphide and sulphite TDS Total suspended solids (TSS)
Hydrographs	Data loggers were deployed in monitoring wells SLMW01-P, SLMW05-P, SLMW08-Q1 and SLMW13-A on 8 August 2024 to record groundwater levels at 3-hour intervals. Prior to deploying the loggers, SWL was measured and recorded for each well. A barometric pressure logger was also deployed to record barometric pressure. On 30 August 2024, SWL was measured and recorded at each well prior to retrieving the data loggers and downloading of the data. Historical data for selected offsite wells within the groundwater modelling domain advised by Hydrogeology Consulting Ltd (HCL)was downloaded from WaterConnect. Monthly rainfall data recorded at the nearest weather station (Edinburgh 023083) was downloaded from the Bureau of Meteorology. Hydrographs for selected onsite and offsite wells within the model domain were produced by LBWco.

5.4 Surface Water Investigation

5.4.1 Scope of Work and Rationale

A surface water quality investigation was undertaken to characterise water quality in a range of settings relevant to the saltwater lakes, including:

- Upstream of the proposed saltwater lakes Chapman Creek intake for filling of saltwater lakes
- Downstream discharge zone for outflow from the proposed saltwater lakes Thompson Creek
- Downstream stormwater drains and surface water tributaries flowing into Thompson Creek

Surface water sampling was undertaken by BMT / Water Engineering Projects (WEP) and LBWco at the locations presented on Figure 4 in Appendix A as follows:

- BMT / WEP
 - From March 2022 May 2023, regular sampling was undertaken at five locations.
 Upstream¹ monitoring locations BMT-1 (Mouth of Chapman Creek) and BMT-2 (Upper Chapman Creek) were selected to characterise the water quality upstream of the likely intake point for water entering SWL1. Downstream monitoring locations BMT-3 (Offshore),

¹ Chapman Creek is referred to as "upstream" in context of the proposed pumped saltwater from Chapman Creek, into the saltwater lakes, then discharged into Thompson Creek "downstream" of the lakes.

BMT-4 (Channel), BMT-5 (Thompson Creek) and BMT-7 (Inshore Bolivar Outlet)² were selected to characterise the potential surface water receiving environment and assess the impact of other activities in the area on surface water quality.

- Samples were analysed for TSS and nutrients. Analysis for heavy metals was also undertaken on a quarterly basis.
- Continuous monitoring of water quality parameters was also undertaken from March 2022 to September 2023 at location BMT-6 (Chapman Creek).

LBWco

- On 8 November 2023, a surface water sampling event was undertaken by LBWco at locations SW01-SW09. Samples were analysed for a range of chemicals, consistent with the groundwater monitoring suite.
- Sampling locations were selected to characterise existing surface water quality in the potential Thompson Creek receiving environment.
 - SW01 Riverlea stormwater channel at closed end
 - SW02 Channel flowing into Thompson Creek, eastern side of Park Road
 - SW03 Thompson Creek, exiting P'Petual site
 - SW04 Thompson Creek, eastern side of Park Road, downstream of P'Petual site
 - SW05 Thompson Creek, western side of Thompson Road
 - SW06 Stormwater drain, south of Beagle Hole Road, upstream of Thompson Creek
 - SW07 Thompson Salt Creek
 - SW08 Thompson Salt Creek
 - SW09 Gawler River channel, east of salt pans and upstream of Thompson Salt Creek

5.4.2 Methodology

The surface water assessment was undertaken in accordance with the methodology outlined in Table 5.

Table 5 Surface Water Investigation Methodology

Activity	Details
EHS Plan	LBWco prepared a project specific EHS plan to identify hazards that may be encountered in the field and document the appropriate risk mitigation measures to be implemented.
Surface water sampling	On 8 November 2023, surface water samples were collected from the locations indicated on Figure 4 in Appendix A by an experienced LBWco consultant, using a grab-sampler mounted on an extendable pole.
	Field water quality parameters were collected using a calibrated water quality meter and are provided in Appendix E.
Decontamination of sampling equipment	Reusable equipment, including the grab sample pole, was thoroughly decontaminated and rinsed between sample locations.
Quality control samples	One intra-laboratory duplicate sample was collected to comply with the recommended frequency of ≥ 1 in 20 primary samples and to assess the precision of laboratory results.
	One equipment rinse blank sample was prepared per day of sampling to assess the effectiveness of decontamination procedures.

² Sample location BMT-7 Inshore Bolivar Outlet is located approximately 700 m downstream of the point at which the Bolivar Outlet discharges to the environment. At this point, water is a mixture of water from Thompson Cree, the Bolivar Outlet and seawater. Results therefore are not reflective of the chemical condition of Bolivar Outlet discharge water.

A						
Activity	Details					
	One trip blank sample was also prepared for each batch of samples dispatched to the primary laboratory to assess the potential for cross contamination of samples to have occurred during sample handling and transit.					
Chain of custody controls	All samples were handled and dispatched to the laboratory under LBWco standard protocol.					
Laboratory testing at NATA accredited laboratory	Primary lab – Eurofins					
Groundwater laboratory analysis	Groundwater samples were analysed for: TRH/BTEXN OCP Phenolic compounds Metals and metalloids Biological oxygen demand Nutrients – total nitrogen, total kjeldahl nitrogen, NOx, NO2, NO3, ammonia, total phosphorus, reactive phosphorus Cyanide Sulphate, sulphide and sulphite TDS TSS					

6 Results

6.1 Drilling and Well Installation

A summary of the drilling and well installation information is provided in Table 3. Further details of the well installations are provided in the well construction logs in Appendix C.

6.2 Soil Lithology

Observations made during the soil bore investigation indicated that natural soils across the site generally comprised dark brown or grey-brown clay interbedded with bands of more permeable material such as sandy clays, clayey sands, sandy gravels and sands, ranging in thickness from 0.1 m to 2.7 m. Saturated zones were generally observed within the permeable lenses.

One or more saturated zones were observed at each of the drilling locations. Where multiple saturated zones were observed, these zones were generally separated by moderate-high plasticity clays.

LBWco did not observed evidence of contamination (i.e. staining, odour) during the soil bore or well installation works and there were no indications of potential for acid sulphate soils.

A series of photos of the core recovered from sonic drilling at location SLMW13 are presented below. Each section represents a 1.5 m depth interval of drilling. The significant depth of clay, with intermittent thin bands of more permeable materials is evident in the photographs.

6.3 Groundwater Elevations and Flow Direction

SWL measurements were recorded as metres below top of casing (mBTOC) and are presented in Table 6. Survey data for top of casing (TOC) relative level (RL) elevations, presented with the logs in Appendix C, was then used to calculate groundwater RLs in metres Australian Height Datum.

Groundwater elevation contours were calculated for the May and October 2023 GME data and are presented on Figures 5a and 5b in Appendix A. Groundwater flow is perpendicular to the elevation contours and was interpreted to be to the southwest, towards Gulf St Vincent.

Where nested wells were installed, i.e. locations SLMW01, SLMW05 and SLMW10-SLMW13, groundwater elevations were observed to have equilibrated between wells, indicating that wells are likely to be in hydraulic continuity on a wide (lateral) scale, despite the vertical separation evident at individual locations.

6.3.1 Hydrographs

Hydrographs were generated using groundwater elevation data from the onsite and offsite wells. The output is provided below as Plate 1.

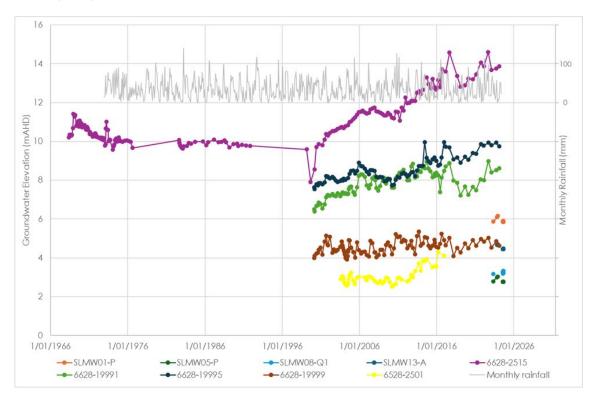


Plate 1 Groundwater level hydrographs

 Table 6
 Summary of Groundwater Elevations and Water Quality Parameters

Well ID	Date	SWL (mBTOC)	Groundwater RL (mAHD)	Conductivity (µS/cm)	рН	DO (mg/L)	Temperature (°C)	Redox (mV)
SLMW01-P	5/5/23	3.808	5.866	6134	7.42	0.56	14.7	119.4
	1/11/23	3.575	6.099	9468	7.24	0.1	19.4	41
SLMW01-Q1	5/5/23	3.803	5.882	5720	7.29	9.35	14.6	109.9
	1/11/23	3.562	6.123	9102	6.88	0.89	19.9	49
SLMW02-Q1	5/5/23	4.624	4.019	6069	7.25	0.27	16.2	138.5
	1/11/23	4.334	4.309	9099	7.07	0.46	19	90.2
SLMW03-Q1	3/5/23	5.226	4.243	4484	7.66	13.44	15.2	143.6
	1/11/23	4.980	4.489	13042	7.06	0.84	19.2	97.6
SLMW04-P	8/5/23	3.888	4.630	5470	7.55	3.53	14.9	136.1
	2/11/23	3.880	4.638	8496	7.31	0.94	18.3	138.8
SLMW05-P	5/5/23	5.292	2.794	6163	7.52	6.81	14.7	121.7
	1/11/23	5.080	3.006	9990	7.41	4.3	17.4	131.6
SLMW05-Q1	5/5/23	5.366	2.772	8423	7.22	0.77	14.9	132.8
	1/11/23	5.145	2.993	13305	6.99	1.46	18.1	48.8
SLMW06-Q1	3/5/23	3.891	3.379	4683	7.73	15.01	16.3	129.9
	1/11/23	3.575	3.695	11157	7.4	1.35	18.2	84
SLMW07-Q1	3/5/23	3.191	3.319	8663	7.67	7.98	15.8	129.7
	1/11/23	3.070	3.440	14756	7.61	5.8	17.5	118.9
SLMW08-Q1	4/5/23	3.264	3.162	9621	7.38	8.41	16.4	90.9
SLMW09-P	4/5/23	3.042	2.521	2464	7.39	2.83	16.4	-91.03
SLMW10-A	2/11/23	5.117	4.471	9291	7.5	1.36	19.6	108.4

Well ID	Date	SWL (mBTOC)	Groundwater RL (mAHD)	Conductivity (µS/cm)	рН	DO (mg/L)	Temperature (°C)	Redox (mV)
SLMW10-B	2/11/23	5.085	4.474	9016	7.37	0.12	19.9	10.4
SLMW10-C	2/11/23	5.114	4.477	9591	7.19	0.4	20	63.1
SLMW11-B	2/11/23	5.179	4.115	9007	7.48	3.9	19.7	106.1
SLMW11-C	2/11/23	5.184	4.108	8826	7.18	0.99	19.7	79.5
SLMW12-A	31/10/23	4.480	3.830	13560	7.44	4.2	18.9	86.4
SLMW12-B	31/10/23	4.479	3.833	14058	7.24	5.11	19.2	20.3
SLMW12-C	31/10/23	4.458	3.814	15228	7.09	3.71	19.8	45.5
SLMW13-A	2/11/23	3.980	4.663	8804	7.35	0.98	19.2	124.8
SLMW13-B	2/11/23	3.935	4.719	8220	7.35	3.55	19.4	107.4
SLMW13-C	2/11/23	3.915	4.667	10109	6.99	2.52	20.3	93
6528-2628	4/5/23	1.647	2.189	79779	6.65	8.6	16.2	124.6
6628-21445	8/5/23	6.167	_*	11427	7.91	3.43	15.2	-223.8
6628-23298	5/5/23	5.552	6.647	6106	6.79	1.37	14.5	-93.1
	7/11/23	5.450	6.749	7765	4.95	0.1	20.9	-93.1

^{*} Precise well coordinates and top of casing elevation unknown – not surveyed.

6.4 Water Quality Parameters

6.4.1 Groundwater

Stabilised water quality parameters measured immediately prior to sampling are summarised in Table 6. Sampling records are provided in Appendix E.

Key observations made in relation to water quality readings were as follows:

- Electrical conductivity (EC) onsite ranged from 2,464 μ S/cm at SLMW09-P on 4 May 2023 to 15,228 μ S/cm at SLMW12-C on 31 October 2023. EC measured at offsite well 6528-2628 was 79,779 μ S/cm.
- pH ranged from 4.95 at 6628-23298 on 7 November 2023 to 7.91 at 6628-21445 on 8 May 2023.
- Dissolved oxygen (DO) ranged from 0.1 mg/L at SLMW01-P on 1 November 2023 to 15.01 mg/L at SLMW06-Q1 on 3 May 2023.
- Redox ranged from -223.8 mV at 6628-21445 on 8 May 2023 to 143.6 mV at SLMW03-Q1 on 3 May 2023.

Where nested wells were installed, differences in field water quality parameters between saturated zones, in particular DO and redox, indicated that some stratification of water had occurred and that there was unlikely to be vertical connection between the water bearing zones at these locations.

6.4.2 Surface Water

Water quality parameters measured prior to sampling are provided in Appendix E. Key observations made in relation to water quality readings were as follows:

- EC ranged from 5,741 μ S/cm at SW02 to 71,456 μ S/cm at SW09.
- pH ranged from 4.75 at SW08 to 5.17 at SW07.
- DO ranged from 2.41 mg/L at SW03 to 16.29 mg/L at SW06.
- Redox ranged from 94.0 mV at SW08 to 160.8 mV at SW09.

6.5 Aquifer Testing

Analysis of slug and pump testing data was undertaken by Hydrogeology Consulting. The field data and analysis outputs are provided in Appendices F and G.

6.5.1 Slug Testing

The hydraulic conductivity (k) and transmissivity (m²/d) at each well was estimated using the Bouwer and Rice method. Both rising and falling head tests were used to estimate the hydraulic conductivity values as review of the data indicated that curve outputs matched reasonably well.

The estimated k values are presented in Table 7 and output from individual tests is presented in Appendix F.

Table 7 Summary of Slug Testing Results

Location	Min. Hydraulic Conductivity (m/d)	Max. Hydraulic Conductivity (m/d)	Average Hydraulic Conductivity (m/d)	Transmissivity (m²/d)
SLMW01-P	2.2	4.5	3.3	3.0
SLMW01-Q1	3.5	6.2	4.4	4.8
SLMW02-Q1	1.3	14.0	7.4	22.0
SLMW03-Q1	0.5	3.4	1.8	3.5
SLMW04-P	9.0	27.0	14.0	28.0
SLMW06-Q1	6.5	11.0	14.0	27.0
SLMW10-A	15	19	16	9.8
SLMW10-B	7.3	8.3	7.6	9.9
SLMW10-C	3.0	3.0	3.0	7.5
SLMW11-B	2.8	3.9	3.7	10
SLMW11-C	6.1	6.8	6.3	6.3
SLMW12-A	0.7	0.7	0.7	0.84
SLMW12-B	6.5	8.5	7.5	6.0
SLMW12-C	0.6	0.7	0.65	0.52
SLMW13-A	9.7	12.0	11.0	17.0
SLMW13-B	1.0	1.3	1.2	0.35
SLMW13-C	0.8	0.9	0.85	2.55

The following observations are made relating to the results of slug testing:

- In some areas a shallow, unconfined permeable sandy zone is present, particularly in the vicinity of wells SLMW13-A and SLMW04-P. The hydraulic conductivity of this unit appears to be approximately 20 m/d. This unit is within the proposed excavation depth of SWL1.
- A confined permeable zone comprised of mainly sandy clay and clayey sand was
 intersected at wells SLMW10-B, SLMW11-B and SLMW12-B. The hydraulic conductivity of this
 unit appears to be in the order of 4 m/d to 8 m/d. This unit is partially within the proposed
 excavation depth of SWL1.
- At location SLMW10, a permeable zone within the depth range 10.6-13.0 mBGL is present
 which may have an influence on water flows during dewatering, depending on the
 connectivity with shallower units.
- At locations SLMW12 and SLMW13, results indicated that permeable zones beneath the maximum excavation depth would be unlikely to contribute to flows during dewatering.

6.5.2 Pump Testing

The results of pump testing were used to estimate transmissivity values, using the Bouwer and Rice(B&R), Jacob and Theis recovery methods. A summary of estimated transmissivity rates is provided in Table 8 and outputs from the individual tests, analysed by HCL for LBWco, are provided in Appendix G.

Table 8 Summary of Pump Testing Results – Transmissivity Estimates (m²/day)

Location	\\/ - II		Test &R)	Confined	d Conditions	Unconfine	Unconfined Conditions	
	Well	By Unit	Total	Jacob	Theis Recovery	Jacob	Theis Recovery	- Average
EX10	EX10	-	-	-	31	-	31	
	SLMW10-A	9.6		33	37	33	37	2.4
	SLMW10-B	9.9	27	33	35	3	37	34
	SLMW10-C	7.5		-	-	-	-	
EX12	EX12	-	-	-	20	-	20	
	SLMW12-A	0.84		18	21	20	22	22
	SLMW12-B	6.0	7	21	28	24	31	22
	SLMW12-C	0.52		-	-	-	-	
EX13	EX13	-	-	-	35	-	35	
	SLMW13-A	17.6		48	50	50	53	45
	SLMW13-B	0.4	21	-	-	-	-	40
	SLMW13-C	2.55		-	-	-	-	

7 Assessment of Environmental Values of Groundwater

An assessment of the environmental values (EVs) of groundwater onsite was undertaken in accordance with the process set out in EPA (2019) *Guideline for the assessment and remediation of site contamination* (GAR). The EVs assessment was relevant to groundwater in the shallow saturated zones within the range of the SWL1 excavation depth only. The assessment is presented below

Plate 2 Steps 1 to 3 to determine EVs of groundwater at a site (EPA 2019)³

7.1 Step 1: Determination of Prescribed EVs of groundwater using the EPP-WQ

Clause 3, schedule 1 of the *Environment Protection (Water Quality) Policy 2015* prescribes EVs of groundwater in TDS concentration ranges.

Table 9 Environmental Values Relative to TDS

Environmental Value	EPP-WQ Specified TDS Range (mg/L)	Measured TDS in Groundwater	EV Relevant for consideration based on TDS?
Drinking water for human consumption	<1,200		No*
Primary industry – irrigation and general use	<3,000	860 mg/L (SLMW05-P)	Yes
Primary industry – livestock drinking water	<13,000	to 10,000 mg/L (SLMW07-Q1)	Yes
Primary industry – aquaculture	<13,000	•	Yes

^{*}Concentrations of TDS below the threshold for drinking water were reported at wells SLMW05-P and SLMW13-C in the November 2023 GME. However, the extensive data set for monitoring wells at Riverlea demonstrated these low salinity results were isolated pockets and not representative of shallow groundwater quality across the site, which is typically of moderate to high salinity. Drinking water for human consumption is not a realistic EV for onsite shallow groundwater.

Therefore, the following prescribed EVs are relevant for assessment of groundwater based on the onsite TDS concentrations:

- Primary industry irrigation and general uses
- Primary industry livestock drinking water
- Primary industry aquaculture.

7.2 Step 2: Application of a buffer distance for the protection of surface waters

As recommended in the GAR, a buffer distance of 2 km was adopted for the consideration of surface water impacts within the assessment of EVs of groundwater.

³ Step 4 relates to determining whether harm to groundwater that is not trivial exists. It is not related to determination of EVs.

Table 10 Environmental Values Relative to Surface Waters

EV	Notes	EV relevant within 2 km buffer zone?
Aquatic Ecosystems (freshwater)	The Gawler River passes through/along the northern site boundary, approximately 1 km north of the proposed saltwater lake area.	
	A portion of Thompson Creek runs through a portion of the site.	Yes
	Both creeks are ephemeral and therefore not permanently connected to the shallow groundwater system. Seasonal connection may exist.	
Aquatic Ecosystems (marine water)	None identified within 2 km of the SWL1 area, but Gulf St Vincent is located only a short further distance downgradient of the site and potential dewatering wastewater discharge to the stormwater system onsite would eventually enter the marine environment.	Yes
Recreation and aesthetics	Potentially relevant for surface water discharge environment, as per marine water.	Yes

Based on consideration of Table 10, aquatic freshwater ecosystems, aquatic marine water ecosystems and recreation are relevant EVs for assessment of shallow groundwater onsite in the context of the dewatering investigation.

7.3 Step 3: Review of groundwater data using WaterConnect

Two WaterConnect searches were undertaken by LBWco on 21 and 22 November 2023 as described below. The output of these searches is provided in Appendix E.

- 1. A search was undertaken for a 2 km radius extending from the proposed location of SWL1 in accordance with the process recommended in the GAR.
- 2. As there is a potential for discharge of dewatering wastewater to the stormwater system, which discharges to Thompson Creek downstream, a second WaterConnect search was undertaken to identify potential groundwater users who could be impacted by the activity in the downstream area.

Table 11 summarises the findings of the WaterConnect searches relative to various registered uses per Table 3 of EPA (2019). In determining relevant EVs, consideration was given to shallow groundwater only to a maximum depth of 10 mBGL, which exceeds the maximum depth of the proposed saltwater lakes.

Table 11 Application of WaterConnect data to determine EVs

Registered Use	Notes	EV relevant based on registered users within 2 km buffer zone?	EV relevant based on registered users within potential discharge area?
Domestic	No domestic use was identified for shallow groundwater within 2 km of the site or in the potential receiving area.	No	No
Town Water Supply	No town water supply bores were identified within 2 km of the site or in the potential receiving area.	No	No
Recreation / aesthetics	There were no bores listed for recreational purposes.	No	No

Registered Use	Notes	EV relevant based on registered users within 2 km buffer zone?	EV relevant based on registered users within potential discharge area?
Industrial (general industry)	There were no shallow groundwater bores listed for industrial purpose.	No	No
Primary industry (irrigation)	One bore (6628-2392) east of the potential receiving area was listed as being used for the purpose of irrigation. This bore was drilled in 1964 at Beagle Hole Road, approximately 600 m east of Thompson Salt Creek and was unlikely to receive dewatering wastewater discharge to Thompson Creek. The depth and current status of this bore are unknown.	No	No

Other factors may apply to the consideration of EVs, for which data was not available or which LBWco was not aware of at the time of preparing the above assessment. These factors alone, or in combination with other factors, may lead to a different outcome.

Based on the above assessment, the following EVs were determined to be applicable for assessment of onsite groundwater, based on application of prescribed EVs set via the EPP-WQ or in the context of current or realistic potential future uses for groundwater in the vicinity of the site:

- Recreation and aesthetics
- Aquatic ecosystems (freshwater)
- Aquatic ecosystems (marine water)
- Primary industries irrigation and general uses
- Primary industries livestock drinking water
- Primary industries aquaculture.

7.4 Application of EPA Recognised Criteria

With respect to the identified EVs, the relevant EPA recognised criteria are listed in Table 12. References are listed in order of the hierarchy of application regarding each EV, as recommended in the GAR.

Table 12 EPA Recognised Criteria References

EV	EPA Recognised Criteria
Recreation and aesthetics	National Health and Medical Research Council 2008, Guidelines for Managing Risks in Recreational Water
Aquatic ecosystems (freshwater)	Australian and New Zealand Governments 2018, Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018)
Aquatic ecosystems (marine water)	ANZG 2018
Primary industries – irrigation	ANZG 2018
Primary industries – livestock drinking water	ANZG 2018

8 Laboratory Analytical Results

8.1 Comparison with Water Quality Criteria

8.1.1 Groundwater

A chemical summary table presenting comparison of analytical results with the EPA recognised criteria listed in Table 12 is presented in Appendix J. A high-level summary of exceedances of the criteria is presented below.

Total Dissolved Solids

Concentrations of TDS exceeded the EPP-WQ Drinking water environmental value criteria of 1,200 mg/L in all but two samples. The maximum TDS concentration (6528-2628: 99,000 mg/L) also exceeded the Livestock drinking water criteria of 13,000 mg/L.

Nutrients

- Concentrations of nitrate and nitrite exceeded the Marine water criteria of 0.05 mg/L in 34 of the 38 primary samples analysed.
- Concentrations of total nitrogen ranged from 0.3 mg/L (SLMW10-A) to 28.2 mg/L (SLMW01-Q1) and exceeded the Irrigation criteria of 5 mg/L in 14 of the 38 primary samples analysed.

Metals

- Concentrations of boron ranged from 400 μg/L at 6629-23298 to 11,000 μg/L at 6528-2628.
 Each of the groundwater samples analysed exceeded the Freshwater criteria of 370 μg/L, with the majority of samples (36) also exceeding the Irrigation criteria of 500 μg/L. 11 samples also exceeded the Livestock criteria of 5,000 μg/L.
- Hexavalent chromium was reported in two samples analysed in the May 2023 monitoring event, at concentrations exceeding the Marine criteria of 4.4 μg/L (SLMW05-P: 12 μg/L and SLMW05-Q1: 5 μg/L). LBWco did not consider these results to be representative of actual groundwater conditions due to no evidence for a source of Cr(VI) at that location and absence of Cr(VI) for all other groundwater samples onsite. The results were inferred to be in error. Repeat sampling and testing in November 2023 demonstrated Cr(VI) concentrations below laboratory limit of reporting (LOR) for these wells.
- Five exceedances of the Marine water criteria for cobalt (1 μg/L) were reported, with a maximum concentration of 5 μg/L at SLMW09-P.
- Concentrations of copper were reported as ranging from 2 μ g/L at multiple locations to 48 μ g/L at 6528-2628, with 16 exceedances of the Freshwater (1.4 μ g/L) and Marine water (1.3 μ g/L) criteria.
- Concentrations of molybdenum exceeding the Livestock criteria of 10 μg/L were reported at SLMW06-Q1 (21 μg/L) and SLMW07-Q1 (28 μg/L).
- Concentrations of nickel exceeding the Freshwater criteria of 11 μg/L were reported in 13 samples, with a maximum concentration of 45 μg/L at SLMW09-P.
- Concentrations of selenium ranged from <1 μg/L at multiple locations to 93 μg/L at SLMW13-B. Of the 38 primary samples analysed, concentrations in 24 samples exceeded the Freshwater criteria (11 μg/L), with 19 exceedances of the Livestock and Irrigation criteria (both 20 μg/L).
- Reported concentrations of zinc ranged from <5 μg/L at multiple locations to 27 μg/L at 6528-2628. Eight exceedances of the Freshwater criteria (8 μg/L) were reported and two exceedances of the Marine water criteria (15 μg/L).

Total Recoverable Hydrocarbons

A concentration of total recoverable hydrocarbons (TRH) Fraction 3 ($>C_{16}-C_{34}$) of 200 µg/L was reported at SLMW03-Q1 in November 2023. Following silica gel clean-up, the TRH F3 fraction in this sample was below the LOR.

Concentrations of TRH in the remaining samples were reported as below the laboratory LOR.

Other

Concentrations of OCP, phenols and halogenated benzene were reported as below the laboratory LOR in the samples analysed.

Assessment of Background Concentrations and Site Contamination of Groundwater

Due to the widespread distribution of concentrations of nutrients and various dissolved metals in shallow groundwater at the Riverlea site it is not possible to determine that any singular concentration measured has been caused by the addition of a chemical substance from a human activity, resulting in a concentration above background. Therefore, it is not possible to determine that nutrient and dissolved metals concentrations in shallow groundwater constitute site contamination with respect to groundwater.

LBWco considers that the range of concentrations of nutrients and dissolved metals in the shallow groundwater onsite are representative of ambient background conditions typical for the shallow groundwater within the region including Riverlea.

8.1.2 Surface Water

For the dewatering assessment exercise, analysis of surface water testing results focussed on characterisation of the downstream aquatic ecosystem, which may be a receiving environment for dewatering wastewater if required to be discharged via the stormwater system at Riverlea. Included in the table in Appendix J is a comparison of onsite groundwater testing data with downstream surface water quality data and the ANZG 2018 Freshwater and Marine water 95% species protection trigger levels.

In general, concentrations of target analytes in onsite groundwater were within the range of concentrations measured within downstream surface water. Exceptions to this were:

- The maximum concentration of TSS in onsite groundwater was 9,800 mg/L at SLMW05-P, reported in May 2023. This exceeded the maximum concentration of TSS in downstream surface water of 540 mg/L at SW09.
- The maximum concentration of nitrite in groundwater (1.6 mg/L) marginally exceeded the maximum concentration reported in downstream surface water (0.79 mg/L).
- The maximum concentration of cobalt in groundwater (5 μ g/L) marginally exceeded the maximum surface water concentration of 2 μ g/L.

8.2 Data Quality Assessment

A quality control / quality assurance (QC/QA) validation assessment was completed to assess the suitability of data for use in this dewatering investigation. As part of this, the relative percentage difference (RPD) for a pair of duplicate concentrations was calculated using the formula:

RPD (%) =
$$100(x_1 - x_2) / [(x_1 + x_2)/2]$$

where x_1 , x_2 = duplicate results.

According to the ASC NEPM,

- typical RPD values for soil are in the range ±30%
- an RPD within the range was considered to show acceptable agreement and, conversely, data was considered to have relatively poor agreement where an RPD was outside this range.

Generally, higher RPD values occur for organic compounds than for metals and where low concentrations of an analyte are recorded. Where one or more samples within a duplicate pair reported a concentration less than five times the LOR, the duplicate pair was considered to demonstrate acceptable precision where the difference between two samples was less than twice the LOR, irrespective of the calculated RPD.

The results of internal quality control procedures are provided within the laboratory certificates of analysis (Appendix K). The acceptance criterion for internal laboratory replicates was set at an RPD of 30%. Laboratory recoveries should be in the range of 50% to 150%.

Table 13 indicates conformance to specific QA/QC requirements for water sample analysis. See Appendix J for QA/QC tables.

Table 13 Data Validation

Aspect	Aspect Compliant Comment		Acceptable	
Chain of custody documentation completed	Yes	Samples were transported under strict LBWco chain of custody procedures.	Yes	
Samples delivered to laboratory within sample holding times and with correct preservative	Mostly	Samples were delivered to the laboratory in laboratory-supplied containers and within hold times, with the exception of pH (0-hour hold time) for all samples.	Yes	
Analyses NATA accredited	Yes	Eurofins and ALS were NATA accredited for the analysis performed.		
Field duplicate frequency acceptable and RPDs within ±30%?	Yes	Two inter-laboratory and three intra-laboratory duplicates were analysed for 38 primary samples. This was compliant with the minimum duplicate ratio of 1 inter-laboratory and 1 intra-laboratory duplicate per 20 primary samples. Of the 331 duplicate pairs, 262 demonstrated an RPD less than or equal to 30%, or otherwise demonstrated acceptable precision. Some of the RPD values >30% were due to detections at or below the LOR, which causes small	Yes	
		concentration differences to have relatively high RPDs.		
Equipment rinse blank frequency of at least one per day and concentrations below LOR	Mostly	An equipment rinse blank sample was collected and analysed for heavy metals and TRH for each day of groundwater and surface water sampling. Concentrations of analytes were below the laboratory LOR with the exception of concentrations of copper, lead, nickel and zinc in the sample collected during the GME on 31 October 2023. Concentrations of copper, nickel and zinc in samples collected on 31 October 2023 were within the range of site data, while lead concentrations were below the laboratory LOR. These detections were considered not to impact interpretation of results.		

Aspect	Compliant	Comment	Acceptable
Trip blank frequency of at least one per batch	Yes	A trip blank sample accompanied each batch of water samples to the primary laboratory.	Yes
Trip blank samples contained concentrations below the LOR	Yes	Trip blank samples were analysed for volatile hydrocarbons and results were below the LOR for each sample, demonstrating that samples were not influenced by volatile chemicals during storage or transit to the laboratory.	Yes
Acceptable laboratory QC results	Yes	Field duplicates, laboratory control spikes and matrix spikes were considered acceptable for >95% of laboratory QC analyses.	Yes

Quality control data collected during this investigation indicated that the majority of QC results were within acceptable limits. Accordingly, LBWco considered that the data quality was acceptable for the purposes of this assessment.

9 Discussion

9.1 Hydrogeological Modelling

The following two questions were required to be answered to address the objectives of this dewatering investigation and inform regulatory approval considerations for the taking of the shallow groundwater:

- What pumping flow rate is required to provide control of groundwater to the level required to construct SWL1?
- What is the estimated volume of groundwater to be pumped to facilitate construction of SWI 1?

To investigate and provide a robust approach to answering these questions, an updated hydrogeological model of the site and surrounds was prepared by Hydrogeology Consulting Ltd (HCL) for LBWco. A full report detailing the modelling inputs, assumptions and results is provided in Appendix H.

Outcomes of the modelling work are summarised and/or derived below.

9.2 Dewatering Flow and Volume Estimation

A preliminary proposal for lake excavation and dewatering sequencing was outlined by Walker, in which SWL1 is to be excavated in stages via five compartments (bays) separated by coffer dams (refer section 2). Dewatering flow modelling was undertaken by HCL, based on the proposed sequencing to estimate dewatering flow rates that may be required during excavation and construction works at SWL1.

For one scenario of SWL1 design and construction that was under consideration, a sixth bay within SWL1 (instead of SWL2) was assessed in the dewatering modelling for SWL1. The dewatering modelling methodology and calculations in the HCL report in Appendix H were prepared for Bay 6, but Walker's current design for SWL1 was confirmed at time of reporting to include only Bays 1-5 as shown in section 2.

The inclusion of Bay 6 in the dewatering modelling calculations at this time represents degree of conservatism as it is no longer expected that dewatering of this bay will be required for SWL1.

Key conclusions of the dewatering modelling by HCL were:

- Dewatering using wells that are relatively widely spaced appears unlikely to achieve the required drawdown of groundwater levels.
- Dewatering using wellpoints (whether installed horizontally or vertically), appears more likely to be able to achieve the required dewatering. An engineering assessment is recommended to check the feasibility and practicability of dewatering the site using wellpoints, taking into account geotechnical and engineering considerations as well as cost and the availability of appropriate equipment and experienced contractors.
- If wellpoints are used, the modelling indicates that wellpoints will be needed within the footprint area of the lake, as well as around its edges. It is assumed that the pumps used to extract water from the wellpoints would be located outside the edges of the lake footprint. This may allow wellpoints to remain in place during and after the lake has been constructed. Given the dimensions of the bays, multiple pumps will likely be needed, each connected to a wellpoint line.
- The modelling suggests that the required dewatering for Bay 1 may be achieved after approximately one month of pumping. A similar pumping time is likely to be needed for each subsequent bay to achieve the required drawdown before construction.

- Leakage of pumped water from the location of SWL2 back into the groundwater appears unlikely to interfere significantly with SWL1 dewatering. However, if dewatering of the western part of the SWL1 is to be undertaken at the same time as storage of pumped water in the footprint of SWL2, it may be advisable to create a temporary coffer dam within the SWL2 footprint in order to keep the stored water further away from SWL1.
- The simulated total pumping volume for the provisionally estimated 147 days of dewatering for construction of SWL1 is approximately 436,000 m³. More than half of this is simply the water to be removed from pore spaces within the soil beneath the lake footprint.
- The contour for 0.1 m drawdown is simulated to be within 500 m of SWL1 at the end of pumping and about 850 m from SWL1 at 1 year after cessation of pumping. The modelled recovery of groundwater levels after cessation of pumping is quite slow (more than 1 year) but may be faster if there is significant groundwater recharge.
- A simulation that incorporated 90 days of additional pumping, such as could occur due to a
 delay in construction during active dewatering of Bays 1-4 concurrently, increased the
 volume pumped by approximately 126,000 m³ (an average increase of 1,400 m³/d) bringing
 the total to 554,000 m³.
- The results of the modelling depend on various factors, particularly the hydraulic conductivity distribution. The model was constructed so that the transmissivity in the vicinity of SWL1 matches the average determined from the pumping tests conducted in December 2023.
- In some respects, the modelling is conservative (for example, the assumption that the vertical hydraulic conductivity is the same as horizontal). Actual pumping requirements may therefore be below those simulated (although higher pumping rates are also possible).
- When dewatering starts, it is recommended that good records be kept of pumping times, rates and volumes and of groundwater levels in the vicinity of the lake, so that expectations and plans for later stages can be adapted if needed.

9.3 Onsite Management of Dewatering Wastewater

Walker advised LBWco that it intends to manage dewatering wastewater onsite through storage in the partially excavated SWL2 and connected stormwater channel, and the use of dewatering wastewater for construction activities, including dust control and moisture conditioning of soils prior to compaction.

Walker advised that the storage capacity of the partially excavated SWL2 will be approximately $231,750 \, \text{m}^3$.

A contingency storage of up to $68,500 \, \text{m}^3$ is expected to be available by the time of SWL1 construction, via excavation progress for other channels within Precinct 2, providing for up to approximately $300,000 \, \text{m}^3$ of onsite storage capacity.

If higher than expected flows are experienced during dewatering, contingency measures for alternate dewatering wastewater management may be considered, including discharge to the surface water environment where this can be appropriately managed in accordance with the general environmental duty under the EP Act – refer to section 9.5 for comparison of groundwater quality testing data and surface water quality testing data.

The storage assessment has not considered the influence of infiltration of dewatering wastewater into the subsurface while stored in SWL2, or the impact of rainfall. Storage loss to infiltration is likely to exceed storage gain to rainfall, so excluding these aspects was a conservative approach for the assessment of the dewatering wastewater storage balance. These aspects can be considered within the development of a detailed Dewatering Management Plan as the project progresses.

9.4 Modelling of Dewatering Management for Construction

The total volume of dewatering wastewater requiring management during construction of SWL1 was estimated based on the proposed sequencing, anticipated construction timeframes for bulk excavations and liner construction⁴, and the modelled dewatering flowrates.

A polymer liner construction scenario was adopted for the dewatering management modelling, as this liner system is expected to have a longer construction period than a clay liner system. The dewatering timeframe would therefore be longer for the polymer liner construction and a more conservative scenario for dewatering management.

For each bay of SWL1, the general sequence of works will be:

- Commence dewatering;
- Once groundwater levels are confirmed to be at or below 0.5 mAHD, commence bulk excavation;
- Following bulk excavation, install the polymer liner;
- Upon completion of liner installation to a bay and associated QA/QC checks, install and fill the Aquadam (coffer dam) with stored dewatering wastewater;
- Fill the completed bay with dewatering wastewater to 70% of the volume of the lined bay, to prevent lift of the liner resulting from upward pressure of groundwater;
- Turn off dewatering for the bay.

To allow for a continuous integrated program of excavation and liner construction for SWL1, it will be necessary for dewatering to be undertaken on multiple bays simultaneously throughout the construction period. Dewatering timeframes and volumes will be dependent on the sequence and delivery of construction activities and site characteristics at time of the works. For the purpose of this initial assessment, rates for excavation, pumping and liner construction were based on advice from Walker on what was reasonably achievable within a construction delivery program.

Key parameters used to estimate dewatering volumes are summarised in Table 14 below. Outputs from the dewatering storage modelling are provided in Appendix L.

Table 14 Summary of Dewatering Volume Calculation Parameters

Parameter	Adopted Values	Comment / Justification
Dewatering		
Timeframe for initial dewatering to 0.5 mAHD	30 days per bay	Based on initial outcomes of dewatering modelling and approximately equal size of bays to be dewatered.
Daily dewatering flow rates	Variable, refer to Table 15 below.	Daily dewatering flow rates have been adopted based on the outcomes of dewatering modelling work. Flow rates vary for each bay throughout the dewatering period, with higher flow rates expected at the commencement of dewatering before the system reaches a steady state.

⁴ Geotest 2024, Construction Methodology SLW1, Walker Corporation – Riverlea Salt Water Lake Liner Design & Construction, June 2024.

Parameter	Adopted Values	Comment / Justification
Construction		
Bulk excavation rate	1,800 m³/day/excavator 3 excavators = 5,400 m³/day	The rate of excavation can be increased or decreased by varying the number of excavators and supporting machines. To estimate dewatering volumes, modelling was undertaken for a scenario using 3 excavators. The number of excavators is a key limiting factor affecting the timeframe, and therefore volume, of dewatering required to complete SW(1) construction.
		dewatering required to complete SWL1 construction.
Liner installation rate	1,500 m² per day	Advised by liner company – Geotest. The liner installation rate used for dewatering volume calculations was based on installation of a synthetic liner. Installation of a synthetic liner would be a longer process than installation of a clay liner and was therefore considered a conservative approach for modelling of dewatering volumes.
Work days per week	Monday-Saturday	For both excavations and liner installation, it has been assumed that works will be undertaken 6 days per week.
		Dewatering will be continuous throughout the construction period so calculations account for 7 days of dewatering per working week.
Pumping rates to transfer dewatered groundwater to completed bays in SWL1	Bays 10,000 m³/day	Based on advice from Walker regarding the pumps that are available and likely to be used to fill the coffer dams and SWL1 bays. The pumping rate(s) achievable for filling the Aquadams and completed bays is a key factor that influences the
Pumping rates to fill Aquadams (coffer dams)	Aquadams 1,500 m³/day	required dewatering duration for each bay.
Changeover between bays	7 days	It has been assumed that dewatering for individual bays can be turned off after at least 1 day of pumping dewatering wastewater into a completed lined bay, to a maximum of 7 days before the bay has been filled to 70% of the excavation volume.
		This timing considers allowance of sufficient time to secure the liner before groundwater rebounds to place upward pressure against the liner.
Management of	dewatering wastewater	
Storage areas	SWL2 +Channels 90% – 300,000 m ³	Storage areas proposed by Walker include the partially excavated areas of future Saltwater Lake 2 (SWL2) and feeder channels and the six individual bays of SWL1 that need to be filled after each stage of liner completion
	SWL1 lined Bays:	
	Bay 1 - 62,280 m³ Bay 2 - 68 220 m³ Bay 3 - 87,840 m³ Bay 4 - 53,640 m³ Bay 5 - 59,940 m³	and prior to turning off the dewatering system. Dewatering wastewater will initially be pumped to SWL2 + Channels for storage. After the completion of the liner in Bay 1, dewatering wastewater will be preferentially used to fill the coffer dam and Bay 1 of SWL1, to maximise storage capacity. As additional bays of SWL1 are completed, these areas and coffer dams will also be used to store dewatering wastewater.
	Bay 1 - 62,280 m ³ Bay 2 - 68 220 m ³ Bay 3 - 87,840 m ³ Bay 4 - 53,640 m ³	and prior to turning off the dewatering system. Dewatering wastewater will initially be pumped to SWL2 + Channels for storage. After the completion of the liner in Bay 1, dewatering wastewater will be preferentially used to fill the coffer dam and Bay 1 of SWL1, to maximise storage capacity. As additional bays of SWL1 are completed, these areas and coffer dams will also be

Parameter	Adopted Values	Comment / Justification
Earthworks demand for water	640 m³/day	Onsite demand for water including moisture conditioning of soils for compaction and dust suppression across the site.
Pan evaporation rate	Spring – 500 mm/90 days / 220 m³/day Summer – 800 mm/90 days / 350 m³/day	Pan evaporation rates were adopted from the Bureau of Meteorology website, assuming that dewatering activities occurred throughout spring and summer months. A correction factor of 0.75 was applied to evaporation rates to account for lower evaporation from ponded areas relative to pan measurements. 50% of the surface area of SWL2 was applied for the calculations, assuming that the storage is on average 50% full and conservatively excluding surface area of the channels. Evaporation losses from completed and 70% filled bays of SWL1 were conservatively assumed to equal rainfall gains and were not included in the dewatering wastewater balance assessment.

Table 15 Modelled dewatering volumes

Period	Start Day	End Day	No. of Days	Bays Being Pumped	Total Volume Pumped (m³)	Average daily pumping rate (m³/day)
1	0	10	10	1	57.466	5,747
2	10	21	11	1,2	75,321	6,847
3	21	51	30	1, 2, 3	100,684	3,356
4	51	65	14	1, 2, 3, 4	54,299	3,879
5	65	81	16	2, 3, 4	27,510	1,719
6	81	84	3	2, 3, 4, 5	18,059	6,020
7	84	101	17	3, 4, 5	38,947	2,291
8	101	109	8	3, 4, 5, 6	21,552	2,694
9	109	123	14	4, 5, 6	21,821	1,559
10	123	139	16	5, 6	17,038	1,065
11	139	147	8	6	3,147	393
		TOTAL	147	-	435,844	-

The modelling for dewatering wastewater management for the estimated construction period indicated the following:

- For the modelled scenario, a total dewatering volume of 435,844 m³ was predicted across a construction program of 147 days.
- It was predicted that it would be possible to manage dewatering wastewater through onsite storage and reuse.

The use of multiple conservative assumptions within the hydrogeological modelling and dewatering management modelling were anticipated to have overestimated the dewatering flow rates relative to the rates that will actually be observed onsite during the works. This opinion was informed by evidence of the variable saturated zones and permeabilities observed within the SWL1 investigation area and by absence of groundwater at several test pit excavations undertaken by Walker within the footprint of SWL2.

9.5 Contingency Plan - Disposal of Dewatering Wastewater

Modelling of groundwater flows and onsite storage capacity was undertaken to assess the potential impacts of a requirement to dewater the excavation for a longer period than initially estimated. Modelling was conservatively undertaken assuming that the delay occurred while Bays 1 to 4 were being simultaneously dewatered, thereby simulating the 'worst-case' scenario. A delay of 90 days was modelled, representing an extension of time of approximately 60% of the construction program adopted for the dewatering modelling.

Dewatering modelling undertaken by HCL (refer Appendix H) indicated that an additional 126,000 m³ of dewatering wastewater would be generated across this period. Despite the additional volume of water that would be extracted in this scenario, drawdown at registered bores in the vicinity of SWL1 was modelled as <1 mm, indicating that there is very low risk of the additional groundwater extraction causing adverse impacts to existing groundwater users.

Modelling of the onsite storage and reuse of dewatering wastewater in this scenario (refer Appendix L) indicated that additional dewatering wastewater volume could still be managed through onsite storage and reuse in this scenario, leaving approximately 10% of the total onsite capacity unused.

For the purpose of this assessment, it was assumed that dewatering of Bays 1 to 4 would continue throughout the delay period and that construction demand for water reuse would also continue. In reality, a delay of this length would likely trigger a review of the dewatering activity to identify appropriate actions to be taken. If the volume of groundwater expected to be extracted during the delay period were to exceed the volume required to dewater to the target elevation, it is likely that a decision would be taken to stop dewatering at one or more bays during the delay period.

In the unlikely event that onsite storage and reuse capacity is exceeded, it may be necessary to dispose of dewatering wastewater to the offsite surface water environment. In this scenario, consideration must be given to whether discharge could cause environmental harm in the receiving environment.

The likely receiving environment for surface water discharge would be Thompson Creek, which passes through the site and flows southwest before discharging to the marine environment. Thompson Creek is a highly modified, degraded freshwater aquatic ecosystem that receives numerous discharges from sites in the local area. Thompson Creek receives stormwater flows from the Riverlea development.

Comparison of groundwater and surface water monitoring data sets identified that concentrations of target analytes in onsite groundwater were generally within the range of concentrations measured within downstream surface water. The quality of groundwater that may be discharged to the surface water environment was therefore considered to be equivalent to or exceeding that of Thompson Creek.

Provided that dewatering wastewater was managed and monitored to demonstrate that TSS concentrations were <500 mg/L at the point of discharge, it is LBWco's opinion that discharge to Thompson Creek would not cause environmental harm in the receiving environment.

If TSS was >500 mg/L on average and the discharge volume was > 100 kL, an earthworks drainage licence from the EPA would be needed.

10 Risk Assessment for Dewatering

To support Walker's EIS amendment for Riverlea Precinct 2 and the proposed saltwater lakes, two key questions relating to potential for environmental impact of the dewatering activity were considered:

- Will the extraction of groundwater for construction of SWL1 have an unacceptable adverse impact on any current human activities reliant on the shallow groundwater, or on the natural environment, onsite or in the vicinity of the site?
- Can the dewatering wastewater produced from the construction of SWL1 be managed in accordance with the waste hierarchy and meet the general environmental duty obligations under s25 of the EP Act?

Multiple aspects of the dewatering process could cause or contribute to impacts relevant to the questions above. Accordingly, a semi-quantitative assessment of risks and contingency measures would be an appropriate means to answer these questions.

A risk assessment based on methodology presented in AS/NZS ISO31000:2018 – Risk Management, was undertaken to characterise risks posed by the hazards arising from the proposed dewatering activities. The process is semi-quantitative and incorporated the views and judgement of LBWco, HCL, Walker and several other technical advisers to Walker.

A risk ranking (low, medium, high, extreme) is assessed for each potential hazard identified, based on subjective ratings in terms of 'likelihood' of an adverse event occurring and a range of potential 'consequence' outcomes of an event.

Adopted descriptors for the 'likelihood' and 'consequence' components of the risk assessment for the proposed dewatering activity are presented in Tables 16 and 17, respectively. Consequence descriptors should be read as AND/OR statements.

Table 16 Likelihood Descriptor Matrix

Level	Descriptor	Comments
1	Virtually impossible	Has almost never occurred elsewhere in similar situations, is conceivable but not anticipated to occur within the project timeframe.
2	Unlikely	Has occurred a few times elsewhere in similar situations.
3	Possible	An occasional occurrence elsewhere in similar situations. May occur within a year.
4	Likely	A regular occurrence elsewhere in similar situations. Likely to occur within weeks to months.
5	Virtually certain	A very frequent occurrence elsewhere in similar situations. Expected to occur within days to weeks, or ongoing.

Table 17 Consequence Descriptor Matrix

Category	Level	Environmental/ Socio-economic	Community/Reputational	Legal
A	Negligible effect	Very short-term effects within the project area. Recovery will occur within days. No ecological or socioeconomic consequences.	No media, regulator or community interest.	Minor non-compliance and/or breach of regulation. No legal consequences.
В	Minor effect	Short-term effects within the project area. Recovery will occur within weeks. Minor ecological or socio-economic consequences. No changes to biodiversity or ecological function.	Local media coverage. Some interest by regulator(s) and local NGOs. One or two community complaints.	Breach of regulation with investigation or report to authority with possible prosecution and fine.
С	Moderate effect	Medium-term effects within the project area. Recovery likely to occur within months to a year. Moderate ecological or socio-economic consequences. Local changes to biodiversity, but no changes to ecological function.	State media coverage. Investigation by regulator(s) and NGOs. Persistent community complaints.	Breach of regulation with litigation and moderate fine. Involvement of senior management.
D	Major effect	Long-term effects, potentially extending beyond the project area. Recovery is likely to take years and complete recovery may not occur. Major ecological or socioeconomic consequences. Significant local changes to biodiversity and measurable changes to ecological function.	National media coverage. Detailed investigation by regulator(s). Long term community unrest and outrage significantly impacting business.	Major breach of regulation with litigation and substantial fine. Possible suspension of operating licence.
E	Disastrous effect	Very long-term effects extending beyond the project area. Recovery is likely to take decades and complete recovery may not occur. Severe ecological or socioeconomic consequences. Loss of biodiversity on a regional scale, and significant loss of ecological function.	International media coverage. Extensive investigation by regulator(s) involving government minister(s). Complete loss of trust by affected community threatening the continued viability of the business.	Major litigation or prosecution with very substantial fines. Possible cancellation of operating licence.

Table 18 presents the matrix for assessing risk based on the combination of consequence and likelihood. It was used to establish the overall risk level associated with a particular aspect of the dewatering activity before any control measure was applied, which identifies the level of potential risk.

The risk matrix shows risk levels from 'Low' to 'Extreme' and identifies where controls are required to mitigate potential impacts.

Walker is committed to implementing appropriate controls to manage and mitigate risks during the dewatering works. Detailed development of controls will be undertaken through the detailed design phase of the project and documented in a comprehensive Dewatering Management Plan (DMP).

Table 18 Risk Ranking Matrix

					Likelihood				
			1 Virtually Impossible	2 Unlikely	3 Possible	4 Likely	5 Virtually Certain		
	1	Ne	gligible effect	1	2	3	4	5	
l ce	2	Mir	nor effect	2	4	6	8	10	
dner	3	Мс	oderate effect	3	6	9	12	15	
Consequence	4	Ma	ajor effect	4	8	12	16	20	
8	5	Dis	astrous effect	5	10	15	20	25	
≥0			Low Risk	Low risks will be maintained under review. Simple controls expected to be sufficient.					
≥ 5			Medium Risk		require appropi eadily impleme				
≥ 10 High Risk High risks demand comprehensive management planning and coto avoid an impact where possible and to support rapid response									
Extreme Risk Extreme risks demand comprehensive management planning and controls to avoid an impact where possible and to support rapid response. Operations should not proceed, or must cease if already commenced, if the risk cannot be effectively controlled.				rapid					

The risk assessment based on the methodology outlined above is summarised in Table 19.

While it is too early in the project planning process to prepare the detailed DMP, high level commentary on potential controls for risk mitigation is provided in the risk assessment in Table 19. The level of risk associated with each potential impact was re-evaluated on consideration of potential controls, which determined the level of 'residual' risk.

Table 19	Risk Assessment
14010 19	KIZK AZZEZZITETI

Item	Hazard (Environmental Aspect)	Potential impact – no mitigation	Consequence	Likelihood	Potential risk level	Comments on Assessment Findings and Mitigation measures	Consequence	Likelihood	Residual risk level - with controls
Extr 1	Higher flow rate than predicted is required to control GW to target level	Total take of groundwater exceeds allocation, and Take exceeds capacity for storage/reuse onsite (see Item 6)	Moderate	Possible	Medium	Allocation is yet to be determined. The approach to the modelling of dewatering flows and total volume of extraction has been conservative. The discontinuous nature of water bearing strata onsite suggest that the total take of groundwater is more likely to be less than has been modelled. The DMP will include a requirement to meter the groundwater flow and track progress against the allocation. Any need to revise the allocation should be identified well in advance of reaching the limit.	Minor	Unlikely	Low
2	Zone of influence and drawdown at nearby bores is greater than estimated	Access to the shallow groundwater by another registered user becomes unavailable due to excessive dewatering drawdown. Impacts such as failures of crop/stock production, through to business failure.	Moderate	Possible	Medium	The groundwater assessment and modelling indicated no registered users of the shallow groundwater within 2 km of the proposed saltwater lakes, and predicted drawdown was <1 mm at ~500 m from the edge of SWL1. No unacceptable impacts on existing users are predicted (refer Figure 7a and 7b). The DMP will include regular monitoring of drawdown during the dewatering works and trigger response actions if greater than expected drawdown is evident.	Minor	Unlikely	Low

Item	Hazard (Environmental Aspect)	Potential impact – no mitigation	Consequence	Likelihood	Potential risk level	Comments on Assessment Findings and Mitigation measures	Consequence	Likelihood	Residual risk level - with controls
3	Dewatering causes ground level subsidence	Irreversible or extensive damage to the shallow aquifer system occurs due to subsidence, causing serious environmental harm and damage to property and public infrastructure.	Major	Possible	High	The DMP will include a requirement to implement a monitoring plan for ground subsidence and control measures relative to findings. Control measures may include reducing areas of lake construction works and dewatering to single bays at a time, to minimise the time that an area is subject to dewatering. Lithology observed onsite was predominantly hard, medium to high plasticity clay, which did not appear to have high compressibility. Modelling predicts groundwater level recovery to near equilibrium within a year of ceasing dewatering pumping at SWL.	Moderate	Unlikely	Medium
4	Offsite plume of groundwater contamination is mobilised into the site or the zone of influence	Severely contaminated groundwater is mobilised into the zone of influence of dewatering, and human or environmental receptors are exposed, causing demonstrable harm to human health or the environment. Harm to health is severe, including risk to life or causing serious illness requiring treatment in hospital.	Major	Possible	High	No plumes of site contamination in the shallow groundwater are known onsite or within the surrounding area. The previous s83A notification to EPA for Riverlea precinct 1 was considered by LBWco to be an unrealistic interpretation of the definition of site contamination. No other s83A notifications are evident in the EPA Public Register and no clusters of monitoring/investigation wells are evident in WaterConnect. There is a very low probability that: currently unknown site contamination of groundwater exists; will be mobilised by the dewatering works; and results in exposure of a human or ecological receptor.	Minor	Unlikely	Low

Item	Hazard (Environmental Aspect)	Potential impact – no mitigation	Consequence	Likelihood	Potential risk level	Comments on Assessment Findings and Mitigation measures	Consequence	Likelihood	Residual risk level - with controls
						The DMP will include a requirement for a monitoring plan for groundwater quality and trigger response actions if change in water quality indicates that a source of site contamination is present within the zone of influence of dewatering.			
Dev	vatering Wastewater Stora	age, Reuse and Disposal							
5	Large body of water present onsite for an extended period of time may become stagnant	Deterioration of water quality over time renders the stored water unsuitable for planned reuse applications onsite and unsuitable for discharge to the stormwater system	Moderate	Possible	Medium	The DMP will include requirements for the active management and monitoring of water quality in any open storages onsite to maintain suitability for the proposed uses and to avoid creating a problematic waste liability. Decisions on reuse or disposal of stored dewatering wastewater will be informed by water quality testing.	Minor	Unlikely	Low
6	Dewatering flow required for groundwater control results in onsite capacity for storage and reuse being exceeded. Could occur due to difference between modelled and actual conditions, storm events causing flooding of onsite storages, or works delay once dewatering is active.	Dewatering wastewater that cannot be stored or reused onsite must be discharged to the stormwater system, resulting in discharge to Thompson's Creek and ultimately the Gulf St Vincent. Extensive harm to the receiving environment and/or damage to stormwater infrastructure occurs due to high flow from dewatering wastewater pumping and potential poor	Major	Possible	High	Dewatering flow modelling indicates the predicted total volume of pumped groundwater can be stored and reused onsite, with a reasonable margin of safety in the onsite capacity. Contingency modelling for an additional 90 days of dewatering due to a potential unforeseen project delay indicated total volume extracted would be within the onsite capacity. Flow will be minimised through optimising pumping control of groundwater. Erosion controls will be designed and implemented for the discharge point. Contingency planning for water treatment prior to disposal will be included in the DMP. Treatment will	Moderate	Unlikely	Medium

								40
Item Hazard (Environmental Aspect)	Potential impact – no mitigation	Consequence	Likelihood	Potential risk level	Comments on Assessment Findings and Mitigation measures	Consequence	Likelihood	Residual risk level - with controls
	water quality of wastewater.				principally address the requirement for total suspended solids to be <500 mg/L in any discharge to the stormwater system. Chemical testing of groundwater onsite has demonstrated that groundwater quality is equivalent or better than the quality of water in Thompson's creek.			
					A monitoring program to assess and demonstrate the water quality of the dewatering wastewater is suitable for discharge will be included in the DMP.			
					With controls, damage to the receiving environment may include a trivial amount of scour and/or localised vegetation loss in a very small area near the discharge. No repair works beyond routine maintenance are anticipated.			

It is important to note that the assessment, modelling and risk assessment works presented above were principally focussed on SWL1. As the construction of SWL1, SWL2 and SWL3 will be a staged process, with time steps of approximately 5 years to each of the subsequent lakes, it is proposed that detailed investigations and dewatering management planning for SWL2 and SWL3 will be undertaken closer to the time required for further design and approvals.

It is anticipated at this time that the investigations and DMPs for SWL2 and SWL3 will be largely consistent with the approach proposed for SWL1. The staging will provide an opportunity to apply the learnings from the construction of SWL1 to improve the approach to the approvals and management planning for the future lake projects.

An important difference anticipated for the construction of SWL3 is the expected absence of access to a large volume onsite storage for dewatering wastewater, as no subsequent lake excavation is planned. Some elements of the future stormwater management system may provide for onsite storage capacity for dewatering wastewater, but it is too early in the process to confirm this. A larger proportion of dewatering wastewater produced during SWL3 construction may need to be disposed offsite. Accordingly, it will be important to undertake further assessment of groundwater quality and management of the disposal process when planning for SWL3.

11 Conclusions and Recommendations

Substantial environmental investigations of soil, groundwater and surface water were undertaken for Walker by LBWco and others to assess conditions onsite and in downgradient aquatic ecosystems for a range of purposes. This report, together with hydrogeological modelling by HCL, focussed on characterising the requirements for construction dewatering for the saltwater lakes proposed within the revised masterplan for Precinct 2 at Riverlea.

LBWco concluded the following:

- Dewatering during construction of SWL1 will be required and the wastewater produced by dewatering must be reused or disposed appropriately.
- Options under consideration by Walker for the lake lining include clay and a synthetic
 polymer system. Assessing the merits of either lining system was not addressed in this report,
 but the longer construction timeframe for a synthetic liner was adopted for dewatering
 modelling purposes. Based on the proposed construction methodology and hydrogeological
 modelling of dewatering flows, it was estimated that:
 - Dewatering during construction of SWL1 would likely be required for a period of 147 days
 - The volume of dewatering wastewater generated would be approximately 436,000 m³.
- The modelling was conservative, so actual dewatering pumping requirements may be below those simulated. Higher pumping rates are also possible at times where preferential flows may occur through more permeable strata.
- Modelling of drawdown during and after dewatering activities indicated low risk of unacceptable impact to nearby registered users of shallow groundwater from the dewatering activity. There are no registered users of shallow groundwater within 2 km of the proposed saltwater lakes locations.
- Based on the likely onsite storage capacity and projected onsite demand for water during construction activities, it was predicted that all dewatering wastewater from SWL1 can be managed onsite through onsite storage and reuse.
 - Contingency modelling undertaken for an additional 90 days of dewatering, simulating a
 potential unforeseen project delay, indicated the total volume of groundwater extracted
 would still be within the onsite capacity.
 - In the unlikely event that onsite storage and reuse capacity is exceeded, it may be necessary to dispose dewatering wastewater offsite to Thompson Creek. Comparison of groundwater and surface water data indicated that discharge to Thompson Creek would not cause environmental harm in the receiving environment, provided that flow and suspended solids were managed appropriately.
- Modelling simulated several different approaches to groundwater extraction for dewatering
 of SWL1. To achieve the necessary control of groundwater across the full width of the lake, a
 series of horizontal well points at regular spacings are likely to be needed through the base of
 the lake. A network of extraction bores will also be needed around the perimeter of the lake.

LBWco recommends that a comprehensive Dewatering Management Plan (DMP) be prepared as part of the detail design process and part of the Construction Environmental Management Plan (CEMP) for the project. The DMP should be agreed by the key stakeholders relevant to the proposed activity.

The information in this report is subject to the limitations expressed in Section 12. The reader should make themselves aware of the limitations and how they relate to the conclusions provided above.

12 Limitations

Scope of Services

This environmental site assessment report ("the report") has been prepared in accordance with the scope of services set out in the contract, or as otherwise agreed, between Walker Buckland Park Developments Pty Ltd (Walker) and LBW co Pty Ltd (LBWco) ("scope of services"). In some circumstances the scope of services may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

Reliance on Data

In preparing the report, LBWco has relied upon data, surveys, analyses, designs, plans and other information provided by Walker and other individuals and organisations, most of which are referred to in the report ("the data"). Except as otherwise stated in the report, LBWco has not verified the accuracy or completeness of the data. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations in the report ("conclusions") are based in whole or part on the data, those conclusions are contingent upon the accuracy and completeness of the data. LBWco will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to LBWco.

Environmental Conclusions

In accordance with the scope of services, LBWco has relied upon the data and has conducted environmental field monitoring and/or testing in the preparation of the report. The nature and extent of monitoring and/or testing conducted is described in the report.

On all sites, varying degrees of non-uniformity of the vertical and horizontal soil or groundwater conditions are encountered. Hence no monitoring, common testing or sampling technique can eliminate the possibility that monitoring or testing results/samples are not totally representative of soil and/or groundwater conditions encountered. The conclusions are based upon the data and the environmental field monitoring and/or testing and are therefore merely indicative of the environmental condition of the site at the time of preparing the report, including the presence or otherwise of contaminants or emissions.

Also, it should be recognised that site conditions, including the extent and concentration of contaminants, can change with time.

Within the limitations imposed by the scope of services, the monitoring, testing, sampling and preparation of this report have been undertaken and performed in a professional manner, in accordance with generally accepted practices and using a degree of skill and care ordinarily exercised by reputable environmental consultants under similar circumstances. No other warranty, expressed or implied, is made.

Report for Benefit of Walker Buckland Park Developments Pty Ltd


The report has been prepared for the benefit of Walker and no other party. LBWco assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of LBWco or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report). Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own enquiries and obtain independent advice in relation to such matters.

Other Limitations

LBWco will not be liable to update or revise the report to take into account any events or emergent circumstances or facts occurring or becoming apparent after the date of the report.

Appendix A Figures

FIGURE 1 Site Location Plan

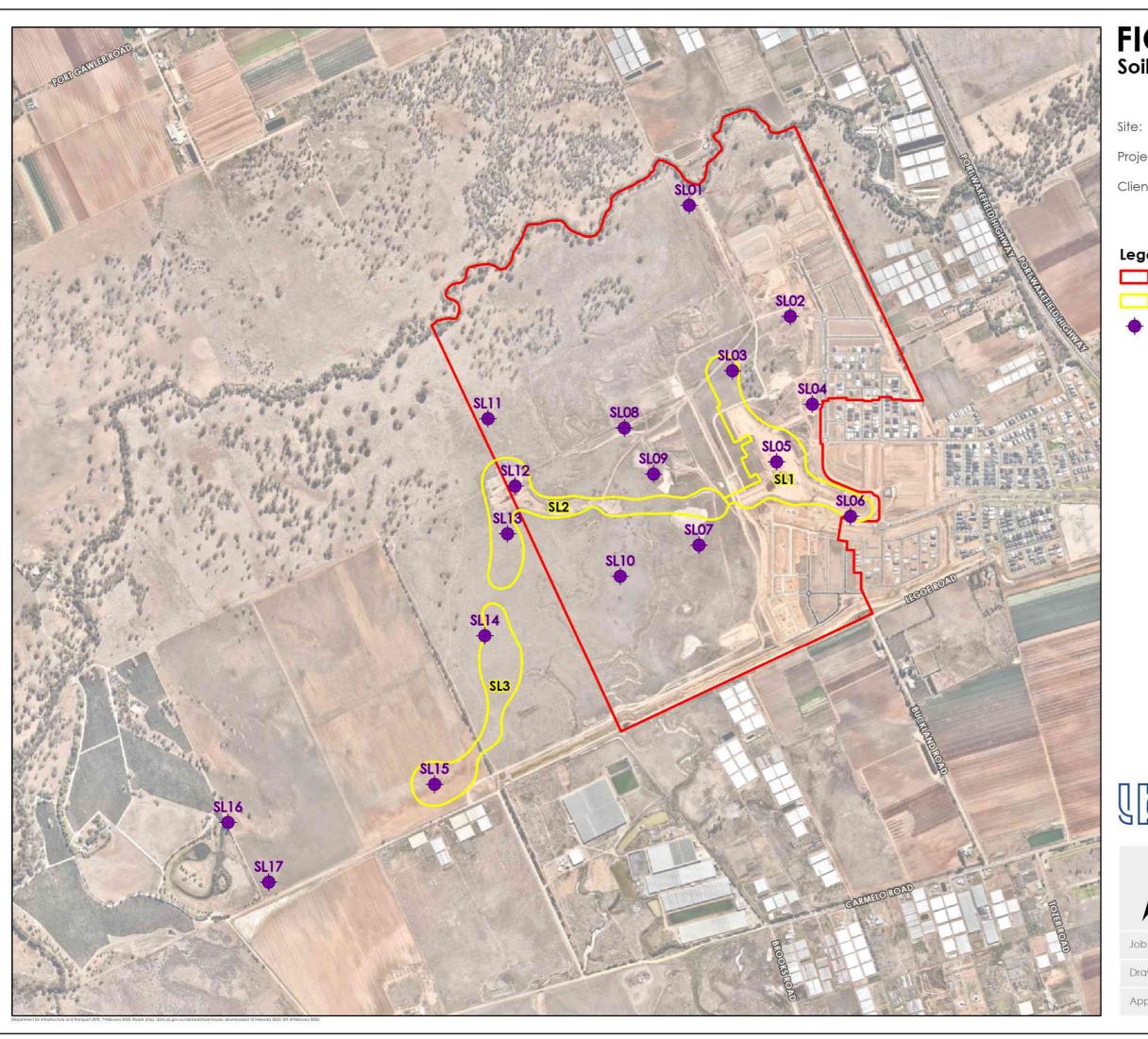
Riverlea Development - Precinct 2

Dewatering Investigation Project:

Walker Buckland Park Developments Pty Ltd

Legend

Site boundary


Watercourses

Coastline

N	0 L .	1	2 km					
Λ	Spatial Reference: GDA2020 MGA Zone 54							
	Source: Nearmap.com (May 2024)							
Job No	231445-01	Scale at A3:	1:45,000					
Drawn	JC	Rev	DRAFT					
Approved	JB	Date	1/10/2024					

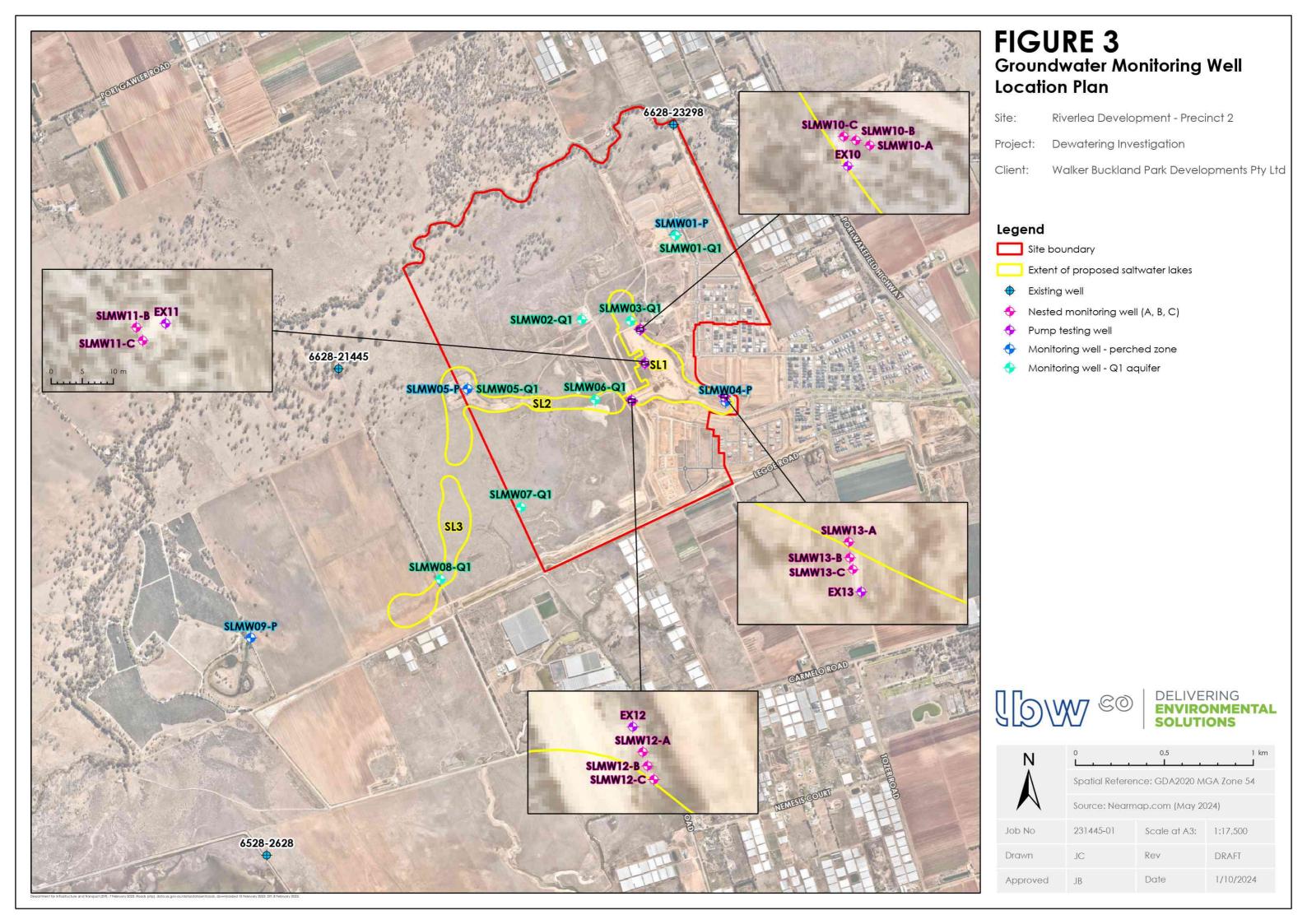
FIGURE 2 Soil Bore Location Plan

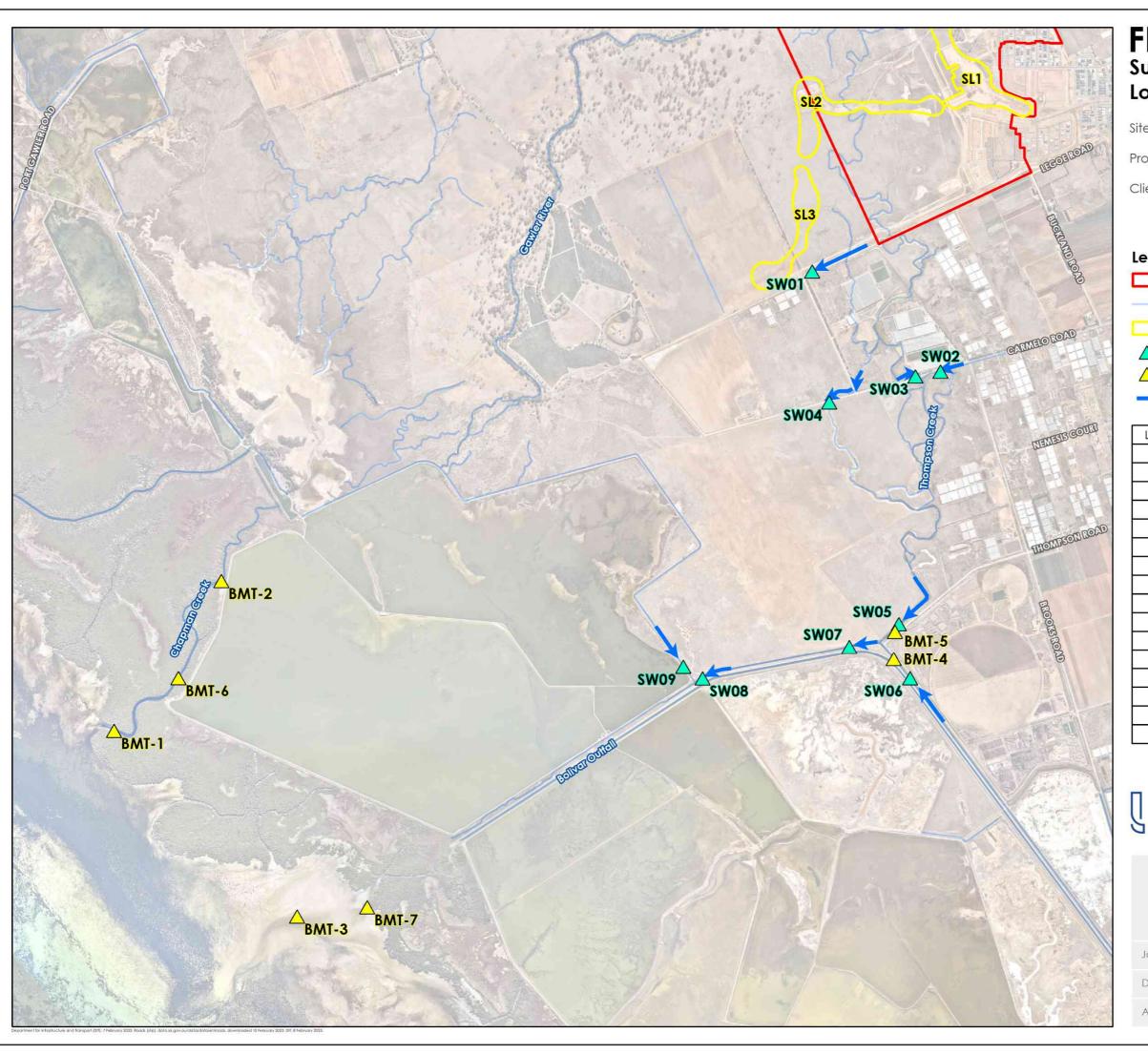
Riverlea Development - Precinct 2

Dewatering Investigation Project:

Walker Buckland Park Developments Pty Ltd

Legend


Site boundary


Extent of proposed saltwater lakes

Soil bore - March 2023

N	0	400	800 m
Λ	Spatial Refere	nce: GDA2020 M	GA Zone 54
	Source: Nearr	nap.com (May 20	024)
Job No	231445-01	Scale at A3:	1:15,000
Drawn	JC.	Rev	DRAFT
Approved	JB	Date	1/10/2024

FIGURE 4 Surface Water Sampling Locations

Site: Riverlea Development - Precinct 2

Project: Dewatering Investigation

Client: Walker Buckland Park Developments Pty Ltd

Legend

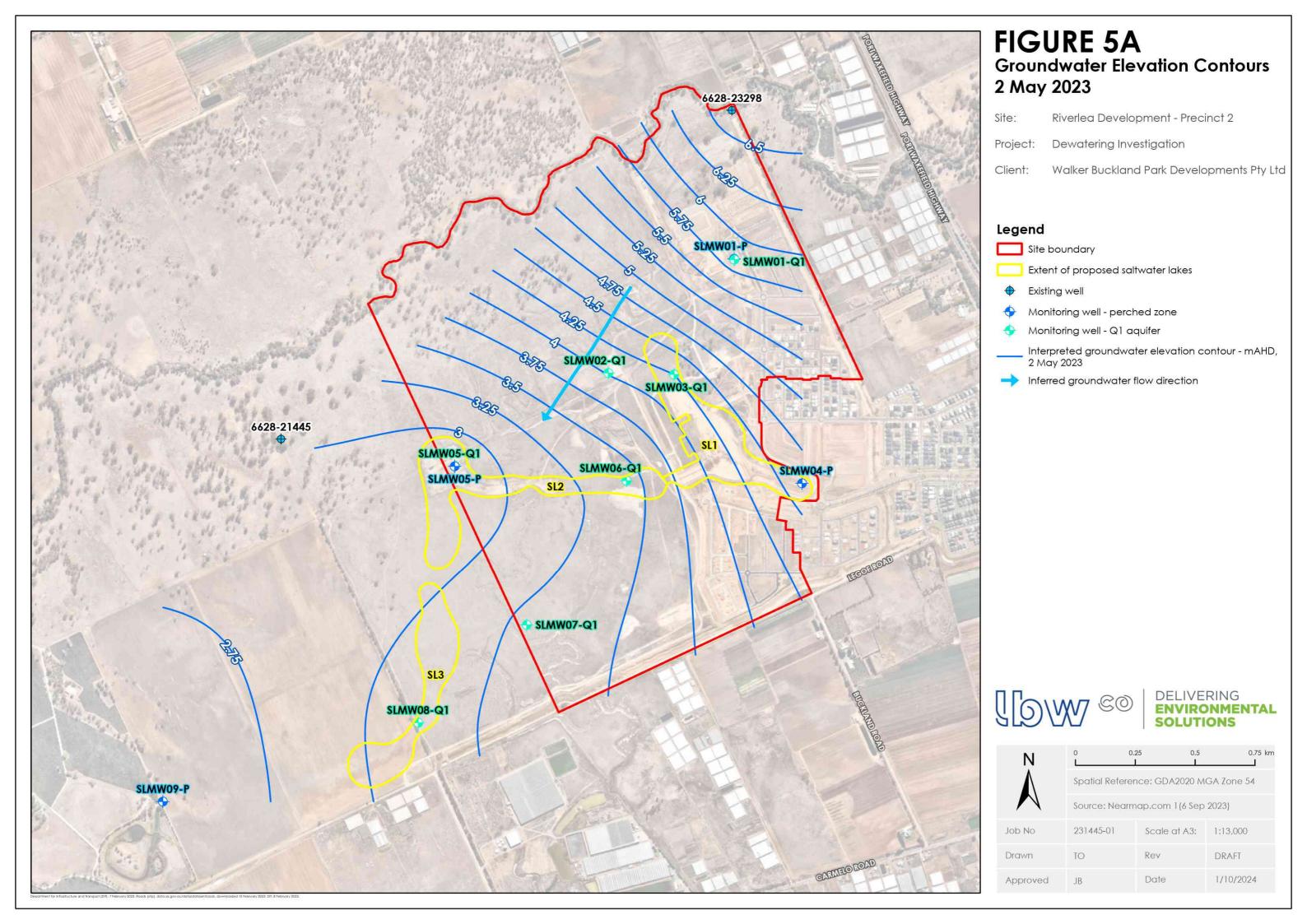
Site boundary

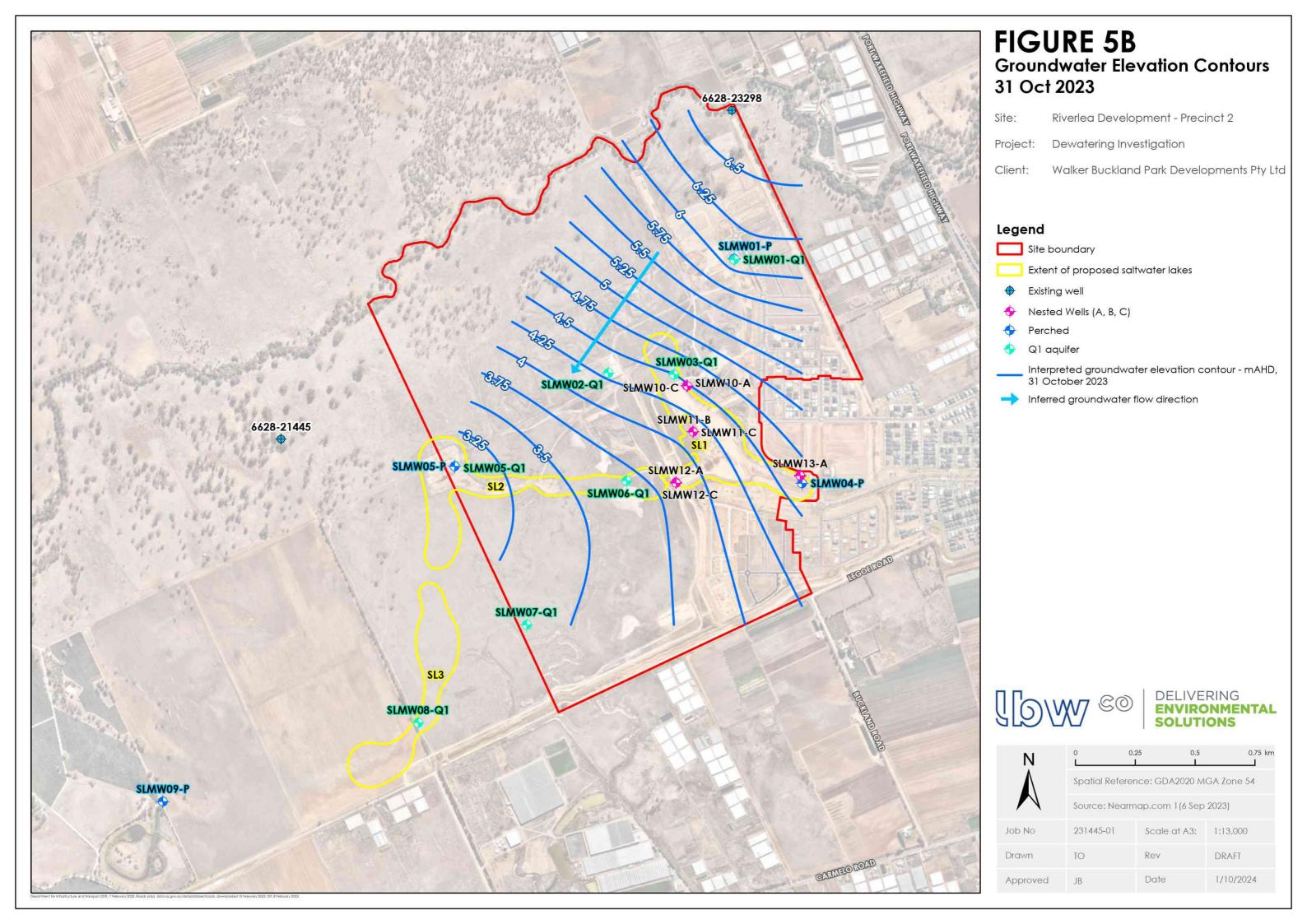
Watercourses

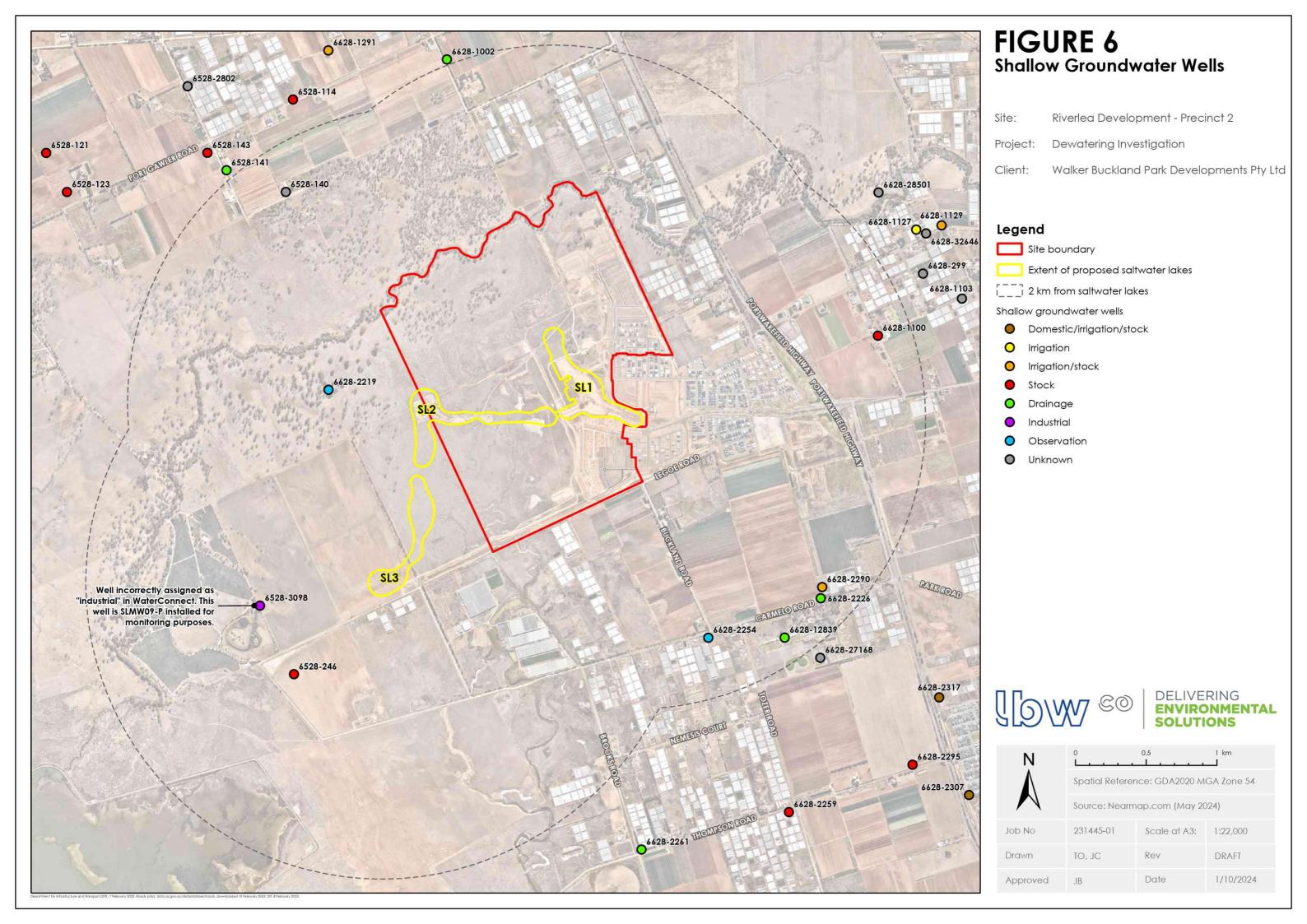
Extent of proposed saltwater lakes

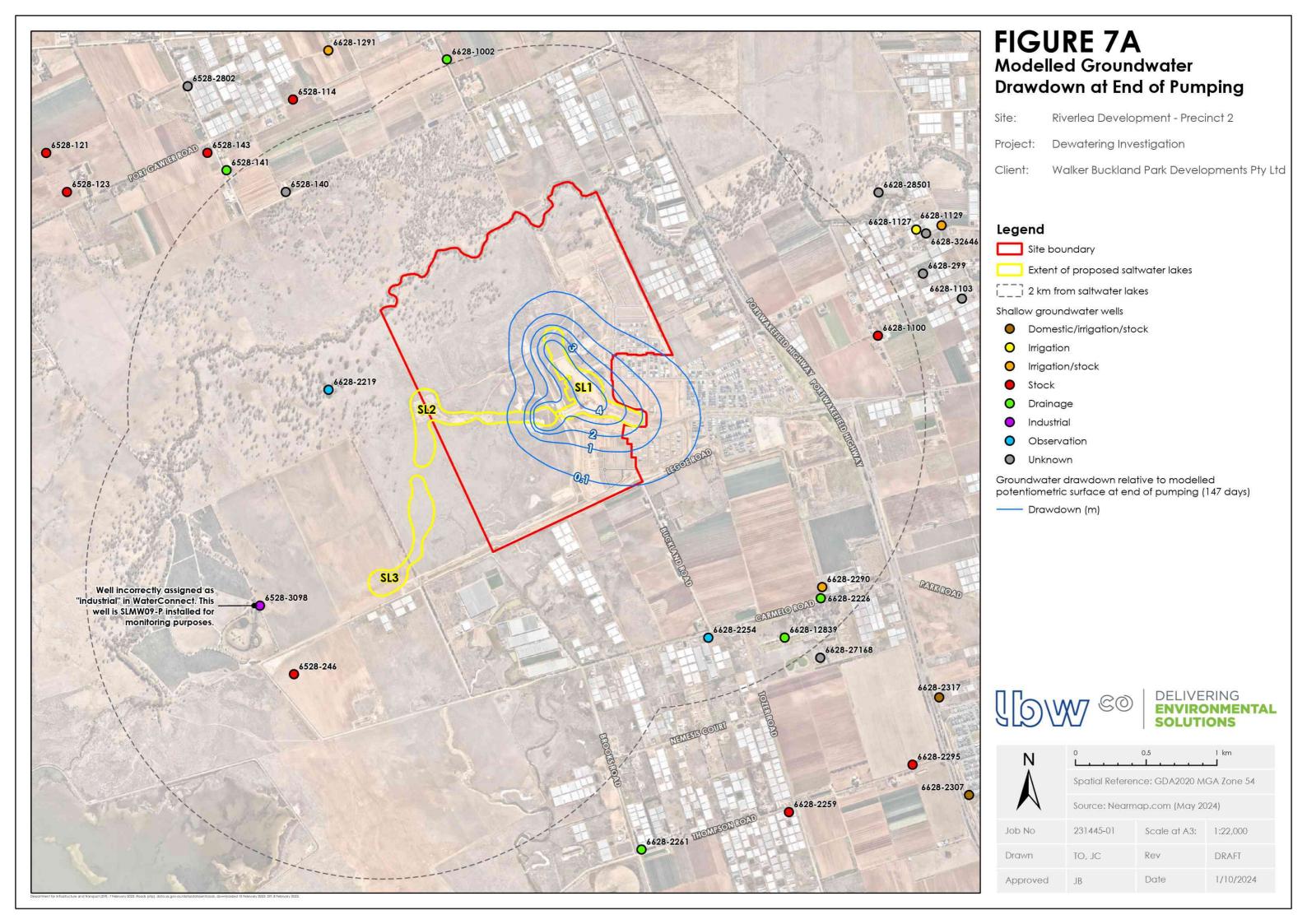
Surface water sampling location (LBWco 2023)

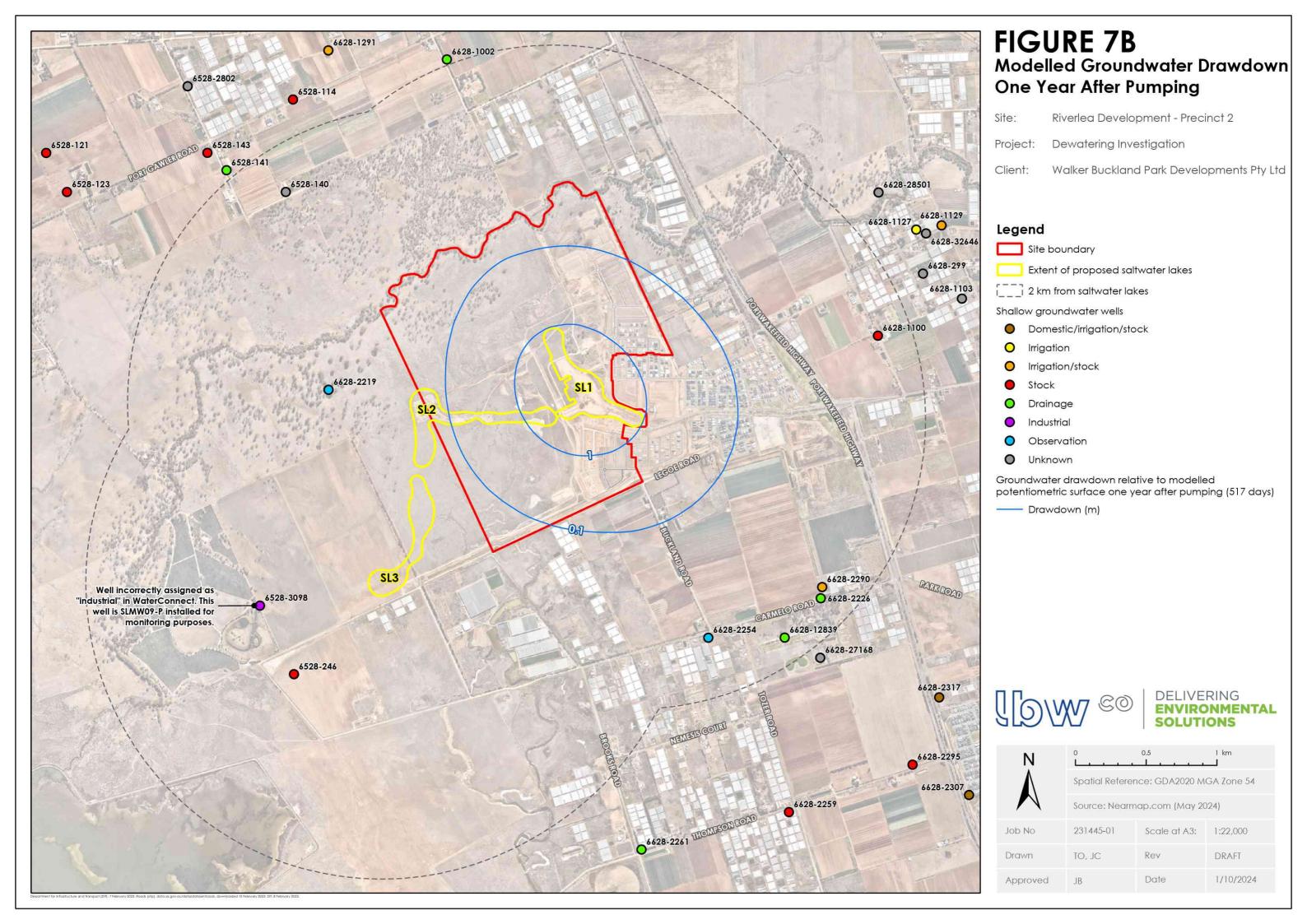
Surface water sampling location (BMT 2022)


Direction of surface water flow


Location ID	Easting	Northing
BMT-1	266940.01	6158445.71
BMT-2	267683.65	6159486.79
BMT-3	268208.34	6157160.58
BMT-4	272342.04	6158943.80
BMT-5	272350.91	6159134.16
BMT-6	267385.92	6158810.85
BMT-7	268694.24	6157224.63
SW01	271777.24	6161631.89
SW02	272666.08	6160937.76
SW03	272492.68	6160904.33
SW04	271895.48	6160724.63
SW05	272377.59	6159187.89
SW06	272455.75	6158810.29
SW07	272034.35	6159029.07
80W2	271017.84	6158808.86
SW09	270884.65	6158889.62






N	0 L	0.5 1 1 1	1.5km
Λ	Spatial Refere	ence: GDA2020 M	GA Zone 54
	Source: Near	map.com (May 2	024)
Job No	231445-01	Scale at A3:	1:25,000
Drawn	JC	Rev	DRAFT
Approved	JB	Date	1/10/2024

Appendix B Soil Bore Logs

SOIL BORE SL01

PROJECT NUMBER 231445-01
PROJECT NAME Riverlea Dewatering Invest.
ADDRESS Precincts 2 & 3, Riverlea Park

DRILLING DATE 29/03/2023
DRILLING COMPANY A&S Drilling
DRILL RIG Geoprobe
DRILLING METHOD Push Tube
BOREHOLE DIAMETER (mm) 50
TOTAL DEPTH (mBGL) 7.000

COORDINATES -34.640445, 138.518256 COORD SYSTEM GDA2020_MGA_zone_54 LOGGED BY MF CHECKED BY $\top\bigcirc$

COMMENTS

COIVI	COMMENTS							
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations	
- - - - 0.5					SANDY CLAY: very dark brown, low plasticity	О		
- 1 - -								
- 1.5 - - -					CLAY: dark brown, trace gravel	D		
- 2 - - - - 2.5								
- 3								
- - - - 3.5								
- - 4 -					CLAY: grey-brown, moderate-high plasticity	SM		
- - 4.5 - -								
- - 5 - -								
- 5.5 - - - -					CLAYEY SAND: grey-brown, medium	Wet		
- 6 - - -					CLAY: grey-brown, moderate-high plasticity CLAY: grey-brown, moderate-high plasticity	SM		
- 6.5 - - - - -								
- - - - - 7.5					Termination Depth at:7.000 m			
- 8								
- - - - 8.5								
_								

PROJECT NUMBER 231445-01
PROJECT NAME Riverlea Dewatering Invest.
ADDRESS Precincts 2 & 3, Riverlea Park

DRILLING DATE 29/03/2023
DRILLING COMPANY A&S Drilling
DRILL RIG Geoprobe
DRILLING METHOD Push Tube
BOREHOLE DIAMETER (mm) 50
TOTAL DEPTH (mBGL) 7.500

COORDINATES -34.644743, 138.522759
COORD SYSTEM GDA2020_MGA_zone_54
LOGGED BY MF
CHECKED BY TO

COIVIN	MENTS						
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
-					SANDY CLAY: very dark brown, low plasticity	D	
- 0.5					SANDY CLAY: brown-orange, low plasticity, trace gravel	D	
- 1 - - -							
- 1.5 - -							
- 2 - -							
2.5					CLAYEY SAND: grey-brown -orange, moderate plasticity	Wet	
3							
3.5							
- - 4 -					CLAY: grey-brown, moderate-high plasticity	M	
4.5					CLAY: grey-brown, moderate-high plasticity	SM	
_ _ 5 _							
- - 5.5							
- - 6 -							
6.5					CLAYEY SAND: grey-brown, medium CLAY: grey-brown, moderate-high plasticity	/M ∖ D	
- - 7 -							
7.5					Termination Depth at: 7.500 m		
- - 8 -							
- - - - 8.5							
_							

PROJECT NUMBER 231445-01
PROJECT NAME Riverlea Dewatering Invest.
ADDRESS Precincts 2 & 3, Riverlea Park

DRILLING DATE 29/03/2023
DRILLING COMPANY A&S Drilling
DRILL RIG Geoprobe
DRILLING METHOD Push Tube
BOREHOLE DIAMETER (mm) 50
TOTAL DEPTH (mBGL) 6.750

COORDINATES -34.646753, 138.520052
COORD SYSTEM GDA2020_MGA_zone_54
LOGGED BY MF
CHECKED BY \(\triangle \)

COIVII	WENTS						
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
					SILT: very dark brown, low plasticity	D	
0.5					CLAYEY SAND: pale brown-orange, medium	D	
- - 1 - -					SANDY CLAY: brown-orange, low-moderate plasticity	D	
- - 1.5 - - -							
- 2 - - - - - 2.5							
- - - - - - 3					CLAY: light brown, low-moderate plasticity	SM	
					CLAY: grey-brown, moderate plasticity	М	
3.5					CLAY: grey-brown, moderate plasticity	D	
-4					SANDY CLAY: brown, low-moderate plasticity CLAY: grey-brown, moderate-high plasticity	VM, D	
- - 4.5							
- - 5 - -							
- - - -					SANDY CLAY: grey-brown, moderate plasticity	Wet	
- - 6 -					CLAY: grey-brown, moderate-high plasticity	SM	
- - 6.5 -					CLAYEY SAND: grey-brown, medium CLAY: grey-brown -orange, moderate plasticity	Wet SM	
- - 7 -					Termination Depth at: 6.750 m		
- - 7.5 -							
- - 8 - -							
- - 8.5 - -							
Ē							

PROJECT NUMBER 231445-01
PROJECT NAME Riverlea Dewatering Invest.
ADDRESS Precincts 2 & 3, Riverlea Park

DRILLING DATE 28/03/2023
DRILLING COMPANY A&S Drilling
DRILL RIG Geoprobe
DRILLING METHOD Pushtube
BOREHOLE DIAMETER (mm) 50
TOTAL DEPTH (mBGL) 6.000

COORDINATES -34.648098, 138.523695
COORD SYSTEM GDA2020_MGA_zone_54
LOGGED BY MF
CHECKED BY TO

COMI	MENTS					_	
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
				XXX	FILL: silt, grey, fine	D	
0.5					CLAY: dark brown, low plasticity	D	
- - - 1 -					CLAY: brown-orange, low-moderate plasticity, trace gravel	D	
- - 1.5 - - -							
2					CLAV, gyay hyayya wa dayata yilatisib, aaft	SM	
_ _ 2.5 _					CLAY: grey-brown, moderate plasticity, soft	SIVI	
					CLAYEY SAND: grey-brown	$\forall m$	
_ 3					CLAY: grey-brown, moderate-high plasticity	/\sm/	
- - - - 3.5					CLAY: grey-brown, moderate-high plasticity	M	
- - 4 -					CLAYEY SAND: grey-brown, medium	VM	
					CLAY: grey-brown, moderate-high plasticity	М	
- 4.5 - - -					CLAY: grey-brown, moderate-high plasticity	Wet	
- 5 - - -							
5.5					CLAY: grey-brown, moderate-high plasticity	SM	
6				/////	Termination Depth at:6.000 m		
- - - 6.5							
- - 7							
- 7.5 -							
8							
- - 8.5							

PROJECT NUMBER 231445-01
PROJECT NAME Riverlea Dewatering Invest.
ADDRESS Precincts 2 & 3, Riverlea Park

DRILLING DATE 28/03/2023
DRILLING COMPANY A&S Drilling
DRILL RIG Geoprobe
DRILLING METHOD Push Tube
BOREHOLE DIAMETER (mm) 50
TOTAL DEPTH (mBGL) 4.500

COORDINATES -34.650357, 138.521972
COORD SYSTEM GDA2020_MGA_zone_54
LOGGED BY MF
CHECKED BY TO

СОМІ	MENTS						
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
- - - - - 0.5					CLAY: pale brown, low-moderate plasticity	D	
- - - 1 - - - - - 1.5					CLAY: grey-brown, moderate plasticity	D	
- - - - - 2					CLAY: grey-brown, moderate plasticity	SM	
- - 2.5 - - - - - 3					CLAY: grey-brown, moderate plasticity	M	
- - - - 3.5					SANDY CLAY: grey-brown, moderate-high plasticity, with gravel	Wet	
- 4 - 4 4.5					CLAY: grey-brown, moderate plasticity Termination Depth at:4.500 m	M	
_ - - - 5 - -					теппіпацоп Берті ад4.500 пі		
- - - 5.5 - - - - - 6							
- - - - 6.5 - -							
- 7 - - - - - 7.5							
- - - 8 - -							
8.5 - - - -							

PROJECT NUMBER 231445-01
PROJECT NAME Riverlea Dewatering Invest.
ADDRESS Precincts 2 & 3, Riverlea Park

DRILLING DATE 28/03/2023
DRILLING COMPANY A&S Drilling
DRILL RIG Geoprobe
DRILLING METHOD Push Tube
BOREHOLE DIAMETER (mm) 50
TOTAL DEPTH (mBGL) 9.000

COORDINATES -34.652437, 138.525375
COORD SYSTEM GDA2020_MGA_zone_54
LOGGED BY MF
CHECKED BY TO

COIVIN	IENTS						
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
- i					SILT: very dark brown, low plasticity	SM	
F							
0.5							
F					SANDY CLAY: dark brown-orange, moderate plasticity	D	
F . I							
1							
F 1							
1.5							
- 2				<i>[////</i>			
<u> </u>				<i>V////</i>			
2.5				V ///			
- 3							
				/	CLAYEY SAND: grey-brown, medium to coarse	М	
3.5							
0.0				/ /			
				//	CLAYEY SAND: grey-brown	Wet	1
_ 4				//	OLATET GAND. grey-brown	***	
- - 4.5							
F 4.9				/			
E				/ /			
_ 5					CLAY: grey-brown, moderate-high plasticity	SM	
- - 5.5							
0.0							
6							
<u> </u>				<i>[////</i>			
6.5							
5.5				<i>[////</i>			
<u> </u>				V///			
- 7				V ///			
<u> </u>				<i>[]]]]</i>			Calcrete gravel lense
- - 7.5				<i>V///</i>			
F[V///			
<u> </u>				V///			
- 8							
<u> </u>				<i>[////</i>			
- - 8.5				V///			
0.5				<i>\///</i>			
<u> </u>							
9				<i>[////</i>	Termination Depth at:9.000 m		
					Tomination Depth at.3.000 in		

PROJECT NUMBER 231445-01
PROJECT NAME Riverlea Dewatering Invest.
ADDRESS Precincts 2 & 3, Riverlea Park

DRILLING DATE 31/03/2023
DRILLING COMPANY A&S Drilling
DRILL RIG Geoprobe
DRILLING METHOD Push Tube
BOREHOLE DIAMETER (mm) 50
TOTAL DEPTH (mBGL) 7.000

COORDINATES -34.652437, 138.525375
COORD SYSTEM GDA2020_MGA_zone_54
LOGGED BY MF
CHECKED BY \(\triangle \)

СОМІ	MENTS						
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
-					CLAY: very dark brown, low plasticity	D	
- 0.5 -					CLAY: brown-orange, low plasticity	D	
- - - 1 - -							
- - 1.5 - - -					CLAY: grey-brown, moderate plasticity, trace gravel	М	
2 2.5					(OLANEN CAMP)		
- 2.5					CLAYEY SAND: grey-brown, medium to coarse	Wet	
F				////	CLAY: grey-brown, moderate-high plasticity SAND: grey, medium to coarse	M Wet	
- - 3 - - - - 3.5					SAND. grey, medium to coarse	vvet	
L 0.0					SANDY GRAVEL: brown-orange, medium to coarse	Wet	
- - 4 - - -				0.0000		VVet	
- 4.5 - - - - - 5							
- - 5.5 - - -					CLAY: grey-brown, moderate-high plasticity	SM	
6							
-					CLAYEY SAND: grey-brown, medium	Wet	
- 6.5 - - -					CLAY: grey-brown, moderate-high plasticity	SM	
7				1////	Termination Depth at: 7.000 m		
- - - - - - - - -					13		
- 8 - -							
- 8.5 - - -							
	olmor This				Voc Dhy I to for any iran mantal numaces and		Dogo 1 of 4

PROJECT NUMBER 231445-01
PROJECT NAME Riverlea Dewatering Invest.
ADDRESS Precincts 2 & 3, Riverlea Park

DRILLING DATE 29/03/2023
DRILLING COMPANY A&S Drilling
DRILL RIG Geoprobe
DRILLING METHOD Push Tube
BOREHOLE DIAMETER (mm) 50
TOTAL DEPTH (mBGL) 7.500

COORDINATES -34.648815, 138.515084
COORD SYSTEM GDA2020_MGA_zone_54
LOGGED BY MF
CHECKED BY TO

COMIN	MENTS		1				
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
- 1					SANDY CLAY: very dark brown, low plasticity	D	
- 1							
0.5					SAND: grey-brown	D	
<u> </u>					OAND. grey-brown		
-1				////	SANDY CLAY: dark brown-orange, low plasticity, trace gravel	D	
F . I					3, 1, 3,		
F l							
- 1.5 -							
2							
2.5							
-							
F 1					CLAY: grey-brown, moderate plasticity	D	
- 3					SANDY CLAY: grey-brown, moderate plasticity	M	
E					CLAY: grey-brown, moderate-high plasticity	SM	
- 3.5					OLATE groy Brown, moderate riight plasticity	Oivi	
-4					CLAY: grey-brown, moderate-high plasticity	М	
4.5							
[4.5					CLAYEY SAND: grey-brown, medium	Wet	
				//	OE (12) Of a ve. grey brown, modium	'''	
<u> </u>							
-					CLAY: grey-brown, moderate-high plasticity	М	
5.5							
E							
6					CLAY: grey-brown, moderate-high plasticity	D	
<u> </u>							
6.5							
-							
7							
7.5							
					Termination Depth at: 7.500 m		
F .							
8							
E I							
8.5							

PROJECT NUMBER 231445-01
PROJECT NAME Riverlea Dewatering Invest.
ADDRESS Precincts 2 & 3, Riverlea Park

DRILLING DATE 31/03/2023
DRILLING COMPANY A&S Drilling
DRILL RIG Geoprobe
DRILLING METHOD Push Tube
BOREHOLE DIAMETER (mm) 50
TOTAL DEPTH (mBGL) 7.500

COORDINATES -34.650555, 138.516321
COORD SYSTEM GDA2020_MGA_zone_54
LOGGED BY MF
CHECKED BY TO

COM	MENTS						
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
- 0.5					CLAY: very dark brown, low plasticity	D	
- - - 1 - -					CLAY: brown-orange, moderate plasticity	D	
- 1.5 - - - - - - 2					CLAY: grey-brown, moderate-high plasticity	D	
- - - 2.5 - -							
- 3 - - - - 3.5					CLAY: grey-brown, moderate-high plasticity	М	
- - - - 4					CLAY: grey-brown, moderate-high plasticity	D	
- 4.5 - -					CEAT. grey-brown, moderate-ringin plasticity		
- - - - - - - - - 5.5							
- - - - 6					SANDY CLAY: moderate plasticity	Wet	
- 6.5 -					CLAYEY SAND: grey-brown, medium CLAY: grey-brown, moderate-high plasticity	/s D	
- 7 - - - - - - - - -							
- - - - - 8					Termination Depth at: 7.500 m		
- - 8.5 - - -							

PROJECT NUMBER 231445-01
PROJECT NAME Riverlea Dewatering Invset.
ADDRESS Precincts 2 & 3, Riverlea Park

DRILLING DATE 31/03/2023
DRILLING COMPANY A&S Drilling
DRILL RIG Geoprobe
DRILLING METHOD Push Tube
BOREHOLE DIAMETER (mm) 50
TOTAL DEPTH (mBGL) 8.250

COORDINATES -34.654429, 138.514678
COORD SYSTEM GDA2020_MGA_zone_54
LOGGED BY MF
CHECKED BY \(\t\)

COMIN	MENTS		1				
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
- - - - - 0.5					CLAY: very dark brown, low plasticity	D	
- - 1 - -					CLAY: grey-brown, moderate-high plasticity	D	
1.5					CLAY: brown-orange, moderate-high plasticity, trace gravel	D	
- - 2 - -							
2.5							
3					CLAY: grey-brown, moderate-high plasticity	SM	
3.5					CLAT. grey-brown, moderate-riigh plasticity	SIVI	
-4							
4.5							
_ _ 5 _							
5.5							
- - 6 -						√Wet \	
6.5							
- - 7 -						√Wet \	
- - 7.5 - -						M	
- 8 -							
8.5					Termination Depth at: 8.250 m		

PROJECT NUMBER 231445-01
PROJECT NAME Riverlea Dewatering Invest.
ADDRESS Precincts 2 & 3, Riverlea Park

DRILLING DATE 31/03/2023
DRILLING COMPANY A&S Drilling
DRILL RIG Geoprobe
DRILLING METHOD Push Tube
BOREHOLE DIAMETER (mm) 50
TOTAL DEPTH (mBGL) 6.000

COORDINATES -34.648376, 138.508781
COORD SYSTEM GDA2020_MGA_zone_54
LOGGED BY MF
CHECKED BY TO

COM	MENTS						
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
- 0.5					CLAY: dark brown, low plasticity	D	
- - 1 - - - -							
- 1.5 - -					CLAV, brown propaga moderate plasticity trace group	D	
- 2 - - - - 2.5					CLAY: brown-orange, moderate plasticity, trace gravel	<i>و</i> ا	
- - - - - 3							
- - - - 3.5				0.00	SANDY GRAVEL: brown-orange, medium to coarse, with clay	SM	
- - 4 - -							
4.5				00000			
- - 5 - -				0.000	SANDY GRAVEL: brown-orange, medium to coarse	Wet	
5.5					CLAY: grey-brown, moderate-high plasticity	SM	
- 6 - - -				/////	Termination Depth at: 6.000 m		
6.5							
- - 7 -							
- 7.5 -							
- - 8 - -							
- - 8.5 - -							
	laimar This				Vec Dty Ltd for environmental numbers only		Dage 1 of d

PROJECT NUMBER 231445-01
PROJECT NAME Riverlea Dewatering Invest.
ADDRESS Precincts 2 & 3, Riverlea Park

DRILLING DATE 30/03/2023
DRILLING COMPANY A&S Drilling
DRILL RIG Geoprobe
DRILLING METHOD Push Tube
BOREHOLE DIAMETER (mm) 50
TOTAL DEPTH (mBGL) 6.750

 $\begin{array}{lll} \textbf{COORDINATES} & -34.650921, \ 138.509920 \\ \textbf{COORD SYSTEM} & \textbf{GDA2020_MGA_zone_54} \\ \textbf{LOGGED BY} & \textbf{MF} \\ \textbf{CHECKED BY} & \top\bigcirc \end{array}$

COMI	WENTS						
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
-				V////	SANDY CLAY: very dark brown, low plasticity	D	
- - - - - - - -					CLAY: very dark brown, moderate plasticity, trace gravel	D	
- -1 - - -							
- 1.5 - - -					CLAY: brown-orange, low-moderate plasticity	D	
- 2							
- 2.5 - - -							
3					CLAY: grey-brown, moderate-high plasticity	SM	
3.5							
-4					CLAYEY SAND: grey-brown, medium CLAY: grey-brown, moderate-high plasticity	Wet SM	
- 4.5 							
- - - - -							
- - - - - - -					CLAY: grey-brown, moderate-high plasticity CLAYEY SAND: grey-brown, medium, low plasticity CLAY: grey-brown, moderate-high plasticity	M Wet- SM	
- 6 - -							
- 6.5 -							
- - 7 - -					Termination Depth at: 6.750 m		
- - 7.5 - - -							
- - 8 - -							
- - - - - - -							
ш			L			L	

PROJECT NUMBER 231445-01
PROJECT NAME Riverlea Dewatering Invest.
ADDRESS Precincts 2 & 3, Riverlea Park

DRILLING DATE 30/03/2023
DRILLING COMPANY A&S Drilling
DRILL RIG Geoprobe
DRILLING METHOD Push Tube
BOREHOLE DIAMETER (mm) 50
TOTAL DEPTH (mBGL) 8.250

COORDINATES -34.652714, 138.509560
COORD SYSTEM GDA2020_MGA_zone_54
LOGGED BY MF
CHECKED BY TO

COMMENTS Depth (mBGL) **Graphic Log** PID (ppm) **Material Description Additional Observations** Duplicate Samples SB109-01 CLAY: very dark brown 0.5 SB109-02 SB109-03 SB109-04 GRAVELLY SAND: brown-orange, medium to coarse SM SB109-05 D CLAY: dark brown-orange, moderate plasticity - 2 SB109-06 2.5 3 SB109-07 CLAY: grey-brown, moderate-high plasticity D - 3.5 CLAY: grey-brown, moderate plasticity М - 4 CLAYEY SAND: grey-brown, medium Wet SB109-08 CLAY: grey-brown, moderate-high plasticity SM 5 5.5 6 6.5 7 7.5 8 CLAYEY SAND: grey-brown, medium /Wet Termination Depth at: 8.250 m 8.5

PROJECT NUMBER 231445-01
PROJECT NAME Riverlea Dewatering Invest.
ADDRESS Precincts 2 & 3, Riverlea Park

DRILLING DATE 30/03/2023
DRILLING COMPANY A&S Drilling
DRILL RIG Geoprobe
DRILLING METHOD Push Tube
BOREHOLE DIAMETER (mm) 50
TOTAL DEPTH (mBGL) 8.250

COORDINATES -34.656502, 138.508369
COORD SYSTEM GDA2020_MGA_zone_54
LOGGED BY MF
CHECKED BY TO

COMMENTS Depth (mBGL) **Graphic Log** PID (ppm) **Additional Observations** Duplicate **Material Description** Samples SB117-01, SB117-09, CLAY: very dark brown, low plasticity SB117-02 SB117-03 SANDY GRAVEL: brown-orange, medium to coarse D 1.5 SB117-04 CLAY: grey-brown, moderate-high plasticity D SB117-05 2 SANDY CLAY: brown-orange, low plasticity D SB117-06 2.5 D CLAY: grey-brown, moderate-high plasticity 3 SB117-07 - 3.5 - 4 SB117-08 5 5.5 6 - 6.5 7 7.5 8 Wet CLAYEY SAND: grey-brown, medium CLAY: grey-brown, moderate-high plasticity D Termination Depth at: 8.250 m 8.5

PROJECT NUMBER 231445-01
PROJECT NAME Riverlea Dewatering Invest.
ADDRESS Precincts 2 & 3, Riverlea Park

DRILLING DATE 31/03/2023
DRILLING COMPANY WDS
DRILL RIG Geoprobe
DRILLING METHOD Pushtube
BOREHOLE DIAMETER (mm) 50
TOTAL DEPTH (mBGL) 4.80

COORDINATES -34.662392, 138.505865
COORD SYSTEM GDA2020_MGA_zone_54
LOGGED BY Gaetano Garfi
CHECKED BY \(\t\)

COMMENTS Depth (mBGL) **Graphic Log** PID (ppm) **Additional Observations** Duplicate **Material Description** Samples SM SL15-01 CLAYEY SAND: pale orange -brown, with rootlets, trace rock fragments SL15-02 CLAY: grey-brown, moderate plasticity, stiff SM 1 SL15-03 SAND: red-brown SM SANDY CLAY: tan -grey, low plasticity D - 1.5 CLAY: red-brown, moderate plasticity, stiff SM VM CLAY: tan -grey, moderate-high plasticity, stiff - 2 SL15-0 2.5 CLAY: red-brown, low-moderate plasticity, stiff SM SM CLAY: tan -grey, moderate plasticity, stiff 3 SL15-05 3.5 SAND: pale brown, fine to coarse, very loose S No core retrieval due to wet sample No core retrieval due to wet sample and bore collapsing and bore collapsing. SL15-06 s SAND: pale brown, fine to coarse, very loose - 4.5 CLAY: brown grey, moderate plasticity, very stiff SL15-07 SL15-08 Termination Depth at:4.80 m - 5 5.5 6 6.5 7 7.5 8 8.5

PROJECT NUMBER231445-01DRILLING DATE31/03/2023PROJECT NAMERiverlea Saltwater Lakes DewaDRILLING COMPANYWDSADDRESSPrecincts 2 & 3, Riverlea ParkDRILL RIGGeoprobe

DRILLING DATE 31/03/2023 09:43AM
a DRILLING COMPANY WDS
DRILL RIG Geoprobe
DRILLING METHOD Pushtube
BOREHOLE DIAMETER (mm) 50
TOTAL DEPTH (mBGL) 6.0

COORDINATES -34.663338, 138.496403
COORD SYSTEM GDA2020_MGA_zone_54
LOGGED BY Gaetano Garfi
CHECKED BY TO

COMMENTS Depth (mBGL) **Graphic Log** PID (ppm) Duplicate **Material Description Additional Observations** Samples SL16-12 SM SL16-01 CLAYEY SAND: brown, fine, loose, with clay 0.5 SL16-02 SANDY CLAY: brown -red, low plasticity, stiff D SL16-03 0.1 SILTY SAND: brown -red, fine, loose SL16-04 SANDY CLAY: tan -brown, low-moderate plasticity, soft to stiff D 0.2 1.5 CLAYEY SAND: pale tan -brown, fine to medium, loose to SM medium dense SL16-05 0.1 SANDY CLAY: red-brown, moderate plasticity, soft 2 wet SL16-06 0.1 2.5 SANDY CLAY: pale tan -grey, moderate-high plasticity, soft to VM 0.2 SL16-07 SANDY CLAY: grey-brown, moderate plasticity, soft to stiff, with VM rock fragments SAND: pale brown, fine to coarse, very loose S 3.5 SL16-08 0.1 Lost core from 3.6 m to 4.4. Hole collapsed. Caving from wet layer at 2.4 m - 4 SL16-09 0.1 SANDY CLAY: tan -brown, moderate plasticity, stiff VM 4.5 5 5.5 SL16-10 0.1 SL16-11 Termination Depth at: 6.0 m 6.5 7 7.5 8

8.5

PROJECT NUMBER231445-01DRILLING DATE31/03/2023PROJECT NAMERiverlea Saltwater Lakes DewaDRILLING COMPANYWDSADDRESSPrecincts 2 & 3, Riverlea ParkDRILL RIGGeoprobe

DRILLING DATE 31/03/2023 11:27AM

DRILLING COMPANY WDS

DRILL RIG Geoprobe

DRILLING METHOD Pushtube

BOREHOLE DIAMETER (mm) 50

TOTAL DEPTH (mBGL) 5.80

COORDINATES -34.665686, 138.498226
COORD SYSTEM GDA2020_MGA_zone_54
LOGGED BY Gaetano Garfi
CHECKED BY TO

CON	INIENIS						
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
			(<u> </u>		SANDY CLAY: grey, low plasticity, stiff, with rootlets	D	
0.5					GRAVELLY CLAY: brown, low plasticity, stiff to very stiff, with rock fragments	D	
1							
- - 1.5					CLAYEY SAND: tan -brown, medium dense to dense	SM	Wet layer at 1.55 m.
- 2 - - - - - 2.5					CLAY: grey-brown, moderate plasticity, stiff, with rock fragments, trace calcareous inclusions	М	Rock inclusions at bottom of layer
F							
3					SANDY CLAY: red-brown, moderate-high plasticity	VM	
- - - 3.5					SANDY CLAY: pale tan -red, moderate plasticity, soft to stiff	М	
F				7777			Lost core from 3.6 to 4.2
-4							
- - 4.5					CLAYEY SAND: pale tan -grey, fine to medium, loose to medium dense, with rock fragments, with calcareous inclusions	wet	
- - 5				7777	No core retrieval due to sample wash out and bore collapsing		Defect of the Community and also
- - - - 5.5					SANDY CLAY: grey-brown, moderate plasticity, stiff to very stiff, trace rock fragments	M	Refusal at 5.8 m very hard clay. Sample lost from 4.8 to 5.0.
					Termination Depth at:5.80 m		
6 					·		
6.5							
- - 7 -							
- - 7.5							
- - 8 -							
8.5							
<u> </u>							

Appendix C

Groundwater Well Logs and Well Construction Permits

PROJECT NUMBER 231445-01 PROJECT NAME Riverlea Dewatering Assessmer DRILLING COMPANY Underdale Drillers ADDRESS Precincts 2 & 3, Riverlea Park **PERMIT NO.** 439417

DRILLING DATE 18/04/2023 DRILL RIG Mark 4 **DRILLING METHOD** Hollow Auger **BOREHOLE DIAMETER (mm)** 145 TOTAL DEPTH (mBGL) 4.00

COORDINATES 272971.881, 6163709.803 COORD SYSTEM GDA1994_MGA_zone_54 **GROUND ELEVATION (mAHD)** 8.818 **TOC (mAHD)** 9.674 LOGGED BY Gaetano Garfi CHECKED BY $\top\bigcirc$

CASING DIAMETER (mm) 50

CASING PVC (Class 18)

SCREEN PVC (Class 18)

COMMENTS

Depth (m)	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details
		SANDY CLAY: brown-orange, low-moderate plasticity	D			
0.5		low-moderate plasticity				
- 1						** +
						- Bentonite seal + Cement/grout -
1.5						onite
-						Bent
_ 2		SANDY CLAY: grey -brown, low-moderate	SM			
- - 2.5		plasticity				
						b ack
_ 3						iii iii iii ii ii ii ii ii ii ii ii ii
		Core loss				Gravel filter pack
- 3.5	//	CLAYEY SAND: grey-brown, fine to medium	Wet		-	
 						
-		Termination Depth at: 4.00 m				
4.5						
F						
5						
F						
- 5.5 -						
- - 6						
_						
6.5						
- 7 -						
- - 7.5						
<u> </u>						
- 8						
_						
8.5						

PROJECT NUMBER 231445-01 PROJECT NAME Riverlea Dewatering Assessmer DRILLING COMPANY Underdale Drillers ADDRESS Precincts 2 & 3, Riverlea Park **PERMIT NO.** 439270

DRILLING DATE 17/04/2023 DRILL RIG Mark 4 **DRILLING METHOD** Hollow Auger **BOREHOLE DIAMETER (mm)** 145 TOTAL DEPTH (mBGL) 7.15

COORDINATES 272973.019, 6163706.174 COORD SYSTEM GDA1994_MGA_zone_54 **GROUND ELEVATION (mAHD)** 8.867 **TOC (mAHD)** 9.685 LOGGED BY Matt Fitzgerald CHECKED BY $\top\bigcirc$

CASING DIAMETER (mm) 50 CASING PVC (Class 18) SCREEN PVC (Class 18)

COMMENTS

Depth (m)	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details
-		SANDY CLAY: brown-orange, low-moderate plasticity	D	177 mm pre-collar installed to 5.0 m.		k
0.5		low-moderate plasticity				
-						- Cement/grout
<u>-</u> 1						
E						
1.5						
E						$\bowtie \bowtie \vdash$
2						
F						
2.5						Cuttings
- - 3						
-		CLAY: grey-brown, moderate plasticity	M			
3.5						
-						
- 4						
F						+ Bentonite seal +
4.5						ntonit
- - 5						B B I
5.5		SANDY GRAVEL: grey-brown, fine to	Wet		Z	
-	0.00	coarse	VVE			
6						gravelly sand
6.5		CLAY: grey-brown, moderate plasticity	Wet			formation
- - 7						
Ė	<i>[]]]]]</i>	Termination Depth at: 7.15 m			+	
7.5						
E						
8						
F						
8.5						

PROJECT NUMBER 231445-01 PROJECT NAME Riverlea Dewatering Assessmer DRILLING COMPANY Underdale Drillers ADDRESS Precincts 2 & 3, Riverlea Park **PERMIT NO.** 439269

DRILLING DATE 18/04/2023 DRILL RIG Mark 4 **DRILLING METHOD** Hollow Auger **BOREHOLE DIAMETER (mm)** 145 TOTAL DEPTH (mBGL) 7.50

COORDINATES 272446.646, 6163233.766 COORD SYSTEM GDA1994_MGA_zone_54 **GROUND ELEVATION (mAHD)** 7.711 **TOC (mAHD)** 8.643 LOGGED BY Gaetano Garfi CHECKED BY $\top\bigcirc$

CASING DIAMETER (mm) 50

CASING PVC

SCREEN PVC (Class 18)

CO	MI	ΜE	NT	s
----	----	----	----	---

(iii) indəq	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Detail
).5		SANDY CLAY: dark grey-brown, moderate plasticity	SM			5
		GRAVELLY SAND: pale orange -brown, fine to coarse	SM			— Cement/grout
.5		SANDY CLAY: grey-brown, low-moderate	SM			+ Bentonite seal +
.5		plasticity				+ Bent
.5						
		SAND: pale tan -orange, medium to coarse	Wet		₹	back -
5						Gravel filter pack
.5						
5	77777	OANDY OLAY				+ pues sa
5		SANDY CLAY: grey-brown, low-moderate plasticity	М			coarse
		Termination Depth at: 7.50 m				
.5						

PROJECT NUMBER 231445-01 **PROJECT NAME** Riverlea Dewatering Assessmer **DRILLING COMPANY** Underdale Drillers ADDRESS Precincts 2 & 3, Riverlea Park **PERMIT NO.** 439272

DRILLING DATE 18/04/2023 DRILL RIG Mark 4 **DRILLING METHOD** Hollow Auger **BOREHOLE DIAMETER (mm)** 145 TOTAL DEPTH (mBGL) 6.50

COORDINATES 272721.032, 6163226.168 COORD SYSTEM GDA1994_MGA_zone_54 **GROUND ELEVATION (mAHD)** 8.661 **TOC (mAHD)** 9.469 LOGGED BY Gaetano Garfi CHECKED BY $\top\bigcirc$

CASING DIAMETER (mm) 50 **CASING** PVC SCREEN PVC (Class 18)

	C	U	M	IV	ΙE	N	I	S
--	---	---	---	----	----	---	---	---

Depth (m)	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details
- - - - 0.5		SANDY SILT: brown, very soft	D			
1.5		GRAVELLY SAND: pale tan -brown, fine to coarse, with rock fragments and calcareous inclusions	SM			ite seal + Cement/grout
- 3 - - - - 3.5		CLAYEY SAND: brown-orange, fine to coarse	М	Moisture increasing from 3.0 m.		Bentonite seal
- - - - - - - - - - - - - - - - - - -		SANDY CLAY: grey-brown, low plasticity Core loss	SM			*
- - - - 5 - - -		SAND: grey-brown, coarse Core loss	VM	No recovery - very wet drilling	₹	Gravel filter pack
- 5.5 - - - -		CLAYEY SAND: grey-brown, fine to medium, moderate-high plasticity	Wet			ı
6 6 5		SANDY CLAY: grey -brown, moderate-high plasticity	М			
- - - - - - 7		Termination Depth at:6.50 m				
- - - - 7.5 - -						
8						
- 8.5 - - -						

PROJECT NUMBER 231445-01 PROJECT NAME Riverlea Dewatering Assessmer DRILLING COMPANY Underdale Drillers ADDRESS Precincts 2 & 3, Riverlea Park **PERMIT NO.** 439418

DRILLING DATE 20/04/2023 DRILL RIG Mark 4 **DRILLING METHOD** Hollow Auger **BOREHOLE DIAMETER (mm)** 145 TOTAL DEPTH (mBGL) 5.00

COORDINATES 273255.325, 6162771.465 COORD SYSTEM GDA1994_MGA_zone_54 **GROUND ELEVATION (mAHD)** 7.688 **TOC (mAHD)** 8.518 LOGGED BY Gaetano Garfi CHECKED BY $\top\bigcirc$

CASING DIAMETER (mm) 50

CASING PVC (Class 18)

SCREEN PVC (Class 18)

CO	MI	ΜE	NT	S
----	----	----	----	---

			1			
Depth (m)	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details
_	$\times \times \times$	FILL (REWORKED NATURAL): clayey	<u></u>			
- - 0.5		\sand, pale tan, fine to medium CLAYEY SAND: brown, fine to medium	D			
- 0.5 -		,				
-						Cement/grout
<u>-</u> 1		SANDY CLAY: tan -brown, low-moderate	SM			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
- 4 -		plasticity				
<u> </u>						<u> </u>
-						te se
- 2		SANDY CLAY: pale tan -brown,	SM			- Bentonite seal
- - 2.5		low-moderate plasticity, trace calcareous inclusions, trace gravel				- Be
_ Z.J						
- - - 3		CLAYEY SAND: grey-brown, fine	SM			
-						
- - 3.5		SAND: grey-brown, fine to medium	VM			Gravel filter pack
- 0.0		CLAYEY SAND: grey-brown, fine	M			fer F
- - 4					⊻	
- · -		SAND: grey-brown, fine	Wet			E B
_ _ 4.5						
-	.,,,,,,	SAND: grey -orange, medium to coarse	Wet			
		CLAY: grey-brown, moderate plasticity	SM			
_		Termination Depth at: 5.00 m				
- - 5.5						
_						
- - 6						
- - 6.5						
- - 7						
-						
7.5						
-						
8						
-						
8.5						
-						
					<u> </u>	

PROJECT NUMBER 231445-01 PROJECT NAME Riverlea Dewatering Assessmer DRILLING COMPANY Underdale Drillers ADDRESS Precincts 2 & 3, Riverlea Park **PERMIT NO.** 439413

DRILLING DATE 18/04/2023 DRILL RIG Mark 4 **DRILLING METHOD** Hollow Auger **BOREHOLE DIAMETER (mm)** 145 TOTAL DEPTH (mBGL) 6.25

COORDINATES 271804.955, 6162843.62 COORD SYSTEM GDA1994_MGA_zone_54 **GROUND ELEVATION (mAHD)** 7.103 TOC (mAHD) 8.086 LOGGED BY Gaetano Garfi CHECKED BY $\top\bigcirc$

CASING DIAMETER (mm) 50

CASING PVC (Class 18)

SCREEN PVC (Class 18)

COMMENTS

				T	_	Т
Depth (m)	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details
- 0.5		CLAY: very dark brown, low-moderate plasticity	SM			al +—— Cement/grout
- 2 - - - 2.5		CLAY: brown -grey, moderate plasticity SANDY CLAY: brown-orange, low plasticity	SM			Bentonite seal
3.5		CLAYEY SAND: brown-orange -grey, fine	SM		፟∑	¥ *
- - - - - - - - - - - 5		CLAYEY SAND: brown-orange -grey, fine to medium SANDY CLAY: brown-orange -grey,	M SM			Gravel filter pack
- - - - - 5.5 -		low-moderate plasticity CLAYEY SAND: grey-brown, fine to medium SANDY CLAY: grey-brown, low-moderate	M SM			
6		plasticity Termination Depth at: 6.25 m				
- - - - 7.5 - -						
- 8 - 8 - 8.5						
- - - -						Dogo 4 of

PROJECT NUMBER 231445-01 PROJECT NAME Riverlea Dewatering Assessmer DRILLING COMPANY Underdale Drillers ADDRESS Precincts 2 & 3, Riverlea Park **PERMIT NO.** 439266

DRILLING DATE 17/04/2023 DRILL RIG Mark 4 **DRILLING METHOD** Hollow Auger **BOREHOLE DIAMETER (mm)** 145 TOTAL DEPTH (mBGL) 8.50

COORDINATES 271806.178, 6062845.203 COORD SYSTEM GDA1994_MGA_zone_54 **GROUND ELEVATION (mAHD)** 7.008 **TOC (mAHD)** 8.138 LOGGED BY Matt Fitzgerald CHECKED BY $\top \bigcirc$

CASING DIAMETER (mm) 50

CASING PVC (Class 18)

SCREEN PVC (Class 18)

CO	M	ME	NT	s
----	---	----	----	---

Depth (m)	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details
0.5 1 1.5		CLAY: very dark brown, low-moderate plasticity SANDY CLAY: brown-orange, low plasticity	D	177 mm pre-collar installed to 7 m.		- Cement/grout
2.533.54						- Cuttings
4.5 5 5.5		SANDY CLAY: light brown, low-moderate plasticity	М		⊻	
6 6.5		CLAY: grey-brown, moderate-high plasticity	M			Bentonite seal
7 7.5		SANDY GRAVEL: grey -brown, fine to coarse CLAY: grey, low-moderate plasticity SAND: grey, fine	Wet SM			Gravel filter pack
8.5		SANDY CLAY: grey-brown, moderate plasticity, trace calcareous inclusions	SM			Gravel f

PROJECT NUMBER 231445-01 PROJECT NAME Riverlea Dewatering Assessmer DRILLING COMPANY Underdale Drillers ADDRESS Precincts 2 & 3, Riverlea Park **PERMIT NO.** 439420

DRILLING DATE 18/04/2023 DRILL RIG Mark 4 **DRILLING METHOD** Hollow Auger **BOREHOLE DIAMETER (mm)** 145 TOTAL DEPTH (mBGL) 6.50

COORDINATES 272522.86, 6162784.453 COORD SYSTEM GDA1994_MGA_zone_54 **GROUND ELEVATION (mAHD)** 6.355 **TOC (mAHD)** 7.270 LOGGED BY Gaetano Garfi CHECKED BY $\top\bigcirc$

CASING DIAMETER (mm) 50

CASING PVC

SCREEN PVC (Class 18)

CO	M	M	ΕI	V٦	rs
----	---	---	----	----	----

Depth (m)	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details
		SILTY SAND: dark brown, fine	D			1 of the second
0.5		GRAVELLY SAND: red-brown, fine to coarse, with rock fragments	D			seal +
- 1 - - - - 1.5		CLAYEY SAND: red-brown, fine to medium	SM			Bentonite seal +
- 2 - 2 - 2.5		CLAYEY SAND: pale tan -brown, fine to coarse	M			
3		SAND: tan -brown, medium to coarse	Wet		⊻	
3.5						Gravel filter pack
4.5						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5.5						
6		SILTY CLAY: grey-brown, low-moderate plasticity Core loss	SM ,			Sand +
6.5		SANDY CLAY: grey-brown, moderate \plasticity \int \frac{1}{2} \text{Termination Depth at: 6.50 m}	SM			:::: "
- 7 - - - - 7.5						
8						
8.5						

PROJECT NUMBER 231445-01 PROJECT NAME Riverlea Dewatering Assessmer DRILLING COMPANY Underdale Drillers ADDRESS Precincts 2 & 3, Riverlea Park **PERMIT NO.** 439414

DRILLING DATE 19/04/2023 DRILL RIG Mark 4 **DRILLING METHOD** Hollow Auger **BOREHOLE DIAMETER (mm)** 145 TOTAL DEPTH (mBGL) 6.00

COORDINATES 272105.585, 6162180.002 COORD SYSTEM GDA1994_MGA_zone_54 **GROUND ELEVATION (mAHD)** 5.662 **TOC (mAHD)** 6.510 LOGGED BY Gaetano Garfi CHECKED BY $\top\bigcirc$

CASING DIAMETER (mm) 50

CASING PVC (Class 18)

SCREEN PVC (Class 18)

COMMENTS

				Ι		T
Depth (m)	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details
-		CLAYEY SAND: very dark brown, fine to medium	D			seal +
- 0.5 - - -		SANDY CLAY: dark grey, low-moderate plasticity, with gravel	SM			Seal -
- 1 - -						+ Bentonite seal +
- 1.5						
2						
2.5						
- - 3 -		SAND: pale brown, fine to medium	Wet		⊻	
3.5						Gravel filter pack
- 4 - 3						Gravel
4.5		SANDY CLAY: red-brown -grey, low-moderate plasticity	SM			
- 5						
5.5						
6		Termination Depth at: 6.00 m				
- 6.5						
- 7						
7.5						
- 8						
- 8.5						
						Dogo 1 of

PROJECT NUMBER 231445-01 PROJECT NAME Riverlea Dewatering Assessmer DRILLING COMPANY Underdale Drillers ADDRESS Precincts 2 & 3, Riverlea Park **PERMIT NO.** 439268

DRILLING DATE 19/04/2023 DRILL RIG Mark 4 **DRILLING METHOD** Hollow Auger **BOREHOLE DIAMETER (mm)** 145 TOTAL DEPTH (mBGL) 6.00

COORDINATES 271652.554, 6161771.683 COORD SYSTEM GDA1994_MGA_zone_54 **GROUND ELEVATION (mAHD)** 5.636 TOC (mAHD) 6.426 LOGGED BY Gaetano Garfi CHECKED BY \top \bigcirc

CASING DIAMETER (mm) 50

CASING PVC

SCREEN PVC (Class 18)

COMMENTS

COW	MENIS					
Depth (m)	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details
-	3.000	GRAVELLY SAND: brown-orange, medium to coarse	SM			eal - Cement/grout
0.5 						e seal -
- 1 - - - - - 1.5		SANDY CLAY: red-brown, low-moderate plasticity	SM			Bentonite seal
2 2 2.5		SANDY CLAY: tan -orange, moderate plasticity	M		1	
- 3 -	(///// 0/ D	GRAVELLY CLAY: pale grey-brown, low-moderate plasticity	VM		⊻	
- - - 3.5		CLAYEY SAND: pale grey-brown, fine to medium	Wet			Gravel filter pack
- 3.0		SAND: pale orange -grey, coarse	Wet			
- - 4		CLAY: grey-brown, moderate-high plasticity	М			ave ::::
- - -		SAND: pale orange -grey, coarse	Wet			Ö
4.5 5		CLAY: grey-brown, moderate-high plasticity	М			
- - - - 5.5		SANDY CLAY: red-brown -grey, moderate plasticity	SM			
- 3.3 - - -						sand —
- 6 - -	,,,,,,	Termination Depth at: 6.00 m				······································
6.5						
- - 7 -						
- - - 7.5 - -						
- - 8 -						
8.5						
-		This log was proposed by LDWas Dty Ltd for or				Dogo 1 of

PROJECT NUMBER 231445-01 PROJECT NAME Riverlea Dewatering Assessmer DRILLING COMPANY Underdale Drillers ADDRESS Precincts 2 & 3, Riverlea Park **PERMIT NO.** 439994

DRILLING DATE 19/04/2023 DRILL RIG Mark 4 **DRILLING METHOD** Hollow Auger **BOREHOLE DIAMETER (mm)** 145 TOTAL DEPTH (mBGL) 3.00

COORDINATES 270586.501, 6161442.812 COORD SYSTEM GDA1994_MGA_zone_54 **GROUND ELEVATION (mAHD)** 4.918 **TOC (mAHD)** 5.563 LOGGED BY Gaetano Garfi **CHECKED BY ⊺**○

CASING DIAMETER (mm) 50 CASING PVC (Class 18) SCREEN PVC (Class 18)

COMMENTS

	COMMENTS										
Depth (m)	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details					
- 0.5 - 1 - 1.5 - 2 - 2.5		CLAYEY SAND: red-brown, fine to medium CLAYEY SAND: pale tan, low plasticity, with rock fragments, trace calcareous inclusions CLAY: pale grey-brown, moderate plasticity	VM		⊻	Gravel filter pack ————Gement/grout Bentonite seal					
- 3.5 4 4.5		Termination Depth at: 3.00 m									
- 5.5											
- 6.5 - 7											
- - - - - - - - 8 - - - - - 8											

PROJECT NUMBER 231445-01 PROJECT NAME Riverlea Saltwater Lakes Dewat DRILLING COMPANY Underdale Drillers ADDRESS Precincts 2 & 3, Riverlea Park PERMIT NO. A - 448912, B - 448913, C - 448918 DRILLING METHOD Sonic drilling/hollow auger

DRILLING DATE 17/10/2023 12:53PM DRILL RIG Sonic Rig

BOREHOLE DIAMETER (mm) 100 TOTAL DEPTH (mBGL) 13.00

COORDINATES 272772.577, 6163179.029 COORD SYSTEM GDA1994_MGA_zone_54 **GROUND ELEVATION (mAHD)** 8.68 TOC (mAHD) A: 9.588, B: 9.559, C: 9.591 **LOGGED BY** Antonio Brito CHECKED BY $\top\bigcirc$

CASING DIAMETER (mm) 50

CASING PVC (Class 18)

SCREEN PVC (Class 18)

COMMENTS

			Ι		I	
Depth (m)	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details < □ □
		SAND: pale brown, fine to medium, loose	D			
0.5		SAND: pale brown-orange, fine to medium, medium dense, trace clay	D			
1	0.00	GRAVELLY SAND: light brown, medium to coarse, very loose	D			
						Cement/grout -
2 2.5		CLAY: pale brown, low-moderate plasticity, soft, trace gravel	М			Ceme
3						
3.5						
1	9. L	GRAVELLY CLAY: pale yellow-brown, low-moderate plasticity, soft, trace sand	М			seal +
1.5		SANDY CLAY: pale yellow-brown with light brown mottling, moderate plasticity, soft	M			H Bentonite seal +
		CLAY: pale yellow-brown with light brown mottling, moderate-high plasticity, stiff	М			
5		SANDY CLAY: pale yellow-brown with light grey mottling, moderate plasticity, soft, trace calcareous inclusions	M			el filter pack
5.5		CLAY: pale yellow-brown with light brown mottling, moderate-high plasticity, stiff, trace calcareous inclusions	VM			Gravel filter pack
6	9, 3	SANDY CLAY: pale yellow-brown, low plasticity, soft	VM			out Gray (17)
6.5		GRAVELLY CLAY: pale yellow-brown, low plasticity, soft, with sand CLAY: pale yellow-brown with light grey mottling,	SM	Consistency increase with depth.		
7		low-moderate plasticity, soft to stiff, with sand, with gravel SAND: pale yellow-brown, medium to coarse,	VM		-	ite seal -
7.5		loose, uniform CLAY: pale brown -grey, moderate-high plasticity, stiff	SM			H Bentonite seal
3		SAND: pale brown -grey, fine to medium, very loose	M			Gravel filter pack
3.5		GRAVELLY CLAY: light yellow-brown with white mottling, low-moderate plasticity, soft, with sand	wet			- Gravel

	- Si.	SOLUTIONS				
Depth (m)	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details
-	OF D					[∷∷∷ <u> </u>
9.5	1.11	CLAY: pale yellow-brown with light brown mottling, moderate-high plasticity, stiff to hard, trace calcareous inclusions	M	Consistency increases with depth		Bentonite seal -
10		SAND: pale brown -grey, fine to medium, very loose	VM \			
10.5		CLAY: pale yellow-brown with light brown mottling, moderate-high plasticity, stiff to hard, trace	М	Consistency increases with depth		
- - - 11		calcareous inclusions SAND: pale brown -grey, fine to medium, very loose, uniform	М			back —
11.5		SAND: pale brown with grey mottling, fine to medium, very loose, uniform	VM			Gravel filter pack
- 12 -						
12.5						
13		Termination Depth at: 13.00 m				
13.5						
14						
14.5	.					
15						
15.5						
16						
16.5	.					
17						
17.5						
- - 18						
- - 18.5						
19						
- - 19.5						
20						

PROJECT NUMBER 231445-01 PROJECT NAME Riverlea Saltwater Lakes Dewat DRILLING COMPANY Underdale Drillers ADDRESS Precincts 2 & 3, Riverlea Park **PERMIT NO.** B - 448915, C - 448919

DRILLING DATE 16/10/2023 10:31AM -DRILL RIG Sonic Rig **DRILLING METHOD** Sonic drilling/hollow auger **BOREHOLE DIAMETER (mm)** 100

COORDINATES 272799.342, 6162987.626 COORD SYSTEM GDA1994_MGA_zone_54 **GROUND ELEVATION (mAHD)** 8.2 TOC (mAHD) B: 9.294, C: 9.292 **LOGGED BY** Antonio Brito CHECKED BY TO

CASING DIAMETER (mm) 50

CASING PVC (Class 18)

TOTAL DEPTH (mBGL) 13.50

SCREEN PVC (Class 18)

COMMENTS

сом	MENTS					
Depth (m)	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details
-		SAND: pale brown, fine to medium, loose	D			
0.5		SAND: pale brown-orange, fine to medium, medium dense, trace clay	D			
1.5		SAND: fine to coarse, loose, with gravel, trace clay	D			Cement/grout
- 2 - - -		SANDY CLAY: pale brown, low plasticity, soft, trace gravel	D			Central Control Contro
- 2.5 -		CLAY: pale brown, moderate-high plasticity, stiff, trace sand	SM			
- 3 -		CLAYEY SAND: pale brown, fine to medium	М			
3.5						Sea +
- 4 - - - - 4.5		CLAY: light brown with grey mottling, moderate-high plasticity, very stiff	М			- Bentonite seal
- 4.3 - -						
_ 5 _		CLAYEY SAND: pale brown -grey, fine to medium, loose	М	Moisture increases with depth		
5.5		CLAY: pale yellow-brown with grey mottling, moderate-high plasticity, stiff, with sand SANDY CLAY: light yellow-brown, low-moderate	M M			
- - - 6		plasticity, soft, trace gravel				ilter pack
6.5		CLAY: pale brown with grey mottling, low-moderate plasticity, soft	М			- Gravel filte
- 7 - 7 - 7.5		SAND: pale grey with light brown mottling, fine to medium, loose	M	Pocket of gravelly sand 7.45 to 7.65		
8		CLAY: pale yellow-brown, high plasticity, hard	D			Cement/grout
- 8.5 - - - -		CLAY: pale brown with grey mottling, high plasticity, hard, trace gravel	D	Small pockets of gravelly sand.		Bent

					L	
Depth (m)	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details
9.5 - 10 - 10.5 - 10 - 11.5 - 12.5 - 13.5 - 14.5 - 15.5 - 16.5 - 17.5 - 16.5 - 17.5 - 18.5 - 19.5 -		CLAY: pale brown with grey mottling, high plasticity, hard, with calcareous inclusions SANDY CLAY: pale brown with grey mottling, high plasticity, hard, trace gravel Termination Depth at: 13.50 m	Wet D Weistrue	calcareous rocks inclusions. Pockets of gravelly sand. Saturated zone 12.5 to 13.0 m	Groundw	Well Installation Details Backfill Packfill Packfi
20						

PROJECT NUMBER 231445-01 **DRILLING DATE** 19/10/2023 11:32AM -**COORDINATES** 272727.468, 6162776.055 PROJECT NAME Riverlea Saltwater Lakes Dewal DRILLING COMPANY Underdale Drillers COORD SYSTEM GDA1994_MGA_zone_54 ADDRESS Precincts 2 & 3, Riverlea Park DRILL RIG Sonic Rig **GROUND ELEVATION (mAHD)** 7.31 PERMIT NO. A - 448916, B - 448917, C - 448920 DRILLING METHOD Sonic drilling/hollow auger TOC (mAHD) A: 8.310, B: 8.312, C: 8.272 **BOREHOLE DIAMETER (mm)** 100 **LOGGED BY** Antonio Brito TOTAL DEPTH (mBGL) 11.500 CHECKED BY $\top\bigcirc$ CASING DIAMETER (mm) 50 CASING PVC (Class 18) SCREEN PVC (Class 18)

COMMENTS

	WENTS		1			
Deptn (m)	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details
		SAND: pale brown, fine to medium, loose, trace clay	D			
.5						nent/gi
		SILTY SAND: pale yellow-brown, fine to medium, loose, trace clay	D			
.5		CLAY: pale brown with light brown mottling, moderate plasticity, stiff, trace calcareous inclusions	D			+ Bentonite seal + Cement/grout
.5		CLAY: brown with grey mottling, moderate plasticity, stiff, trace calcareous inclusions, trace gravel	D			Gravel filter pack
		SANDY CLAY: brown, low-moderate plasticity, soft	М			
.5		CLAY: brown with grey mottling, moderate plasticity, stiff, trace calcareous inclusions, trace gravel	D M			Oray
.5		SANDY CLAY: brown, low-moderate plasticity, soft				+ Bentonite seal + Cement/grout +
.5		CLAY: brown with grey mottling, moderate-high plasticity, stiff to hard	D			entonite sea
.5		SANDY CLAY: pale yellow-brown with grey mottling, low-moderate plasticity, soft, with gravel, trace calcareous inclusions	M			
		SAND: pale yellow-brown, medium, loose, uniform,	\/\4	Moisture content increases with		Bag III g
		trace clay CLAY: brown with grey mottling, moderate plasticity, stiff, trace calcareous inclusions, trace	M	depth.		Gravel filter pack
.5		gravel SANDY CLAY: pale yellow-brown with grey mottling, low-moderate plasticity, soft, with gravel, trace calcareous inclusions	VM			
.5		CLAY: yellow-brown with light grey mottling, moderate plasticity, stiff to hard, trace calcareous inclusions, trace gravel	М	Consistency increases with depth		Cement/grout +
		GRAVELLY CLAY: pale yellow, low-moderate				

				T		
Depth (m)	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details ∢ ⊠ ∪
F	11/11/	plasticity, still	3	Completenessinger		
9.5		CLAY: yellow-brown with light grey mottling, moderate plasticity, stiff to hard, trace calcareous inclusions, trace gravel	M	Consistency increases with depth		Bentonite seal
F						
- 10.5						Gravel filter pack
-		SANDY CLAY: pale brown, moderate plasticity, soft	10/-4			
Ė		to stiff	Wet VM			
_ 11		SANDY CLAY: yellow-brown with light grey mottling, moderate plasticity, stiff	VIVI			
-		g,ac.ate placesty, ear.				
11.6						
11.5		Termination Depth at: 11.50 m				
-						
_ 12						
-						
- - 12.5						
F '2.						
-						
_ 13						
-						
- - 13.5						
- 10.0						
-						
_ 14						
-						
14.5						
-						
F						
<u> </u>						
F						
15.5						
F						
F 46						
<u> </u>						
E						
_ 16.5						
-						
- - 17						
L ''						
-						
17.5						
- - 18						
F						
F						
<u> </u>						
-						
19						
F						
F 40.						
<u> </u>						
-						
20						
				1		ı

PROJECT NUMBER 231445-01 PROJECT NAME Riverlea Saltwater Lakes Dewat DRILLING COMPANY Underdale Drillers ADDRESS Precinct 2, Riverlea Park

DRILLING DATE 19/10/2023 01:22PM -DRILL RIG Sonic Rig

PERMIT NO. A - 448909, B - 448910, C - 448911 DRILLING METHOD Sonic drilling/hollow auger **BOREHOLE DIAMETER (mm)** 100 TOTAL DEPTH (mBGL) 14.50

COORDINATES 273247.115, 6162805.068 COORD SYSTEM GDA1994_MGA_zone_54 **GROUND ELEVATION (mAHD)** 7.8 TOC (mAHD) A: 8.643, B: 8.654, C: 8.582 **LOGGED BY** Antonio Brito CHECKED BY TO

CASING DIAMETER (mm) 50

CASING PVC (Class 18)

SCREEN PVC (Class 18)

COMMENTS

Depth (m)	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Insta	allation Details
		SILTY SAND: dark brown, fine to medium, dense	D				M I
- 0.5		SANDY CLAY: brown-orange, low-moderate plasticity, stiff	SM				/grout —
_ _ 1		CLAY: yellow-brown with light brown mottling, moderate-high plasticity, stiff, trace sand	SM				Cement/grout
- - 1.5 - -							e seal
- 2 - - - - 2.5							+ Bentonite seal
- - - - - 3							pack
- - - - 3.5		SANDY CLAY: yellow-brown with grey mottling, moderate-high plasticity, soft	SM	Potential saturated zone between 3.25 to 3.4 mBGL.			iller iller
- 4 4.5		SAND: yellow-brown, fine to medium, loose	Wet				Gravel
_	//////	CANDY OF AV Here become leaves to the state of	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \				1::1
- - - 5 -		SANDY CLAY: yellow-brown, low plasticity, soft CLAY: grey with light brown mottling, moderate-high plasticity, stiff to hard, trace sand	SM	Consistency increases with depth.	-		H Cement/grout
_ _ 5.5		GRAVELLY CLAY: pale yellow with light brown mottling, low plasticity, very soft	4-				1//1 -
- - - - 6		CLAY: grey with light brown mottling, moderate-high plasticity, stiff to hard, trace calcareous inclusions, with sand, trace suspected	SM	Consistency increases with depth.			entonite seal
- 6.5 							8 + + B
- 7 - - -		SANDY CLAY: yellow-brown, low plasticity, soft GRAVELLY CLAY: pale yellow with light brown mottling, low plasticity, very soft	M VM SM				oack ∵ -∵
7.5 		CLAY: grey with light brown mottling, moderate-high plasticity, stiff to hard, trace calcareous inclusions, with sand, trace					Gravel filter pack
- 8 - - -		GRAVELLY CLAY: pale yellow with light brown mottling, low plasticity, very soft CLAY: grey with light brown mottling,	SM				Fe seal
- 8.5 - - -		moderate-high plasticity, stiff to hard, trace calcareous inclusions, with sand, trace SANDY CLAY: yellow-brown with grey mottling,	M VM / M	Potential saturated zone			inte seal

					1	
Depth (m)	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details
-	/////	moderate plasticity, stiff			+	
-		CLAYEY SAND: yellow-brown with grey mottling,	M	Potential saturated zone		[연호 호텔] 테]
F		fine to medium, moderate plasticity, loose	М		1	
9.5		SANDY CLAY: brown-orange with grey mottling,	11			
-		moderate-high plasticity, stiff	sм	1		
F	//////	CLAY: brown-orange with grey mottling,	н	-		
- 10 -		moderate-high plasticity, stiff, with sand, with gravel, with calcareous inclusions	M			
10.5		CLAY: brown-orange with grey mottling,	М	Potential saturated zone	+	Gravel filter pack
F 10.		moderate-high plasticity, stiff, with sand	'''	r oteritiai saturateu zone		
F		CLAYEY SAND: brown-orange with grey mottling,	м		-	
<u> -</u> 11		fine, moderate-high plasticity, medium dense	II IVI			∷∷∷∷∷≣∵ ॡ
F ''		CLAY: brown-orange with grey mottling,				:::::::::::::::::::::::::::::::::::::
Ė		moderate-high plasticity, stiff, with sand				l∷∷∷∷⊞::l º
F		CLAY: yellow-brown with light grey mottling,		(2 t ii t	VI.	
<u> </u> 11.5	7777	low-moderate plasticity, soft to stiff, with sand, with	<u>/M \</u>	Potential saturated zone	Į	::::::::::::
Ė		gravel, with calcareous inclusions	SM		1	:::::::::::::::
F		SANDY CLAY: brown-orange with light grey	D	1	1	
_ 12		mottling, moderate plasticity, stiff, trace calcareous				
F		inclusions	[[
F.		CLAYEY SAND: brown-orange with grey mottling,			1	[:::::::::::::
12.5		fine, moderate-high plasticity, medium dense		1	1	 \$0;**\030;*\030\0
-		SANDY CLAY: brown-orange with light grey	5			
Ė		mottling, moderate plasticity, stiff				0-0000000000000000000000000000000000000
- 13		CLAY: brown-orange with light brown mottling,	SM	-		<u> </u>
F		moderate-high plasticity, stiff, with sand	SIVI			0-00%0-00%0-0%
Ł		CLAY: dark brown, moderate-high plasticity, stiff,				
- 13.5		with sand				Back
Ė		CLAY: dark grey with brown mottling,				12000000000000000000000000000000000000
-		moderate-high plasticity, hard, with sand				
- 14			+	4		0-00-00-00-00-00-00-00-00-00-00-00-00-0
Ė		CLAY: yellow-brown with light grey mottling,	M			<u> </u>
-		low-moderate plasticity, soft to stiff, with sand, with				0-00-00-00-00-00-00-00-00-00-00-00-00-0
14.5		gravel, with calcareous inclusions			_	\$3:05\$3:05\$3 L
E		Termination Depth at: 14.50 m				
-						
_ 15						
L						
-						
15.5						
ţ			1			
F			1			
16						
Ė.						
-			1			
16.5			1			
F			1		1	
-			1			
17			1		1	
F			1		1	
F			1		1	
17.5			1		1	
F			1		1	
F			1		1	
18			1		1	
F '			1		1	
F			1		1	
18.5			1		1	
- 10.0			1		1	
ļ.			1		1	
10			1		1	
19			1		1	
E			1		1	
F			1		1	
19.5			1		1	
E			1		1	
F			1		1	
_ 20			1		1	<u> </u>

PROJECT NUMBER 231445-01 PROJECT NAME Riverlea Saltwater Lakes Dewat DRILLING COMPANY Underdale Drillers ADDRESS Precincts 2, Riverlea Park **PERMIT NO.** 455396

DRILLING DATE 27/11/2023 02:22PM -**DRILL RIG** Rockmaster

DRILLING METHOD Hollow Flight Auger **BOREHOLE DIAMETER (mm)** 250 TOTAL DEPTH (mBGL) 9.500

COORDINATES 272772.439, 6163163.54 COORD SYSTEM GDA2020_MGA_zone_54 **GROUND ELEVATION (mAHD)** TOC (mAHD) **LOGGED BY** A Brito CHECKED BY $\top\bigcirc$

CASING DIAMETER (mm) 100

CASING PVC (Class 18)

SCREEN PVC (Class 18)

CO	M	M	ΕI	V٦	rs
----	---	---	----	----	----

Depth (m)	Samples	Duplicate	PID	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details
0.5					SAND: pale brown, fine to medium, loose	D			
- 1 - 1.5					SAND: light brown, fine to medium, low plasticity, loose, with clay	D			
- 2.5					SAND: light brown, fine to medium, low plasticity, with clay	SM			
- 3 - 3.5					SANDY CLAY: moderate plasticity, dense	M			Cement/grout -
- 4					SANDY CLAY: moderate plasticity, trace gravel	VM			
- 4.5 - 5									
- 5.5									
- 6.5									
- 7 - 7.5					SANDY CLAY: moderate plasticity, trace	S			
- 8					CLAYEY SAND: light yellow, fine to medium, low-moderate plasticity,	S			ag K
- 8.5					dense				Gravel filter pack
9.5					Termination Depth at:9.500 m				

PROJECT NUMBER 231445-01 PROJECT NAME Riverlea Saltwater Lakes Dewat DRILLING COMPANY Underdale Drillers ADDRESS Precincts 2, Riverlea Park **PERMIT NO**. 455397

DRILLING DATE 27/11/2023 12:36PM -**DRILL RIG** Rockmaster **DRILLING METHOD** Hollow Flight Auger

BOREHOLE DIAMETER (mm) 250 TOTAL DEPTH (mBGL) 8.000

COORDINATES 272808.602, 6162986.457 COORD SYSTEM GDA2020_MGA_zone_54 **GROUND ELEVATION (mAHD)** TOC (mAHD) **LOGGED BY** A Brito CHECKED BY \top

SCREEN PVC (Class 18)

CASING DIAMETER (mm) 0 CASING PVC (Class 18)

COMM	MENTS								
Depth (m)	Samples	Duplicate	OIA	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details
0.5					SAND: pale brown, fine to medium	D			
- 1 - 1.5					SAND: pale yellow-brown, fine to medium	D			grout —
2 2.5					SANDY CLAY: pale brown, fine to medium	SM			Cement/grout
- 2.5 - - - 3									
- 3.5 - 4									Bentonite ——
- 4.5									
- 5.5					CLAY: pale brown, low-moderate plasticity, with sand	М			
- 6 - 6.5									Gravel filter pack
- 7									8 - B
7.5									
8.5					Termination Depth at:8.000 m				
9									
9.5									

PROJECT NUMBER 231445-01 PROJECT NAME Riverlea Saltwater Lakes Dewat DRILLING COMPANY Underdale Drillers ADDRESS Precincts 2, Riverlea Park **PERMIT NO.** 455398

DRILLING DATE 30/11/2023 10:25AM -**DRILL RIG** Rockmaster

DRILLING METHOD Hollow Flight Auger **BOREHOLE DIAMETER (mm)** 250 TOTAL DEPTH (mBGL) 8.000

COORDINATES 272722.122, 6162790.378 COORD SYSTEM GDA2020_MGA_zone_54 **GROUND ELEVATION (mAHD)** TOC (mAHD) LOGGED BY A Brito CHECKED BY **⊺**○

CASING DIAMETER (mm) 100 CASING PVC (Class 18) SCREEN PVC (Class 18)

COM	MEN	TS
-----	-----	----

COWI	WIEN 13					1			
Depth (m)	Samples	Duplicate	PID	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details
-					CLAYEY SAND: dark brown, fine to medium, low plasticity, trace clay	SM			
- 0.5 - - - - - 1 - -					CLAYEY SAND: pale brown, medium to coarse, low plasticity	SM			
- 1.5 - - - - - 2 - -					SANDY CLAY: brown, moderate-high plasticity	SM			- Cement/grout
2.5 - - - - - 3					CLAY: brown with grey mottling, moderate-high plasticity, soft, with sand	M			
3.5									##
4 4.5					CLAY: yellow-brown, moderate-high plasticity, stiff, with sand	S			Beatonite -
- - - - - - - - - 5.5									
- - - - - - -									Gravel filter pack
- 6.5 7					CLAY: yellow-brown, moderate-high plasticity, stiff, with sand	S			Gravel 1
- - - - - - - - -									
- 8 - -				<i>V/////</i>	Termination Depth at:8.000 m				
- 8.5									
- - - 9 -									
9.5									
-									

PROJECT NUMBER 231445-01 PROJECT NAME Riverlea Saltwater Lakes Dewat DRILLING COMPANY Underdale Drillers ADDRESS Precincts 2, Riverlea Park **PERMIT NO.** 455399

DRILLING DATE 27/11/2023 09:55AM -**DRILL RIG** Rockmaster

DRILLING METHOD Hollow Flight Auger **BOREHOLE DIAMETER (mm)** 250 TOTAL DEPTH (mBGL) 6.000

COORDINATES 273251.58, 6162814.635 COORD SYSTEM GDA2020_MGA_zone_54 **GROUND ELEVATION (mAHD)** TOC (mAHD) LOGGED BY A Brito CHECKED BY $\top\bigcirc$

CASING DIAMETER (mm) 100 CASING PVC (Class 18) SCREEN PVC (Class 18)

COMMENTS

сом	MENTS								
Depth (m)	Samples	Duplicate	PID	Graphic Log	Material Description	Moisture	Additional Observations	Groundwater	Well Installation Details
0.5					SANDY CLAY: dark brown, medium to coarse, low plasticity	D			- Cement/grout
- 1.5 - 2 - 2					SANDY CLAY: pale yellow-brown, medium to coarse, low plasticity, medium dense	SM			Bentonite —— Ce
2.5 2.5 3					CLAY: pale brown, moderate plasticity, medium dense	VM			# S S S S S S S S S S S S S S S S S S S
3.5					CLAY: pale brown, moderate	S			r pack
4.5					plasticity	3			Gravel filter pack
5.5									
6					Termination Depth at:6.000 m				
6.5					,				
7									
- - - 7.5									
8									
8.5									
- - 9 -									
9.5									
_					thul the for any iran mantal numacoa and				Dogo 1 of 1

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Pe	rmit No:	439266
Ex	piry Date:	20/03/2024

Permission is hereby granted to:

LBW CO PTY LTD 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity:

Well Construction

Well Use:

Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 5868/766

Block 68 in Deposited Plan 1671

Hundred of Port Adelaide

- 2. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 3. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 4. This work may be subject to inspection by the Department's Drilling Inspectors.
- 5. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 6. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 7. The activity must not adversely affect water-dependent ecosystems nearby.
- 8. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 9. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 10. The authorised activity must be undertaken by a licensed driller.
- 11. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 12. Water samples are required from all wells drilled in respect of this permit.
- 13. Strata samples are not required.
- 14. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 15. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 16. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 17. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 18. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 19. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 20. The well is to be completed only in the Quaternary aquifer Q1.
- 21. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- 1. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 5. This permit is not an approval to clear native vegetation.
- 6. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 20/03/2023

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	439268
Expiry Date:	20/03/2024

Permission is hereby granted to:

LBW CO PTY LTD 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity:

Well Construction

Well Use:

Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 5868/767

Block 67 in Deposited Plan 1671

Hundred of Port Adelaide

- 2. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 3. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 4. This work may be subject to inspection by the Department's Drilling Inspectors.
- 5. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 6. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 7. The activity must not adversely affect water-dependent ecosystems nearby.
- 8. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 9. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 10. The authorised activity must be undertaken by a licensed driller.
- 11. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 12. Water samples are required from all wells drilled in respect of this permit.
- 13. Strata samples are not required.
- 14. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 15. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 16. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 17. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 18. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 19. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 20. The well is to be completed only in the Quaternary aquifer Q1.
- 21. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- 1. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 5. This permit is not an approval to clear native vegetation.
- 6. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 20/03/2023

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	439269
Expiry Date:	20/03/2024

Permission is hereby granted to: LBW CO PTY LTD

184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

 The activity authorised by this permit must only be undertaken on the land described below:

CT 5868/780 Allotment 92 in Filed Plan 174426 Hundred of Port Adelaide

- 2. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 3. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 4. This work may be subject to inspection by the Department's Drilling Inspectors.
- 5. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 6. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 7. The activity must not adversely affect water-dependent ecosystems nearby.
- 8. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 9. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 10. The authorised activity must be undertaken by a licensed driller.
- 11. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 12. Water samples are required from all wells drilled in respect of this permit.
- 13. Strata samples are not required.
- 14. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 15. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 16. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 17. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 18. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 19. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 20. The well is to be completed only in the Quaternary aguifer Q1.
- 21. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- 1. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 5. This permit is not an approval to clear native vegetation.
- 6. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 20/03/2023

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below.

Permit No:	439270			
Expiry Date:	20/03/2024			

Permission is hereby granted to: LBW CO PTY LTD

184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 5868/785 Block 58 in Deposited Plan 1671 Hundred of Port Adelaide

- 2. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 3. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 4. This work may be subject to inspection by the Department's Drilling Inspectors.
- 5. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 6. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 7. The activity must not adversely affect water-dependent ecosystems nearby.
- 8. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 9. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 10. The authorised activity must be undertaken by a licensed driller.
- 11. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 12. Water samples are required from all wells drilled in respect of this permit.
- 13. Strata samples are not required.
- 14. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 15. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 16. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 17. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 18. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 19. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 20. The well is to be completed only in the Quaternary aquifer Q1.
- 21. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- 1. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 5. This permit is not an approval to clear native vegetation.
- 6. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 20/03/2023

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

	Permit No:	439272				
1	Expiry Date:	20/03/2024				

Permission is hereby granted to: LBW CO PTY LTD

184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 6281/213

Allotment 101 in Deposited Plan 129442

Hundred of Port Adelaide

- 2. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 3. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 4. This work may be subject to inspection by the Department's Drilling Inspectors.
- 5. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 6. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 7. The activity must not adversely affect water-dependent ecosystems nearby.
- 8. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 9. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 10. The authorised activity must be undertaken by a licensed driller.
- 11. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 12. Water samples are required from all wells drilled in respect of this permit.
- 13. Strata samples are not required.
- 14. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 15. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 16. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 17. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 18. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 19. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 20. The well is to be completed only in the Quaternary aguifer Q1.
- 21. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- 1. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 5. This permit is not an approval to clear native vegetation.
- 6. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 20/03/2023

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	439413
Expiry Date:	27/03/2024

Permission is hereby granted to:

LBW CO PTY LTD 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity:

Well Construction

Well Use:

Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 5868/766 Block 68 in Deposited Plan 1671

Hundred of Port Adelaide

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 16. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 17. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 18. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 19. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 20. The well is to be completed only in the Quaternary aquifer Q1.
- 21. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

onknight

Date: 27/03/2023

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	439414
Expiry Date:	27/03/2024

Permission is hereby granted to:

LBW CO PTY LTD 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity:

Well Construction

Well Use:

Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 5868/766

Block 68 in Deposited Plan 1671

Hundred of Port Adelaide

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 16. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 17. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 18. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 19. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 20. The well is to be completed only in the Quaternary aquifer Q1.
- 21. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

omknight

Date: 27/03/2023

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	439417
Expiry Date:	27/03/2024

Permission is hereby granted to:

LBW CO PTY LTD 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity:

Well Construction

Well Use:

Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 5868/785 Block 58 in Deposited Plan 1671 Hundred of Port Adelaide

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 16. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 17. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 18. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 19. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 20. The well is to be completed only in the Quaternary aguifer Q1.
- 21. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

onknight

Date: 27/03/2023

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	439418	
Expiry Date:	27/03/2024	

Permission is hereby granted to:

LBW CO PTY LTD 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity:

Well Construction

Well Use:

Investigation

CONDITIONS:

 The activity authorised by this permit must only be undertaken on the land described below:

CT 6276/873

Piece 9041 in Deposited Plan 130732

Hundred of Port Adelaide

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 16. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 17. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 18. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 19. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 20. The well is to be completed only in the Quaternary aguifer Q1.
- 21. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

omknight &

Date: 27/03/2023

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	439420
Expiry Date:	27/03/2024

Permission is hereby granted to:

LBW CO PTY LTD 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity:

Well Construction

Well Use:

Investigation

CONDITIONS:

 The activity authorised by this permit must only be undertaken on the land described below:

CT 6281/213 Allotment 101 in Deposited Plan 129442 Hundred of Port Adelaide

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 16. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 17. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 18. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 19. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 20. The well is to be completed only in the Quaternary aguifer Q1.
- 21. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

omknight

Date: 27/03/2023

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	439994
Expiry Date:	19/04/2024

Permission is hereby granted to: LBW CO PTY LTD

ACN 126 992 274 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

 The activity authorised by this permit must only be undertaken on the land described below:

CT 5868/772

Block 65 in Deposited Plan 1671

Hundred of Port Adelaide

- 2. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 3. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 4. This work may be subject to inspection by the Department's Drilling Inspectors.
- 5. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 6. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 7. The activity must not adversely affect water-dependent ecosystems nearby.
- 8. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 9. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 10. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 11. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 12. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 13. The well is not to penetrate beyond a maximum depth of 10 metres unless approved by the Regional Hydrogeologist.
- 14. The authorised activity must be undertaken by a licensed driller.
- 15. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 16. Water samples are required from all wells drilled in respect of this permit.
- 17. Strata samples are not required.
- 18. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 19. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 20. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.

- 1. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 5. This permit is not an approval to clear native vegetation.
- 6. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 7. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.
- 8. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

MMULLOUSE

Date: 19/04/2023

Alicia Millhouse Water Licensing Officer Delegate of Minister for Climate, Environment and Water

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	448909
Expiry Date:	20/09/2024

Permission is hereby granted to: LBW CO PTY LTD

ACN 126 992 274 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

 The activity authorised by this permit must only be undertaken on the land described below:

CT 6287/449

Piece 9044 in Deposited Plan 132372

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The activity shall not significantly increase local drawdown.
- 16. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 17. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 18. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 19. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 20. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 21. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 22. The well is to be completed only in the Quaternary aquifer Q1.
- 23. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 24. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.
- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

ANUlhouse

Date: 20/09/2023

Alicia Millhouse Water Licensing Officer Delegate of Minister for Climate, Environment and Water

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	448910
Expiry Date:	20/09/2024

Permission is hereby granted to: LBW CO PTY LTD

ACN 126 992 274 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 6287/449

Piece 9044 in Deposited Plan 132372

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The activity shall not significantly increase local drawdown.
- 16. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 17. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 18. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 19. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 20. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 21. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 22. The well is to be completed only in the Quaternary aquifer Q1.
- 23. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 24. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.
- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 20/09/2023

Alicia Millhouse Water Licensing Officer

PANULLONS

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below.

Permit No:	448911
Expiry Date:	20/09/2024

Permission is hereby granted to: LBW CO PTY LTD

ACN 126 992 274 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 6287/449

Piece 9044 in Deposited Plan 132372

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The activity shall not significantly increase local drawdown.
- 16. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 17. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 18. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 19. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 20. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 21. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 22. The well is to be completed only in the Quaternary aquifer Q2. The aquifer above is to be cased off and pressure cemented.
- 23. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 24. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.
- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Mulhara

Date: 20/09/2023

Alicia Millhouse Water Licensing Officer

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	448912
Expiry Date:	20/09/2024

Permission is hereby granted to: LBW CO PTY LTD

ACN 126 992 274 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 6281/213

Allotment 101 in Deposited Plan 129442

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The activity shall not significantly increase local drawdown.
- 16. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 17. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 18. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 19. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 20. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 21. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 22. The well is to be completed only in the Quaternary aguifer Q1.
- 23. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 24. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- This permit is not transferable.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.
- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 20/09/2023

Alicia Millhouse Water Licensing Officer

AMUlana

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below.

Permit No:	448913
Expiry Date:	20/09/2024

Permission is hereby granted to: LBW CO PTY LTD

ACN 126 992 274 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 6281/213

Allotment 101 in Deposited Plan 129442

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The activity shall not significantly increase local drawdown.
- 16. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 17. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 18. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 19. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 20. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 21. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 22. The well is to be completed only in the Quaternary aquifer Q1.
- 23. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 24. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.
- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

AMMULAGUSE

Date: 20/09/2023

Alicia Millhouse Water Licensing Officer Delegate of Minister for Climate, Environment and Water

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below.

Permit No:	448915
Expiry Date:	20/09/2024

Permission is hereby granted to: LBW CO PTY LTD

ACN 126 992 274 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 6281/213

Allotment 101 in Deposited Plan 129442

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The activity shall not significantly increase local drawdown.
- 16. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 17. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 18. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 19. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 20. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 21. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 22. The well is to be completed only in the Quaternary aquifer Q1.
- 23. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 24. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.
- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

MANULLOUSE

Date: 20/09/2023

Alicia Millhouse Water Licensing Officer

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below.

Permit No:	448916
Expiry Date:	20/09/2024

Permission is hereby granted to: LBW CO PTY LTD

ACN 126 992 274 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 6281/213

Allotment 101 in Deposited Plan 129442

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The activity shall not significantly increase local drawdown.
- 16. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 17. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 18. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 19. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 20. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 21. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 22. The well is to be completed only in the Quaternary aquifer Q1.
- 23. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 24. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.
- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

SHAMULLONS

Date: 20/09/2023

Alicia Millhouse Water Licensing Officer Delegate of Minister for Climate, Environment and Water

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below.

Permit No:	448917
Expiry Date:	20/09/2024

Permission is hereby granted to: LBW CO PTY LTD

ACN 126 992 274 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 6281/213

Allotment 101 in Deposited Plan 129442

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The activity shall not significantly increase local drawdown.
- 16. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 17. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 18. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 19. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 20. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 21. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 22. The well is to be completed only in the Quaternary aquifer Q1.
- 23. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 24. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.
- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 20/09/2023

Alicia Millhouse Water Licensing Officer

PANULLOUSE

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	448918
Expiry Date:	20/09/2024

Permission is hereby granted to: LBW CO PTY LTD

ACN 126 992 274 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 6281/213

Allotment 101 in Deposited Plan 129442

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The activity shall not significantly increase local drawdown.
- 16. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 17. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 18. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 19. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 20. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 21. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 22. The well is to be completed only in the Quaternary aquifer Q2. The aquifer above is to be cased off and pressure cemented.
- 23. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 24. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.
- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

MMUlhouse

Date: 20/09/2023

Alicia Millhouse Water Licensing Officer

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	448919
Expiry Date:	20/09/2024

Permission is hereby granted to: LBW CO PTY LTD

ACN 126 992 274 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 6281/213

Allotment 101 in Deposited Plan 129442

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The activity shall not significantly increase local drawdown.
- 16. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 17. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 18. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 19. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 20. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 21. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 22. The well is to be completed only in the Quaternary aquifer Q2. The aquifer above is to be cased off and pressure cemented.
- 23. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 24. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.
- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 20/09/2023

Alicia Millhouse Water Licensing Officer

ceffrellhouse

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	448920
Expiry Date:	20/09/2024

Permission is hereby granted to: LBW CO PTY LTD

ACN 126 992 274 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 6281/213

Allotment 101 in Deposited Plan 129442

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The activity shall not significantly increase local drawdown.
- 16. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 17. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 18. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 19. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 20. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 21. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 22. The well is to be completed only in the Quaternary aquifer Q2. The aquifer above is to be cased off and pressure cemented.
- 23. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 24. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.
- 7. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 8. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

AMMULATIZE

Date: 20/09/2023

Alicia Millhouse Water Licensing Officer Delegate of Minister for Climate, Environment and Water

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below.

Permit No:	455396	
Expiry Date:	16/11/2024	

Permission is hereby granted to:

LBW CO PTY LTD ACN 126 992 274 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity:

Well Construction

Well Use:

Investigation

CONDITIONS:

 The activity authorised by this permit must only be undertaken on the land described below:

CT 6281/213

Allotment 101 in Deposited Plan 129442

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The activity shall not significantly increase local drawdown.
- 16. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 17. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 18. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 19. If this well is for water extraction; SA Health strongly recommends water sampling and testing for microbiological (E. coli) and chemical quality testing by a NATA accredited water testing laboratory prior to water use.
- 20. SA Health and the Environment Protection Authority strongly recommend water sampling and testing is undertaken by a NATA accredited water-testing laboratory every 2 years.
- 21. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 22. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 23. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 24. The well is to be completed only in the Quaternary aquifer Q1.
- 25. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

NOTES:

 It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.

omknight

7. This permit does not authorise the taking of water from the well for any purpose other than testing.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 16/11/2023

Sonya Knight Senior Water Licensing Officer Delegate of Minister for Climate, Environment and Water

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	455397	
Expiry Date:	16/11/2024	

Permission is hereby granted to:

LBW CO PTY LTD ACN 126 992 274 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity:

Well Construction

Well Use:

Investigation

CONDITIONS:

 The activity authorised by this permit must only be undertaken on the land described below:

CT 6281/213 Allotment 101 in Deposited Plan 129442 Hundred of Port Adelaide

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The activity shall not significantly increase local drawdown.
- 16. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 17. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 18. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 19. If this well is for water extraction; SA Health strongly recommends water sampling and testing for microbiological (E. coli) and chemical quality testing by a NATA accredited water testing laboratory prior to water use.
- 20. SA Health and the Environment Protection Authority strongly recommend water sampling and testing is undertaken by a NATA accredited water-testing laboratory every 2 years.
- 21. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 22. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 23. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 24. The well is to be completed only in the Quaternary aquifer Q1.
- 25. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

NOTES:

1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.

omknight

7. This permit does not authorise the taking of water from the well for any purpose other than testing.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 16/11/2023

Sonya Knight Senior Water Licensing Officer Delegate of Minister for Climate, Environment and Water

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below.

Permit No:	455398
Expiry Date:	16/11/2024

Permission is hereby granted to:

LBW CO PTY LTD ACN 126 992 274 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity:

Well Construction

Well Use:

Investigation

CONDITIONS:

 The activity authorised by this permit must only be undertaken on the land described below:

CT 6281/213

Allotment 101 in Deposited Plan 129442

Hundred of Port Adelaide

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The activity shall not significantly increase local drawdown.
- 16. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 17. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 18. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 19. If this well is for water extraction; SA Health strongly recommends water sampling and testing for microbiological (E. coli) and chemical quality testing by a NATA accredited water testing laboratory prior to water use.
- 20. SA Health and the Environment Protection Authority strongly recommend water sampling and testing is undertaken by a NATA accredited water-testing laboratory every 2 years.
- 21. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 22. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 23. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 24. The well is to be completed only in the Quaternary aquifer Q1.
- 25. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

NOTES:

1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.

DMKnight

7. This permit does not authorise the taking of water from the well for any purpose other than testing.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 16/11/2023

Sonya Knight Senior Water Licensing Officer Delegate of Minister for Climate, Environment and Water

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	455399	
Expiry Date:	16/11/2024	

Permission is hereby granted to:

LBW CO PTY LTD ACN 126 992 274 184 MAGILL ROAD NORWOOD SA 5067

To undertake the following water affecting activity:

Activity:

Well Construction

Well Use:

Investigation

CONDITIONS:

 The activity authorised by this permit must only be undertaken on the land described below:

CT 6291/931

Piece 9050 in Deposited Plan 133137

Hundred of Port Adelaide

- 2. The authorised activity must be undertaken by a licensed driller.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Fourth Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 13. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 14. The activity must not adversely affect water-dependent ecosystems nearby.
- 15. The activity shall not significantly increase local drawdown.
- 16. The well driller must submit a Well Completion Report to the Department within 30 days of completion of each activity authorised by this well construction permit.
- 17. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 18. Well Construction must comply with the mandatory requirements of the Minimum Construction Requirements for Water Bores in Australia (4th Edition) and the General Specifications for Well Drilling Operations Affecting Water in South Australia (or any subsequent or related policy), as provided by the relevant authority.
- 19. If this well is for water extraction; SA Health strongly recommends water sampling and testing for microbiological (E. coli) and chemical quality testing by a NATA accredited water testing laboratory prior to water use.
- 20. SA Health and the Environment Protection Authority strongly recommend water sampling and testing is undertaken by a NATA accredited water-testing laboratory every 2 years.
- 21. The well subject to this permit must not be completed as an industrial water supply well unless prior approval has been obtained from the department.
- 22. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 23. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 24. The well is to be completed only in the Quaternary aquifer Q1.
- 25. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

NOTES:

 It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.

DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 112 of the Landscape South Australia Act 2019

WELL PERMIT

- 2. Under section 216(1)(b)(ii) of the Act, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.

omknight

7. This permit does not authorise the taking of water from the well for any purpose other than testing.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 16/11/2023

Sonya Knight Senior Water Licensing Officer Delegate of Minister for Climate, Environment and Water

Appendix D Calibration Certificates

Solinst Model 122 Interface Meter

Instrument

Interface Meter (30M)

Serial No.

312523

Item	Test	Pass	Comments
Battery	Compartment	1	
	Capacity	✓	9.25V
Probe	Cleaned/Decon.	✓	
	Operation	1	
	100	15.	
Connectors	Condition	✓	
		1	
Tape Check	Cleaned	1	
Connectors	Checked for cuts	1	
Instrument Test	At surface level	1	

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by:		Jeremy Callado
Calibration date:	28/04/2023	,
Next calibration due:	27/06/2023	

Multi Parameter Water Meter

Instrument

YSI Quatro Pro Plus

Serial No.

11C100756

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments
Battery	Charge Condition	1	
	Fuses	7	
	Capacity	/	
Switch/keypad	Operation		
Display	Intensity	✓	
	Operation (segments)	-	
Grill Filter	Condition	1	
	Seal	/	
PCB	Condition	1	
Connectors	Condition	7	
Sensor	1. pH	/	
	2. mV	1	
	3. EC	1	
	4. D.O	/	
	5. Temp	/	
Alarms	Beeper		
	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Standard Solutions Certified		Instrument Reading
4				Number	
1. pH 7.00		pH 7.00		393774	7.00
2. pH 4.00		pH 4.00		394432	4.00
3. ORP		243.9 mV on 15.5 C		398884/395763	244.1
4. EC		2286 uS/cm @ 16 °C		396172	2286
6. D.O		0 ppm		391223	0.1
7. Temp		18		MultiThem	15.5

Calibrated by:

Trent Chase

Calibration date:

28-Apr-23

Oil / Water Interface Meter

Instrument Interface Meter (30M)

Serial No. 348878

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments
Battery	Compartment	V	
	Capacity	V	8.8 Vdc
Probe	Cleaned/Decon.	✓	
	Operation	✓	
Connectors	Condition	V	
		V	
Tape Check	Cleaned	✓	
Tupo enous	Checked for cuts	✓	
	Ab audena laual	V	
Instrument Test	At surface level	•	

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by: Matthew Wright

Calibration date: 26/10/2023

Next calibration due: 23/04/2024

Multi Parameter Water Meter

Instrument YSI Quatro Pro Plus

Serial No. 22G103291

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments
Battery	Charge Condition	✓	
	Fuses	√	
	Capacity	✓	
Switch/keypad	Operation	√	
Display	Intensity	✓	
	Operation (segments)	V	
Grill Filter	Condition	√	
	Seal	√	
PCB	Condition	√	
Connectors	Condition	√	
Sensor	1. pH	√	
	2. mV	√	
	3. EC	✓	
	4. D.O	√	
	5. Temp	√	
Alarms	Beeper		
	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor Serial no		Standard Solutions	Standard Solutions Certified S		Instrument Reading
1. D.O		0 ppm		391223	0 ppm
2. Conductivity		2760uS		401089	2760uS
3. pH7		pH 7.00		413975	pH 7.00
4. pH4		pH 4.00		405966	pH 4.0
5. ORP mV		235.32		406331/398193	235.1
6. Temp °C		19.4		Multi-therm	19.5

Calibrated by: Matthew Wright

Calibration date: 27/10/2023

Next calibration due: 25/01/2024

Appendix E

Water Quality Parameters and WaterConnect Output

Field Parameters May 2023

			Purge Volume	Electrical	mU	Dissolved	Tomporatura	Redox
Bore	Date	Time	L	conductivity µS/cm	pH -	Oxygen mg/L	Temperature °C	mV
SLMW01-P	5/05/2023	9:13	1	6103	7.43	0.58	14.4	122.2
		9:24	2	6107	7.43	0.46	14.5	121.9
		9:26	3	6086	7.42	0.58	14.3	120.4
		9:27	4	6130	7.42	0.44	14.7	119.7
		9:29	5	6134	7.42	0.56	14.7	119.4
SLMW01-Q1	5/05/2023	8:32	1	4783	7.69	2.79	12	132.1
-		8:35	2	5241	7.39	0.21	14.6	125
		8:37	3	5560	7.28	3.87	15.3	117.4
		8:44	4	5584	7.28	8.34	14.3	107.3
		8:50	5	5718	7.29	9.24	14.9	109.6
		8:51	6	5720	7.29	9.35	14.6	109.9
SLMW02-Q1	5/05/2023	12:04	1	6020	7.34	0.31	16.1	143.7
3L/MW02-Q1 3/		12:09	2	6024	7.29	0.15	16.1	140
		12:11	3	6033	7.27	0.15	16.2	139.4
		12:15	4	6067	7.25	0.23	16.2	138.2
		12:18	5	6069	7.25	0.27	16.2	138.5
SLMW03-Q1	3/05/2023	8:57	1	8562	7.32	8.24	14.9	154.38
oz		9:37	2	7799	7.33	8.89	15.5	155.2
		9:38	3	4523	7.6	11.97	15.2	152.5
		9:45	4	5585	7.66	13.3	15.2	147.5
		9:49	5	4907	7.67	13.62	15.2	143.8
		9:53	6	4484	7.66	13.44	15.2	143.6
SLMW04-P	8/05/2023	8:18	1	5343	7.85	1.18	14.3	138.7
		8:20	2	5503	7.6	1.4	15	137.8
		8:24	3	5495	7.59	2.22	15	137.6
		8:26	4	5445	7.55	6.45	15	136.7
		8:31	5	5470	7.55	3.53	14.9	136.1
SLMW05-P	5/05/2023	10:58	1	6821	7.41	5.37	13.8	120.7
36/4/4403-1		11:01	2	6126	7.51	6.18	14.4	120.1
		11:05	3	6142	7.51	6.39	14.5	122.1
		11:08	4	6165	7.52	6.58	14.7	121.6
		11:11	5	6163	7.52	6.81	14.7	121.7
SLMW05-Q1	5/05/2023	10:30	1	8290	7.31	0.74	14.9	137.6
		10:34	2	8302	7.31	0.76	14.9	136.4
		10:35	3	8379	7.26	0.76	14.9	134.3
		10:39	4	8421	7.22	0.83	14.9	132.7
		10:42	5	8423	7.22	0.77	14.9	132.8
SLMW06-Q1	3/05/2023	11:45	1	4881	7.89	12.75	16.3	14.7
		12:28	2	4914	7.88	13.35	16.3	141.3
		12:29	3	4210	7.73	14.49	16.4	138.1
		12:36	4	4766	7.73	15.36	16.3	130
		12:52	5	4683	7.73	15.01	16.3	129.9

Field Parameters May 2023

			Purge Volume	Electrical conductivity	рН	Dissolved Oxygen	Temperature	Redox
Bore	Date	Time	L	μ\$/cm	-	mg/L	°C	mV
SLMW07-Q1	3/05/2023	14:20	1	8659	7.67	8	15.8	131.1
		14:20	2	8671	7.67	8.04	15.9	130.9
		14:20	3	8654	7.67	8.14	15.8	130.7
		14:21	4	8654	7.67	7.85	15.8	129.9
		14:25	5	8663	7.67	7.98	15.8	129.7
SLMW08-Q1	4/05/2023	11:58	1	9938	7.63	2.68	16.2	41.3
		11:59	2	9715	7.31	8.78	16.4	34.1
		12:04	3	9619	7.37	8.65	16.4	86.8
		12:08	4	9622	7.33	8.33	16.4	76.2
		12:10	5	9621	7.38	8.41	16.4	90.9
SLMW09-P	4/05/2023	13:11	1	2403	7.66	1.75	15.8	-35.4
		13:35	2	2464	7.45	1.21	16.4	-36.3
		13:37	3	2467	7.41	1.88	16.5	-61.8
		13:40	4	2466	7.39	3.26	16.5	-77.2
		13:43	5	2462	7.39	4.51	16.5	-90.9
		13:45	6	2464	7.39	2.83	16.4	-91.03
6528-2628	4/05/2023	10:30	1	81923	6.72	1.86	16.2	115.2
		10:33	2	80253	6.68	5.07	16.2	117.4
		10:36	3	79764	6.66	6.2	16.2	120.8
		10:40	4	79580	6.65	5.7	16.2	121.6
		10:40	5	79784	6.65	6.11	16.2	122.8
		10:44	6	79779	6.65	8.6	16.2	124.6
6628-21445	8/05/2023	9:59	1	10950	8.07	4.66	13.08	-194.8
		10:02	2	11294	8.1	4.81	14.9	-241.8
		10:07	3	11366	8.08	4.35	15.1	-300.1
		10:10	4	11346	8.06	4.26	14.9	-296.8
		10:19	5	11345	7.98	3.72	15	-267.9
		10:24	6	11447	7.91	3.57	15.3	-223.2
		10:30	7	11427	7.91	3.43	15.2	-223.8
6628-23298	5/05/2023	13:20	1	5682	6.85	1.2	14.2	1143.3
		13:22	2	5915	6.81	1.16	14.4	-100.4
	l F	13:25	3	6106	6.79	1.37	14.5	-93.1

		<u></u>	Purge Volume L	Electrical conductivity	рН	Dissolved Oxygen	Temperature °C	Redox mV
Bore SLMW01-P	1/11/2023	15:04	1.25	μ \$/cm 9428	7.27	mg/L 0.22	20	11
SLIMI VVO I -P	1/11/2023	15:04	2.5	9426	7.24	0.22	19.8	26.5
	-	15:12	3.75	9439	7.24	0.14	19.6	35
	-		5		7.24	****		
SLMW01-Q1	1/11/2023	15:16	1.25	9468 8644	6.9	0.1	19.4	51.6
SLM WUI-QI	1/11/2023	14:21	2.5	8772	6.89			
	-					0.29	20.3	50.3
	-	14:27	3.75 5	8994	6.89	0.6	20.1	49.1
	-	14:31	_	9042	6.88	0.5		48.1
		14:34	6.25	9083	6.88	0.8	19.9	48
01111100	1 /11 /0000	14:37	7.5	9102	6.88	0.89	19.9	49
SLMW02-Q1	1/11/2023	12:16	1.25	9119	7.1	0.39	19.7	90.3
		12:19	2.5	9109	7.08	0.24	19.4	86.2
		12:22	3.75	9032	7.09	0.16	19	89.8
		12:32	5	9057	7.07	0.23	19	89.9
		12:38	7.5	9136	7.07	0.58	19	90.6
011111100 01		13:05	6.25	9099	7.07	0.46	19	90.2
SLMW03-Q1	1/11/2023	13:25	1.25	12867	7.08	0.27	19.7	114.5
		13:29	2.5	12937	7.06	0.18	19.5	107.2
		13:32	3.75	12968	7.07	0.16	19.4	103
		13:35	5	13011	7.05	0.25	19.3	100.3
		13:39	6.25	13036	7.06	0.59	19.2	98.6
		13:42	7.5	13042	7.06	0.84	19.2	97.6
SLMW04-P	2/11/2023	14:34	1.25	8379	7.32	1.44	18.5	150.4
		14:37	2.5	8475	7.31	1.05	18.5	147.1
		14:42	3.75	8519	7.31	0.84	18.5	143.4
		14:46	5	8469	7.31	1.08	18.4	140.3
		14:50	6.25	8496	7.31	0.94	18.3	138.8
SLMW05-P	1/11/2023	11:15	1.25	9887	7.5	4.55	18	89.2
		11:20	2.5	9939	7.43	4.7	17.6	112.3
		11:24	3.75	9965	7.42	4.7	17.3	121.7
		11:28	5	9966	7.44	4.56	17.3	126.5
		11:32	6.25	9985	7.41	4.35	17.4	129.8
		11:35	7.5	9990	7.41	4.3	17.4	131.6
SLMW05-Q1	1/11/2023	10:29	1.25	12825	7.09	0.3	18.4	12.8
		10:32	2.5	12969	7.06	0.21	18.3	6.3
		10:36	3.75	13180	7.02	0.29	18.2	16.6
		10:39	5	13244	7.01	0.55	18.2	27.1
		10:46	6.25	13286	6.99	1.27	18.1	40.8
		10:50	7.5	13287	6.99	1.42	18.1	44.6
		10:52	8.75	13305	6.99	1.46	18.1	48.8

			Purge Volume	Electrical conductivity	pН	Dissolved Oxygen	Temperature	Redox
Bore	Date	Time	L	µ\$/cm	-	mg/L	°C	mV
SLMW06-Q1	1/11/2023	9:34	1.25	11142	7.38	1.19	18.6	63.4
		9:37	2.5	11162	7.41	1.23	1894	71.4
		9:40	3.75	11171	7.4	1.29	18.3	76.4
		9:44	5	11178	7.4	1.31	18.3	80.3
		9:48	6.25	11157	7.4	1.35	18.2	84
SLMW07-Q1	1/11/2023	8:25	1.25	14538	7.59	5.75	18	56.7
		8:29	2.5	14635	7.55	5.41	17.8	85.5
		8:33	3.75	14680	7.58	5.53	17.6	101.1
		8:38	5	14728	7.59	5.68	17.5	110.1
		8:42	6.25	14755	7.6	5.82	17.5	115.4
		8:46	7.5	14585	7.6	5.85	17.5	117.5
		8:52	8.75	14756	7.61	5.8	17.5	118.9
SLMW10-A	2/11/2023	9:43	2.5	9198	7.62	0.9	20	63
		9:46	3.75	9217	7.6	1	9.9	76.6
	-	9:50	5	9248	7.57	1.05	19.8	87
	-	9:53	6.25	9262	7.55	1.16	19.7	93.8
		9:57	7.5	9265	7.52	1.16	19.6	100.2
		10:00	8.75	9276	7.5	1.31	19.6	105.6
		10:03	9.75	9291	7.5	1.36	19.6	108.4
SLMW10-B	2/11/2023	9:04	1.25	9007	7.46	0.1	20	-43.8
	2,11,2020	9:07	2.5	9011	7.42	0.05	19.9	-27.2
	-	9:13	3.75	9007	7.37	0.06	19.9	-8.5
	-	9:16	5	9010	7.37	0.00	19.9	2.7
		9:19	6.25	9016	7.37	0.12	19.9	10.4
SLMW10-Q	2/11/2023	8:24	1.25	9512	7.24	0.69	20.1	32.6
oliviivi o Q	2/11/2020	8:33	3.75	9564	7.19	0.41	20	52.9
	-	8:38	5	9585	7.19	0.35	20	59
		8:41	6.25	9591	7.17	0.4	20	63.1
SLMW11-B	2/11/2023	11:24	1.25	8898	7.57	4.82	20.3	1.2
SLIVITY I I D	2/11/2020	11:27	2.5	8963	7.5	3.98	20.1	61.5
	-	11:30	3.75	8988	7.49	4.42	20.1	89.9
	-	11:37	5	8999	7.47	4.29	19.8	104.2
		11:39	6.25	9007	7.48	3.9	19.7	106.1
SLMW11-Q2	2/11/2023	10:36	1.25	8590	7.40	0.37	19.7	7592
JLIVIVVIII-QZ	2/11/2023	10:40	2.5	8752	7.18	0.26	19.6	80.1
	-	10:44	3.75	8727	7.16	0.27	19.6	80.9
	-	10:49	5	8729	7.10	0.27	19.6	81.1
		10:52	6.25	8785	7.17	0.58	19.6	80.5
		10:56	7.5	8826	7.18	0.38	19.7	79.5
SLMW12-A	31/10/2023	12:23	2	13166	7.16	3.75	21.3	51
JL14144 1 Z-W	31/10/2023	12:25	3	13266	7.33	3.73	20	62.3
		12:23	3	13425	7.46	4.34	19	74.1
							+	
		12:37	4	13542	7.47	4.2	18.9	80.5
		12:46	5	13605	7.45	4.15	18.3	86.4
		12:51	6	13560	7.44	4.2	18.9	86.4

			Purge Volume	Electrical conductivity	n U	Dissolved Oxygen	Temperature	Redox	
Bore	Date	Time	L	µS/cm	pH -	mg/L	°C	mV	
SLMW12-B	31/10/2023	13:26	1	13776	7.58	6.31	21.5	-100.3	
OLIVITIE D	0171072020	13:30	2	14233	7.2	6.45	19.8	-45.4	
	-	13:36	3	14214	7.24	6.07	19.4	-19.2	
		13:43	4	14120	7.24	5.55	19.2	0.3	
	-	13:49	5	14086	7.24	5.09	19.2	12.7	
	-	13:53	6	14068	7.24	5.04	19.2	18.2	
	•	13:57	7	14058	7.24	5.11	19.2	20.3	
SLMW12-C	31/10/2023	14:31	1	14954	7.19	5.36	19.9	33.6	
	-	14:35	2	14986	7.19	5.2	19.6	46.6	
	-	14:38	3	14995	7.17	5.15	19.7	48	
		14:42	4	14997	7.16	4.63	19.7	39	
		14:50	5	15168	7.14	4.13	19.8	39.3	
		14:55	6	15221	7.09	3.85	19.8	43.4	
		15:00	7	15228	7.09	3.71	19.8	45.5	
SLMW13-A	2/11/2023	13:40	1.25	8728	7.37	1.38	19.7	138.1	
	-	13:45	2.5	8772	7.34	0.99	19.3	131.4	
	-	13:48	3.75	8779	7.35	0.76	19.2	128.8	
	•	13:52	5	8791	7.34	0.68	19.3	126.7	
	•	13:56	6.25	8804	7.35	0.98	19.2	124.8	
SLMW13-B	2/11/2023	13:03	1.25	8151	7.4	4.24	19.5	119.5	
		13:07	2.5	8103	7.38	4.01	19.5	111.6	
	•	13:11	3.75	8150	7.35	3.71	19.6	109	
		13:14	5	8214	7.35	3.91	19.4	107.5	
		13:17	6.25	8220	7.35	3.55	19.4	107.4	
SLMW13-Q2	2/11/2023	12:23	1.25	10150	7	5.3	20.2	50	
		12:28	2.5	10080	7	4.24	21.5	66.1	
		12:34	3.75	10117	6.99	2.1	20.4	79.2	
		12:39	5	10110	6.99	2.52	20.2	87.7	
		12:42	6.25	10109	6.99	2.52	20.3	93	
6628-23298	7/11/2023	15:10	1	7765	4.95	0.1	20.9	-93.1	

Field Parameters Surface Water Monitoring Nov 2023

			Electrical conductivity	uctivity pH Oxygen		Temperature	Redox
Location ID	Date	Time	μ\$/cm	-	mg/L	°C	mV
SW01	7/11/2023	14:16	11263	5.08	6.07	23.7	121.0
SW02	7/11/2023	13:00	5741	5.03	11.49	21.3	120.7
SW03	7/11/2023	12:45	6560	5.08	2.41	21.7	119.6
SW04	7/11/2023	12:19	22341	5.03	3.92	22.0	136.6
SW05	7/11/2023	13:27	9986	5.02	8.12	24.1	122.4
SW06	7/11/2023	13:48	13309	5.07	16.29	23.7	131.3
SW07	7/11/2023	11:24	11780	5.17	6.10	21.1	106.1
SW08	7/11/2023	10:51	13805	4.75	7.80	20.4	94.0
SW09	7/11/2023	10:15	71456	5.16	7.31	19.9	160.8

LBW Job Number: 231445-01 Search Radius: 2 km Search By: TO Search Date: 21/11/2023

Headings Class
EC: Electrical conductivity WW: Water wells
TDs: Total dissolved solids ENG
SWL: Standing water level Strat
RSWL: Readive standing water level

KSWE. Relative startaling water level

Purpose		Status
DOM: Domestic	INV: Investigation	ABD: Abandoned
OBS: Observation	IRR: Irrigation	BKF: Backfilled
STK: Stock	MAR: Managed aquifer rechai	DEC: Decommissioned
DRN: Drainage	MON: Monitoring	DRY: Dry
ENV: Environmental	REC: recreation	OPR: Operational
IND: Industrial		RHB: Rehabilitated
		UKN: Unknown

Well Search Summary	
Search Radius:	2 km
Total number of wells:	99

Unit No.	Class	Purpose	Status	Status Date	Original drill date	Original drill depth (m)	Max drill date	Cased to (m)	RSWL (mAHD)	SWL date	TDS (mg/L)	EC (mS/cm)	Salinity date	рН	pH_date	yield (L/min)	yield date	mga easting	mga northing	mga zone
6628-1000	WW	STK	BKF	1/11/1985			12/09/1962		4.29	5/03/1969	2831	5062	27050	9	27050			272195.48	6165001.89	54
6628-1003	ww	IRROBS	BKF	13/05/1971			13/05/1971		-4.24	29/03/1967	1647	2970	25986	7.5	25986	10.1	24560	271958.46	6164943.87	54
6628-1004	WW	IRRSTK	OPR	14/11/2002	25/01/1949	91.44	25/01/1949		6.95	25/01/1949	2064	3710	45184			1.26	17923	271794.82	6164805.53	54
6628-1006	WW	IRRSTK	OPR	16/12/1986	5/05/1971	131.37	5/05/1971	67.67			636	1155	38412	7.5	31762	18.95	26058	271134.42	6164513.81	54
6628-1007	WW	IRR	BKF	9/11/1989	30/05/1969	137.16	30/05/1969				1095	1983	25358	6.5	25358	1.89	25353	272499.74	6164311.57	54
6628-1008	WW	IRR	UKN	26/08/2004	1/01/1956	103.63	1/01/1956	54.86	-10.86	19/02/1963	1180	2136	24651			12.63	22710	273415.42	6164507.9	54
6628-1009	WW	IRR	BKF	10/12/2002	23/08/1960	76.2	23/08/1960		3.47	23/08/1960	1357	2452	29759	10.5	29759			273209.42	6164423.81	54
6628-1010	WW	IRR	BKF	22/12/2021			19/02/1962				1591	2870	15/06/2019			16.42	24552	273313.82	6164655.47	54
6628-1011	WW	IRR	UKN	26/08/2004			16/05/1968	54.86	-6.76	16/05/1968	1201	2172	1/01/1978			7.58	24974	273089.41	6164446.84	54
6628-1012	WW	IRR	BKF	16/03/1988	4/07/1960	97.36	4/07/1960				1356	2450	26815	7.5	26815	19	26815	272673.44	6164812.88	54
6628-1086	WW	DOMIRR	BKF	10/12/2002	1/01/1950	76.2	6/02/1952		-4.68	27/11/1961	990	1792	31712	7.5	27/10/1986	7.58	24567	273492.4	6164013.87	54
6628-1087	WW	STK	OPR	4/03/1969			23/03/1962				1489	2688	20/02/1969	7.5	20/02/1969	0.38	22728		6164178.86	54
6628-1088	WW	IRRSTK	NL	4/11/2005			16/03/1962		7.58	16/03/1962						11.37	22721		6163769.86	54
6628-1089	WW	IRR	BKF	18/02/1981	13/02/1952	82.3	13/02/1952				900	1632	1/01/1978	7	14/05/1968	6.31	24588	273664.45	6164082.8	54
6628-1090	WW	IRROBS	BKF	4/09/2023	1/03/1957	109.73	1/03/1957		5.43	16/08/1960	1049		.,,	8.6	4/12/1975	8.84	24702		6163918.48	54
6628-1091	WP	IRRRIV	UKN	26/08/2004							1430								6163974.8	
6628-1092	WW	IRROBS	BKF	10/03/2021			9/04/1959				898		1/11/2020	7.3	15/12/1986				6163454.89	54
6628-1093	WW	IRR	OPR	15/12/1986	1/01/1962	121.92	1/01/1962				987	1787	1/11/2017	7.6	15/12/1986				6163580.53	54
6628-1094	WW	IRR	BKF	28/09/1999	2/09/1969	105.77	2/09/1969				1345			7.5	25/03/1992	15.16	25448		6163293.83	54
6628-1098	WW	IRR	BKF	6/08/1974	18/09/1970	106.68	18/09/1970				832		, ,	7	24/09/1970	18.95	25829		6163230.9	54
6628-2218	WW	OBS	OPR	25/09/1998	12/06/1968	191.11	12/06/1968			18/09/2023	2347		26/03/2003	7.8	26/03/2003				6162976.56	54
6628-2219	WW	OBS	OPR	25/09/1998	3/12/1968	15.24	3/12/1968			18/09/2023	1188		31/03/1978	7.2	31/03/1978	1.36	25266		6162961.53	
6628-2220	WW	OBS	OPR	25/09/1998	28/11/1968	42.67	28/11/1968	37.49	3.05	18/09/2023	484			7.5	7/02/1978	0.76	25170		6162995.53	
6628-2221	ww	STK	BKF	22/01/1975	1/01/1962		19/04/1974				9229	15868	.,.,	9	19/02/1969	0.04	27138		6161826.75	54
6628-2222	WW	STK	OPR	14/02/1975	14/02/1975	39.62	14/02/1975		0.44	14/02/1975	967		., . ,	7.3	20/02/1975	4	27439		6161802.73	-
6628-2223	ww	STK	BKF	21/10/1969	1/01/1962		21/03/1962				5855		.,.,			0.04	22726		6162257.9	54
6628-2224	WW	STK	OPR	20/05/1992	10/11/1969	69.92	10/11/1969		-8.2	10/11/1969	777		20/05/1992	7.8	20/05/1992				6162271.82	
6628-2225	WW	DRN	BKF	25/02/2021	3/03/1966	9.12	3/03/1966				17258			7	3/03/1966				6162371.92	
6628-2229	ww	DOMIRR, ST		28/11/2002	1/01/1964	27.36	26/09/1967		0.9		2103		, ,			3.79	24741		6162400.5	54
6628-2230	WW	IRRSTK	UKN	13/07/2004	1/01/1964	25.91	10/09/1964		0.9		1305	2360	10/09/1964			2.53			6162022.84	54
6628-2231	WW		ABD	27/02/1964															6162415.81	54
6628-2232	WW	DOMSTK	BKF	24/02/1986	1/01/1969	44.5	1/01/1969				1035	1874	15/05/1969	6.5	15/05/1969	12.63	25338	273494.44	6162027.91	54

LBW Job Number: 231445-01 Search Radius: 2 km Search By: TO Search Date: 21/11/2023

Headings Class
EC: Electrical conductivity WW: Water wells
TDS: Total dissolved solids ENG
SWL: Standing water level Silvat
RSWL: Readive standing water level

Well Search Summary	
Search Radius:	2 km
Total number of wells:	99

Unit No.	Class	Purpose	Status	Status Date	Original drill date	Original drill depth (m)	Max drill date	Cased to (m)	RSWL (mAHD)	SWL date	TDS (mg/L)	EC (mS/cm)	Salinity date	рН	pH_date	yield (L/min)	yield date	mga easting	mga northing	mga zone
6628-2240	ww	STK	NL	1/01/1963			25/01/1949	57.91			764	1386	17/06/2015			6.31	17923	272418.4	6161434.81	54
6628-2267	WW	IRR	BKF	19/08/2022	1/01/1966	45.72	10/05/1966		-13.1	6/05/1966	845	1532	30/04/2011	6.4	10/05/1966	10.1	24233	274275.41	6162855.86	54
6628-2283	WW	STK	BKF	14/08/1967	1/01/1956		8/06/1956		7.26	8/06/1956	1580	2851	8/06/1956					274294.44	6162707.81	54
6628-11563	WW	IRR	OPR	18/02/1981	18/02/1981	93	18/02/1981	66.00	-18.7	18/02/1981	995	1802	23/06/2021	7.1	17/02/1981			273645.77	6164040.49	54
6628-11750	WW	IRR	OPR	7/11/2003	19/06/1981	122	19/06/1981				1479	2670	23/06/2021	7.9	22/06/1981			273350.76	6164413.52	54
6628-13380	WW	DOMSTK	OPR	24/02/1986	1/04/1985	91	1/04/1985	63.00	-23.4	12/08/1985	688	1250	1/06/2002	7.6	24/02/1986	12.63	31138	273481.42	6162072.88	54
6628-13412	WW	DOMSTK	OPR	20/06/1985	20/06/1985	98	20/06/1985	72.00			944	1710	25/06/1985	8.1	25/06/1985	7	31218	272390.42	6164116.85	54
6628-13413	WW	DOMSTK	OPR	15/06/1985	15/06/1985	98	15/06/1985	75.00			1423	2570	25/06/1985	7.3	25/06/1985	8	31213	272318.39	6164217.86	54
6628-13418	WW	DOMSTK	OPR	7/03/1985	7/03/1985	97	7/03/1985	65.30			1469	2652	7/03/1985	7.8	7/03/1985	5		271434.37	6163066.75	54
6628-13538	WW	IRR	OPR	24/02/1992	2/09/1985	97	2/09/1985	66.00			1378	2490	1/02/2018	7.9	24/03/1992	15.16	31292	273035.82	6164473.49	54
6628-13926	WW	IRR	OPR	15/01/1987	15/01/1987	91.5	15/01/1987	66.00			1552	2800	17/06/2015	6.9	3/02/1987	3	31792	272149.77	6164954.48	54
6628-14018	WW	IRR	OPR	27/08/1987	27/08/1987	122	27/08/1987	66.00			1692	3050	28/06/2023	7.8	1/09/1987	10	32016	272137.44	6164914.88	54
6628-14161	WW	IRR	OPR	18/09/1987	18/09/1987	91	18/09/1987	66.00			1552	2800	3/06/2022	7.6	18/09/1987	12.63	32038	272331.75	6164840.53	54
6628-14162	WW	IRR	OPR	6/11/1987	6/11/1987	110	6/11/1987	66.00			1620	2920	15/02/2022	8.2	17/11/1987	8	32083	272357.76	6165013.55	54
6628-14200	WW	IRR	UKN	26/08/2004	16/03/1988	122	16/03/1988	66.00			1776	3200	16/03/1988	7.8	16/03/1988	12	32218	272556.43	6165026.88	54
6628-14491	WW	DOMSTK	BKF	5/10/2021	1/03/1989	91.5	1/03/1989		-25	19/07/1989	722	1310	1/06/2002	7.5	1/03/1989	4	32568	274303	6162730	54
6628-14512	WW	IRR	OPR	9/03/1989	9/03/1989	122	9/03/1989	66.00			1463	2640	23/06/2021	7.2	12/03/1989	25	32579	273368.83	6164092.53	54
6628-15140	WW	IRR	OPR	9/11/1989	9/11/1989	122	9/11/1989	66.00			1653	2980	1/11/2008	7.4	15/11/1989	12	32821	272490.77	6164314.57	54
6628-16223	WW	IRR	OPR	26/11/1992	26/11/1992	114	26/11/1992	67.00			964	1745	15/06/2019	7.7	26/11/1992	12	33934	274012.77	6163404.5	54
6628-18498	WW	DOMSTK	OPR	1/12/2003	26/08/1996	122	26/08/1996	66.00	-14.5	26/08/1996	833	1512	1/06/2020			25	35301	273509.76	6161781.55	54
6628-19956	WW	IRR	OPR	1/03/2001	30/09/1999	122	30/09/1999	72.00	-14.8	30/09/1999	964	1745	31/03/2013			14	36431	274057.81	6163254.55	54
6628-19991	WW	MON	OPR	17/12/1999	17/12/1999	12.5	17/12/1999	7.50	8.53	20/09/2023	2727	4880	1/10/2015	7.39	16/02/2000	1	36511	274471.76	6163123.49	54
6628-19992	WW	MON	OPR	17/12/1999	17/12/1999	6	17/12/1999	2.00	8.5	21/12/2016	3500	6230	1/10/2015	7.5	22/02/2000			274471.78	6163122.49	54
6628-19993	WW	MON	OPR	26/08/2004	20/01/2000	17	20/01/2000	13.00	8.96	18/09/2023	10348	17630	2/10/2015	7.5	22/02/2000			273706.8	6164207.48	54
6628-20005	WW	MON	OPR	21/12/1999	21/12/1999	9.5	21/12/1999	6.00	5.66	18/09/2023	7621	13200	30/09/2015	6.96	16/02/2000			273498.74	6161841.55	54
6628-20006	WW	MON	OPR	21/12/1999	21/12/1999	3	21/12/1999	1.00	5.46	21/12/2016	6119	10700	1/10/2015					273498.81	6161842.55	54
6628-20666	WW	MON	OPR	23/09/2001	23/09/2001	87.5	23/09/2001	65.00	-7.27	18/09/2023	674	1224	17/12/2013	7.94	17/12/2013	6	37157	273663.34	6161487.41	54
6628-20746	WW	INV	OPR	1/11/2001	1/11/2001	4	1/11/2001	4.00	5.35	18/03/2004	8592	14800	11/03/2002					274115.78	6161950.47	54
6628-20984	WW	IRR	OPR	30/08/2004	5/12/2002	122	5/12/2002	66.00	-22.6	5/12/2002	1006	1823	1/07/2017			10	37594	274336.82	6163506.55	54
6628-21031	WW	STK	OPR	1/07/2022			29/11/2002	34.00	-8	29/11/2002	162	294	1/11/2017			3	37588	273742.74	6162393.51	54
6628-21445	ww	INVMON			31/07/2003	6	31/07/2003	4.00		24/06/2015								271079.25	6162957.61	54
6628-23298	ww	INV			14/01/2008	10	14/01/2008	5.10	3.73	14/01/2008								272962.81	6164331.18	54

LBW Job Number: 231445-01 Search Radius: 2 km Search By: TO Search Date: 21/11/2023

RSWL: Relative standing water level

Purpose		Status
DOM: Domestic	INV: Investigation	ABD: Abandoned
OBS: Observation	IRR: Irrigation	BKF: Backfilled
STK: Stock	MAR: Managed aquifer recha	r DEC: Decommissioned
DRN: Drainage	MON: Monitoring	DRY: Dry
ENV: Environmental	REC: recreation	OPR: Operational
IND: Industrial		RHB: Rehabilitated
		UKN: Unknown

Well Search Summary	
Search Radius:	2 km
Total number of wells:	99

Unit No.	Class	Purpose	Status	Status Date	Original drill date	Original drill depth (m)	Max drill date	Cased to (m)	RSWL (mAHD)	SWL date	TDS (mg/L)	EC (mS/cm)	Salinity date	рН	pH_date	yield (L/min)	yield date	mga easting	mga northina	mga zone
6628-23299	ww	INV	BKF	8/02/2021	14/01/2008	5.5	14/01/2008		6.56	14/01/2008								273617 25	6162947.84	54
6628-23300	ww	INV	DICI	0,02,2021	14/01/2008	8.1	14/01/2008	8.10		14/01/2008									6162472.56	
6628-23303	ww				15/01/2008	7	15/01/2008	2.50		15/01/2008									6161582.11	
6628-27634	ww				10/01/2000	•	10,01,2000	2.00	2	10,01,2000									6161312.55	
6628-27635	ww		BKF	18/07/2014	18/07/2014	80	18/07/2014	72.00	-15.2	18/07/2014						0	41836		6161312.55	
6628-27790	ww	IRR	OPR	1/07/2022	25/07/2014	96	25/07/2014	84.00		,,	783	1421	7/07/2022			10	41845		6161373.48	
6628-28060	ww	IRR	OPR	1/07/2022	20/08/2015	122	20/08/2015	72.00	-9.9	20/08/2015		2120				12	42236		6163541.48	
6628-29734	ww		OPR	1/07/2022	11/09/2018	122	11/09/2018	90.00		,,	806	1462	.,,			20	43354		6161248.54	
6628-30999	ww	INV	BKF	6/04/2022	1/12/2020	7.5	1/12/2020						.,,						6162994.53	
6628-31000	ww	INV	BKF	6/04/2022	1/12/2020	7.5	1/12/2020											274160.78	6163191.51	54
6628-31002	ww	INV	BKF	6/04/2022	1/12/2020	8	1/12/2020											274301.78	6163196.53	
6628-31003	ww	INV	BKF	6/04/2011			1/12/2020	4.50										274347.78	6162883.52	
6628-31183	WW		OPR	1/07/2022	15/01/2021	120	15/01/2021	69.00	-31.7	15/01/2021	1121	2030	1/07/2022			10	44211	274321	6162668	
6628-32153	ww				17/10/2022	122	17/10/2022	66.00	-6.2	17/10/2022	1423	2570	26/10/2022			10	44848	273553.88	6163892.01	
6628-32402	ww	INV			18/04/2023	4	18/04/2023	2.50										273020.78	6163609.52	
6628-32403	ww	INV			20/04/2023	5	20/04/2023	3.00										273129.77	6162805.52	54
6628-32404	ww	INV			18/04/2023	6	18/04/2023	4.50										271856.78	6162837.52	54
6628-32405	ww	INV			18/04/2023	7	18/04/2023	5.50										273037.78	6163608.52	54
6628-32406	WW	INV			18/04/2023	7.5	18/04/2023	3.00										272431.78	6163242.52	54
6628-32407	WW	INV			19/04/2023	6.5	19/04/2023	4.00										272738.78	6163163.52	54
6628-32408	WW	INV			19/04/2023	9	19/04/2023	7.00										271802.78	6162837.53	54
6628-32412	WW	INV			19/04/2023	6.5	19/04/2023	2.50										272528.78	6162760.51	54
6628-32413	WW	INV			19/04/2023	6	19/04/2023	2.50										272112.78	6162173.52	54
6628-32414	WW	INV			19/04/2023	6	19/04/2023	2.00										271660.78	6161773.51	54
6628-32765	WW	INV			23/10/2023	6.3	23/10/2023	5.30										272772.78	6163174.52	54
6628-32766	WW	INV			23/10/2023	9.2	23/10/2023	8.20										272772.78	6163174.52	54
6628-32767	WW	INV			23/10/2023	7.8	23/10/2023											272804.77	6162989.53	54
6628-32768	WW	INV			18/10/2023	13	18/10/2023												6163174.52	
6628-32769	WW	INV			16/10/2023	13	16/10/2023											272813.78	6162970.52	
6628-32770	WW	INV			23/10/2023	4	23/10/2023												6162762.51	54
6628-32771	WW	INV			23/10/2023	8	23/10/2023											272733.78	6162762.51	54
6628-32772	WW	INV			19/10/2023	13	19/10/2023											272733.78	6162762.51	54

LBW Job Number: 231445-01 Search Radius: 2 km Search By: TO Search Date: 21/11/2023

Headings Class
EC: Electrical conductivity WW: Water wells
TDS: Total dissolved solids ENG
SWI: Standing water level
RSWI: Relative standing water level

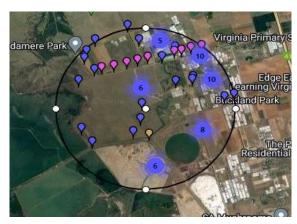
Purpose		Status
DOM: Domestic	INV: Investigation	ABD: Abandoned
OBS: Observation	IRR: Irrigation	BKF: Backfilled
STK: Stock	MAR: Managed aquifer rechar	DEC: Decommissioned
DRN: Drainage	MON: Monitoring	DRY: Dry
ENV: Environmental	REC: recreation	OPR: Operational
IND: Industrial		RHB: Rehabilitated
		UKN: Unknown

Well Search Summary	
Search Radius:	2 km
Total number of wells:	99

Unit No.	Class		Status	Status Date	Original drill date	Original drill depth (m)	Max drill date	Cased to (m)	RSWL (mAHD)	SWL date	TDS (mg/L)	EC (mS/cm)	Salinity date	pH_date	yield (L/min)	yield date	mga easting	mga northing	mga zone
6628-32773	WW	INV			23/10/2023	4.5	23/10/2023										273257.78	6162797.53	54
6628-32774	WW	INV			24/10/2023	8.8	24/10/2023										273257.78	6162797.53	54
6628-32775	WW	INV			20/10/2023	14.5	20/10/2023	9.50									272350.78	6162814.51	54

LBW Job Number: 231445-01

Search Radius: 2 km - in area downstream of potential discharge


Search By: TO Search Date: 22/11/2023

Headings Class
EC: Electrical conductivity WW: Water wells
TDs: Total dissolved solids ENG
SWL: Standing water level Strat
RSWL: Realitive standing water level

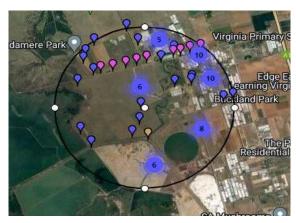
Purpose		Status
DOM: Domestic	INV: Investigation	ABD: Abandoned
OBS: Observation	IRR: Irrigation	BKF: Backfilled
STK: Stock	MAR: Managed aquifer rechai	DEC: Decommissioned
DRN: Drainage	MON: Monitoring	DRY: Dry
ENV: Environmental	REC: recreation	OPR: Operational
IND: Industrial		RHB: Rehabilitated
		UKN: Unknown

Well Search Summary	
Search Radius:	2 km
Total number of wells:	74

Unit No.	Class		Status	Status Date	Original drill date	Original drill depth (m)	Max drill date	Cased to (m)	RSWL (mAHD)	SWL date	TDS (mg/L)		Salinity date		pH_date	yield (L/min)	yield date	mga easting	mga northing	mga zone
6628-19717	ww	OBS	OPR	25/09/1998	3/03/1965	109.73	3/03/1965	60.00	-1.24	7/11/2023	502	913	45237	11.3	37707	0.25	35947	271013.77	6160503.54	54
6528-246	WW	STK	OPR		21/03/1962	2.74	21/03/1962		1.87	21/03/1962	6194	10850	23034			0.38	22726	270831.32	6160948.76	54
6628-19718	WW	OBS	UKN	7/12/1998	16/12/1968	42.67	16/12/1968	32.31	-0.1	21/04/1992	432	785	27997	8.6	27997	6.31	25272	271012.35	6161214.76	54
6628-21356	WW	OBS	OPR	25/09/1998	24/11/1961	106.68	24/11/1961	95.71	-1.31	15/09/2023	644	1170	36647	8.2	33626	6.21		271015.79	6158742.52	54
6628-2240	WW	STK	NL	1/01/1963			25/01/1949	57.91			764	1386				6.31	17923		6161434.81	54
6628-2243	WW	STK	OPR	27/02/1969	1/01/1963	33.53	1/01/1963	33.53	2.18	21/03/1963	715								6160912.52	54
6628-2251	WW	DOMOBS,	S RHB	18/08/1995	16/02/1901	34.1	18/08/1995	65.00			1070	1937	44136	7.9	31467	6.2	34929	273316.75	6161085.54	54
6628-2252	WW	IRROBS	BKF	12/05/1999	11/03/1901	73.15	11/03/1901	67.06	-29.4	29/04/1967	967	1751	8/11/1974	8.2	27341	12.63	24699		6160996.82	54
6628-2260	WW	DOMIRR, S		19/08/1983	1/01/1920		19/08/1983		1.97	19/08/1983	790	1433				1.01	30547		6159283.76	54
6628-2261	WW	DRN	OPR	4/03/1966	4/03/1966	7.3	4/03/1966				17258	28385	24170	7	24170				6159710.74	54
6628-2262	WW	OBSSTK	BKF	19/05/2005	1/01/1949		21/07/1966			21/09/1977	683	1240		8.3	18/08/1976	0.21	25494		6160268.86	54
6628-2263	WW	OBSSTK	ABD	28/03/1961	1/03/1901	58.52	28/03/1961			29/02/1988	17136	28184							6160277.81	54
6628-2264	WW	STK	BKF	9/01/2020	1/01/1962	39.62	1/01/1962		2.78	23/01/1962		1760	.,.,			0.38	22669	271973		54
6628-2265	WW	DOMSTK	NL	12/05/1999	29/11/1975	89.98	29/11/1975	78.03			688	1250		8.3	17/12/1975	3.79	27727		6159796.76	54
6628-2266	WW	OBS	BKF	25/01/1963	26/09/1962	102.11	26/09/1962		-8.39	4/12/1962		1420							6159334.83	54
6628-2387	WP										13099	22000	20/10/1970	8	20/10/1970				6158967.82	54
6628-2388	WW						16/02/1949				1276	2307	16/02/1949			0.51	17945		6158379.77	54
6628-2389	WW	OBS									103626	129533	18/03/1968	7	18/03/1968				6158087.77	54
6628-2390	WW	STK	BKF	9/06/2006			22/06/1956				1455	2627	21/06/1956						6159694.78	54
6628-2391	WW	OBS	ABD	3/05/1999	1/01/1965		20/01/1965		3.55	.,,	19721	32000	.,.,	8	10/01/1975				6158400.79	54
6628-2392	WW	IRROBS, STA					19/05/1964			22/06/1956		3554	24/03/1969	7	24/03/1969				6158346.81	54
6628-2393	WW	STK	OPR	23/07/1969			21/03/1962		2.57	1/01/1969	1095	1983	18/06/1969	6.5	18/06/1969	0.38	22726		6158971.72	54
6628-12125	WW	DOMIRR, S	T BKF	12/05/1999	8/12/1982	75	8/12/1982				1045	1892		7.9	24/02/1986	8	30293		6159166.48	54
6628-14224	WW	DOM	OPR	28/10/1987	28/10/1987	91	28/10/1987	65.00			692	1257	11/02/2008			3	32078		6160523.52	54
6628-14296	WW	DOM	OPR	1/12/2003	9/09/1988	91	9/09/1988	66.00	-19	5/06/1991	701	1272	, ,	8.2	14/09/1988	4	33394		6160370.52	54
6628-15137	WW	DOMSTK	OPR	31/03/1988	31/03/1988	91	31/03/1988	66.00			727	1318				3	32233		6161146.51	54
6628-15532	WW	DOMSTK	OPR	15/02/1991	13/02/1991	92	13/02/1991	66.00		15/02/1991	824	1495		7.8	15/02/1991	4	33282		6160582.47	54
6628-15533	WW	IND	BKF	25/02/1999	4/04/1991	110	4/04/1991			12/08/1991	1138	2060	5/04/1991	7.6	5/04/1991	12	33332		6159207.79	54
6628-15585	WW		OPR	7/06/1991	7/06/1991	91	7/06/1991	66.00		12/08/1991	726		9/06/2021	7.3	7/06/1991	5	33396		6160488.57	54
6628-15592	WW	DOMSTK	OPR	26/07/1991	18/07/1991	91	18/07/1991	67.50	-15.2	12/08/1991	770	1396	., ,	7.9	26/07/1991	4	33437		6160413.48	54
6628-15647	WW		OPR	24/11/1988	11/11/1988	91	11/11/1988	65.00	-18.3			1335	10/07/2022	7.8	24/11/1988	3	32458		6160506.47	54
6628-15648	WW		OPR	4/12/1988	4/11/1988	91	4/11/1988	65.00	-12.85	2/07/2002		1368		7.8	4/12/1988	3	32451		6160512.55	54
6628-15652	WW	DOM	OPR	17/10/1991	17/10/1991	95	17/10/1991	89.00			777	1409	1/06/2017	7.5	17/10/1991	7	33528		6159797.51	54
6628-16041	WW	DOMSTK	OPR	2/06/1992	2/06/1992	91	2/06/1992	67.00	-8.7	17/09/2001	637	1157	1/06/2017	7.2	2/06/1992	5	33757		6160460.54	54
6628-16493	WW	DOMSTK	OPR	25/12/1993	25/02/1993	79	25/02/1993	73.00			753	1366	23/06/2023			7.6	34025	273176.76	6160382.5	54

LBW Job Number: 231445-01

Search Radius: 2 km - in area downstream of potential discharge


Search By: TO Search Date: 22/11/2023

Headings	Class
EC: Electrical conductivity	WW: Water wells
TDS: Total dissolved solids	ENG
SWL: Standing water level	Strat
PSWI - Palative standing water level	

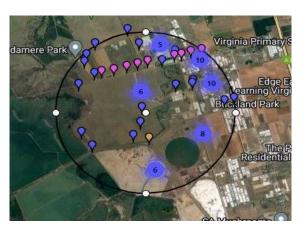
Purpose		Status	
DOM: Domestic	INV: Investigation	ABD: Abandoned	
OBS: Observation	IRR: Irrigation	BKF: Backfilled	
STK: Stock	MAR: Managed aquifer rechar	DEC: Decommission	ed
DRN: Drainage	MON: Monitoring	DRY: Dry	
ENV: Environmental	REC: recreation	OPR: Operational	
IND: Industrial		RHB: Rehabilitated	
		HKN: Hnknown	

Well Search Summary								
Search Radius:	2 km							
Total number of wells:	74							

Unit No.	Class	Purpose	Status	Status Date	Original drill date	Original drill depth (m)	Max drill date	Cased to (m)	RSWL (mAHD)	SWL date	TDS (mg/L)	EC (mS/cm)	Salinity date	рН	pH_date	yield (L/min)	yield date	mga easting	mga northing	mga zone
6628-16606	WW	STK	OPR	8/04/1994	30/03/1994	92	30/03/1994	72.00			747	1354	1/06/2023	7.8	8/04/1994	4	34423		6160314.47	54
6628-17064	WW	DOM	OPR	17/02/1995	17/02/1995	90	17/02/1995	72.00			721	1307	1/06/2023	7.2	17/02/1995	4	34747		6159819.49	54
6628-2236	SP						1 / /00 /1050												6161139.87	54
6628-2238	SP SP						16/09/1959												6161019.76 6161076.86	54
6628-2239 6628-2241	SP						16/09/1959 14/09/1959												6160978.76	54 54
6628-2242	SP						16/09/1959												6160821.75	54 54
6628-2244	SP						16/09/1959												6160621.73	54
6628-2245	SP						16/09/1959												6160757.73	54
6628-2246	SP						16/09/1959												6160542.72	54
6628-2247	SP						16/09/1959												6160608.79	54
6628-17917	ww	DOMSTK	OPR	1/12/2003	13/02/1996	91	13/02/1996	72.00			709	1287	31/07/2014	7.1	13/02/1996	3.5	35108		6159916.52	54
6628-18376	ww	DOMSTK	OPR	1/12/2003	7/12/1996	100	7/12/1996	82.20	-22	7/12/1996		1289	1/07/2022			10	35406		6160944.56	54
6628-18377	ww	DOM	OPR	2/04/2001	11/12/1996	91.5	11/12/1996	82.20	-22	11/12/1996		1200	2/04/2001			7.5	35410	273202.57	6161014.92	54
6628-18591	WW	DOMSTK	OPR	5/05/2005	12/07/1997	91.5	12/07/1997	82.00	-9.54	17/09/2001	1322	2390	6/06/2016			6.2	35622	273796.81	6160592.53	54
6628-18942	WW	OBS	OPR	25/09/1998	15/05/1998	82	15/05/1998	66.00	0.69	18/09/2023	674	1223	26/03/2003	8.4	26/03/2003	2	35930	272480.78	6160850.52	54
6628-19389	WW	IRR	OPR	7/11/2003	16/11/1998	72	16/11/1998	66.00	-5.7	16/11/1998	976	1767	1/07/2022			25	36115	272762.56	6161089.78	54
6628-19481	WW	IND	OPR	1/07/2022	25/02/1999	142	25/02/1999	85.00			1434	2590	25/02/1999			25	36216		6159108.11	54
6628-19999	WW	MON	OPR	21/12/1999	21/12/1999	9.5	21/12/1999	6.00	4.85	18/09/2023	14211	23700	1/10/2015	6.93	16/02/2000			273244.81	6161094.54	54
6628-20000	WW	MON	BKF	2/09/2020	21/12/1999	3	21/12/1999			21/12/2016		34400	1/10/2015						6161094.49	54
6628-21446	WW	INVMON	BKF	23/09/2014	31/07/2003	6	31/07/2003	3.00		20/09/2010									6158480.99	54
6628-21584	WW	INV					29/09/2003	21.00		21/12/2016						1	37889		6161097.82	54
6628-21585	WW	INV			30/09/2003	19.8	, ,	15.00		21/12/2016						2.5	37894		6161096.06	54
6628-21594	ww	INV					29/09/2003	4.50		21/12/2016						1	37893		6161096.54	54
6628-21831	WW	DOMSTK	OPR	21/01/2006	30/06/2004	90	30/06/2004	66.00		30/06/2004		1314	19/06/2023			3	38167		6160458.52	54
6528-2628	WW	INV			15/01/2008	3.5	15/01/2008	3.50		15/01/2008									6160221.17	54
6528-2629	WW	INV			15/01/2008	3.5	15/01/2008	3.50		15/01/2008									6159070.14	54
6628-23301	WW				15/01/2008	3.5	15/01/2008	3.50		15/01/2008									6159020.54 6159994.1	54
6628-23302 6628-23303	WW WW				15/01/2008 15/01/2008	5.1	15/01/2008 15/01/2008	2.10 2.50		15/01/2008 15/01/2008									6161582.11	54 54
6628-23303	ww				15/01/2008	/	15/01/2008	4.00		15/01/2008									6160114.43	54 54
6628-26420	WW		OPR	1/07/2022	21/01/2012	102	.,.,	78.00		21/01/2012						12.63	40929		6159983.27	54
6628-27634	ww		OIK	1/0//2022	21/01/2012	102	21/31/2012	70.00	-17	21,01,2012						12.00	40727		6161312.55	54
6628-27635	ww		BKF	18/07/2014	18/07/2014	80	18/07/2014	72.00	-15.2	18/07/2014						0	41836		6161312.55	54
6628-27790	ww	IRR	OPR	1/07/2022	25/07/2014	96		84.00		. 3, 0, , 2014	783	1421	7/07/2022			10	41845		6161373.48	54
				., 5, , 2022		,,	25, 57, 2011	0 1.00			, 00		.,, 2022				11010	3_0.02	2.2.3/0.10	0.

LBW Job Number: 231445-01

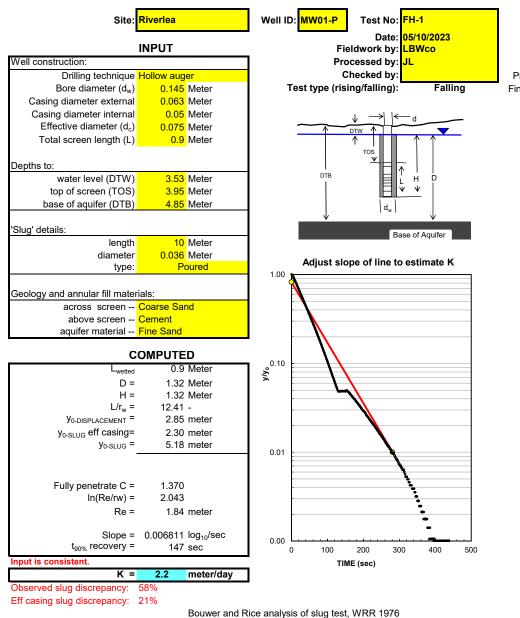
Search Radius: 2 km - in area downstream of potential discharge

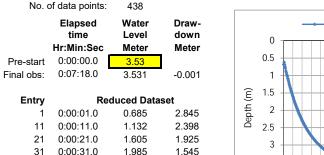

Search By: TO Search Date: 22/11/2023

Headings	Class
EC: Electrical conductivity	WW: Water wells
TDS: Total dissolved solids	ENG
SWL: Standing water level	Strat
RSWI: Relative standing water level	

Purpose		Status
DOM: Domestic	INV: Investigation	ABD: Abandoned
OBS: Observation	IRR: Irrigation	BKF: Backfilled
STK: Stock	MAR: Managed aquifer rechai	DEC: Decommissioned
DRN: Drainage	MON: Monitoring	DRY: Dry
ENV: Environmental	REC: recreation	OPR: Operational
IND: Industrial		RHB: Rehabilitated
		UKN: Unknown

Well Search Summary	
Search Radius:	2 km
Total number of wells:	74




Unit No.	Class		Status	Status Date	Original drill date	Original drill depth (m)	Max drill date	Cased to (m)	RSWL (mAHD)	SWL date	TDS (mg/L)		Salinity date	pH_date	yield (L/min)	yield date	mga easting	mga northing	mga zone
6628-29734	WW		OPR	1/07/2022	11/09/2018	122	11/09/2018	90.00			806	1462	7/07/2022		20	43354	271981.79	6161248.54	54
6628-29751	WW	MON			4/10/2018	7	4/10/2018										272930.78	6158210.5	54
6628-30608	WW		OPR	1/07/2022	10/01/2020	78	10/01/2020	62.00	-5.5	10/01/2020	762	1382	10/01/2020		1	43838	271979	6160262	54
6528-3111	WW	MON	OPR	12/10/2023	11/08/2023	123	11/08/2023	96.00	-3.74	7/11/2023	866	1571	7/11/2023		2.8	45188	270783.78	6160772.53	54

Appendix F Slug Test Data

Spreadsheet adapted from one developed by USGS

1.240

0.991

0.791

0.625

0.490

0.381

0.294

0.228

0.175

0.137

0.139

0.137

0.132

0.118

0.105

0.094

0.082

0.073

0.064

0.056

0.049

0.043

0.037

0.033

0.028

0.024

0.021

0.018

0.015

0.012

0.011

0.008

0.007

0.005

0.004

2.290

2.539

2.739

2.905

3.040

3.149

3.236

3.302

3.355

3.393

3 391

3.393

3.398

3.412

3.425

3.436

3.448

3.457

3.466

3.474

3.481

3.487

3.493

3.497

3.502

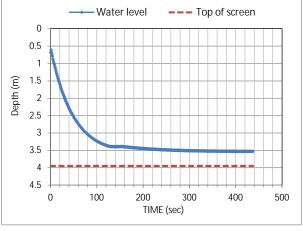
3.506

3.509

3.512

3.515

3.518


3.519

3.522

3.523

3.525

3.526

USEPA EPA/600/R-93/202, 1994

00E1 A E1 A/000/K-33/202, 1334	
Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.82
Observed drawdown (m)	2.8450
Inferred drawdown for formation (m)	2.3329
Expected displacement based on slug volume (m)	5.1840
Vol. water recharged by filter pack (m3)	0.0056
Vol. filter pack that recharged water originated from (m3)	0.0313
Specific yield of filter pack (-)	0.18
Effective casing radius (m)	0.037
Effective casing diameter (m)	0.075

Butler, 1997

Effective casing radius (m)	0.037
Effective casing diameter (m)	0.075

Check significance of varying screen length during test

Was the water level a	lways above top	of screen?		Yes
Displacement (yo) as	% of initial satura	ated screen I	ength	-

REMARKS:

Top of screen in well is at 2.5m bgl (3.35m btoc) but adjusted to 3.1m (3.95m btoc) because sandy clay to 3.1m depth likely does not contribute to flows in/out of the well.

41

51

61 71

81

91

101

111

121

131

141

151

161 171

181

191

201

211

221

231

241

251

261

271

281

291

301 311

321

331

341

351

361

371

381

0:00:41.0

0:00:51.0

0:01:01.0

0:01:11.0

0:01:21.0

0:01:31.0

0:01:41.0

0:01:51.0

0:02:01.0

0:02:11.0

0:02:21.0

0:02:31.0

0:02:41.0

0:02:51.0

0:03:01.0

0:03:11.0

0:03:21.0

0:03:31.0

0:03:41.0

0:03:51.0

0:04:01.0

0:04:11.0

0:04:21.0

0:04:31.0

0:04:41.0

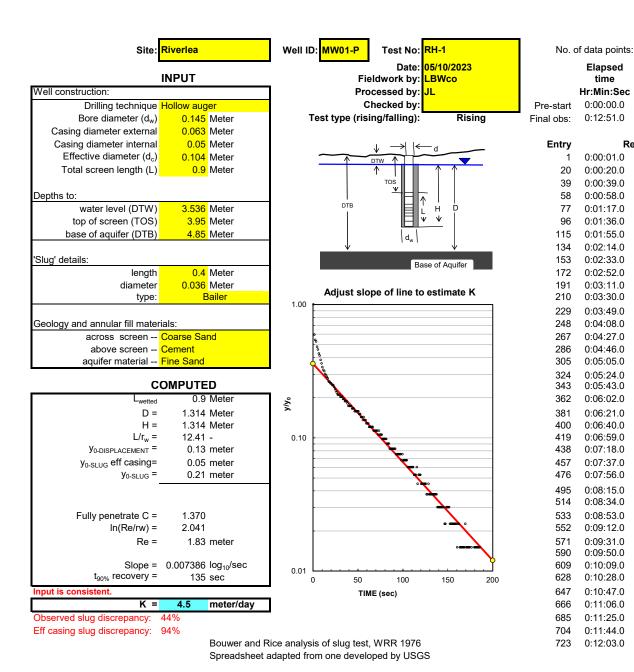
0:04:51.0

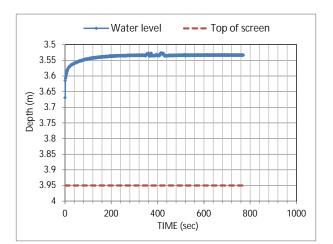
0:05:01.0

0:05:11.0

0:05:21.0

0:05:31.0


0:05:41.0


0:05:51.0

0:06:01.0

0:06:11.0

0:06:21.0

USEPA EPA/600/R-93/202, 1994

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.36
Observed drawdown (m)	0.1330
Inferred drawdown for formation (m)	0.0479
Expected displacement based on slug volume (m)	0.2074
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0003 0.0006
Specific yield of filter pack (-)	0.49
Effective casing radius (m)	0.052
Effective casing diameter (m)	0.104

Butler, 1997

771

Water

Level

Meter

3.527

Reduced Dataset

3.669

3.570

3.560

3.554

3.550

3.546

3.543

3.541

3.539

3.538

3.537

3.537

3.535

3.535

3.535

3.534

3.534

3.533

3.533

3.527

3.535

3.534

3.528

3.535

3.534

3.534

3.533

3.533

3.534

3.534

3.533

3.533

3.533

3.533

3.533

3.533

3.533

3.533

3.533

Draw-

down

Meter

0.009

0.133

0.034

0.024

0.018

0.014

0.010

0.007

0.005

0.003

0.002

0.001

0.001

0.001

0.001

0.001

0.002

0.002

0.003

0.003

0.009

0.001

0.002

800.0

0.001

0.002

0.002

0.003

0.003

0.002

0.002

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:12:51.0

0:00:01.0

0:00:20.0

0:00:39.0

0:00:58.0

0:01:17.0

0:01:36.0

0:01:55.0

0:02:14.0

0:02:33.0

0:02:52.0

0:03:11.0

0:03:30.0

0:03:49.0

0:04:08.0

0:04:27.0

0:04:46.0

0:05:05.0

0:05:24.0

0:05:43.0

0:06:02.0

0:06:21.0

0:06:40.0

0:06:59.0

0:07:18.0

0:07:37.0

0:07:56.0

0:08:15.0

0:08:34.0

0:08:53.0

0:09:12.0

0:09:31.0

0:09:50.0

0:10:09.0

0:10:28.0

0:10:47.0

0:11:06.0

0:11:25.0

0:11:44.0

0:12:03.0

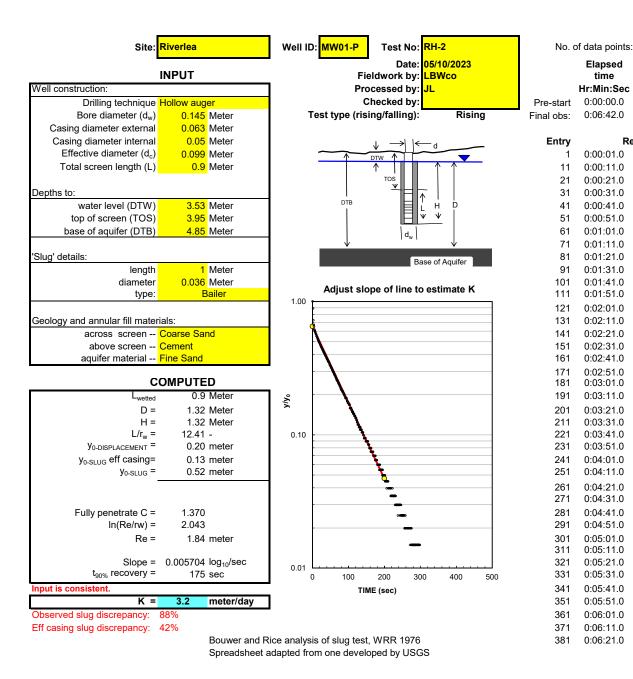
20

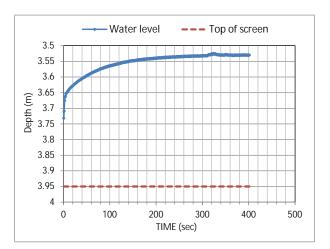
39

58

77

96


Effective casing radius (m)	0.052
Effective casing diameter (m)	0.104


Check significance of varying screen length during test

Was the water level always above top of screen?	Yes
Displacement (yo) as % of initial saturated screen length	-

REMARKS:

Top of screen in well is at 2.5m bgl (3.35m btoc) but adjusted to 3.1m (3.95m btoc) because sandy clay to 3.1m depth likely does not contribute to flows in/out of the well.

HSEPA EPA/600/R-93/202 1994

USEFA EFA/800/R-93/202, 1994	
Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.65
Observed drawdown (m)	0.2020
Inferred drawdown for formation (m)	0.1313
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3)	0.0008
Vol. filter pack that recharged water originated from (m3)	0.0018
Specific yield of filter pack (-)	0.43
Effective casing radius (m)	0.050
Effective casing diameter (m)	0.099

Butler, 1997

402

Water

Level

Meter

3.53

3.525

Reduced Dataset

3.732

3.644

3.628

3.615

3.605

3.596

3.588

3.581

3.574

3.569

3.565

3.560

3.557

3.553

3.551

3.548

3.546

3.544

3.542

3.541

3.540

3.539

3.537

3.537

3.536

3.535

3.534

3.534

3.533

3.533

3.532

3.531

3.526

3.528

3.530

3.529

3.530

3.530

3.531

Draw-

down

Meter

0.005

0.202

0.114

0.098

0.085

0.075

0.066

0.058

0.051

0.044

0.039

0.035

0.030

0.027

0.023

0.021

0.018

0.016

0.014

0.012

0.011

0.010

0.009

0.007

0.007

0.006

0.005

0.004

0.004

0.003

0.003

0.002

0.001

0.004

0.002

0.000

0.001

0.000

0.000

0.001

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:06:42.0

0:00:01.0

0:00:11.0

0:00:21.0

0:00:31.0

0:00:41.0

0:00:51.0

0:01:01.0

0:01:11.0

0:01:21.0

0:01:31.0

0:01:41.0

0:01:51.0

0:02:01.0

0:02:11.0

0:02:21.0

0:02:31.0

0:02:41.0

0:02:51.0

0:03:01.0

0:03:11.0

0:03:21.0

0:03:31.0

0:03:41.0

0:03:51.0

0:04:01.0

0:04:11.0

0:04:21.0

0:04:31.0

0:04:41.0

0:04:51.0

0:05:01.0

0:05:11.0

0:05:21.0

0:05:31.0

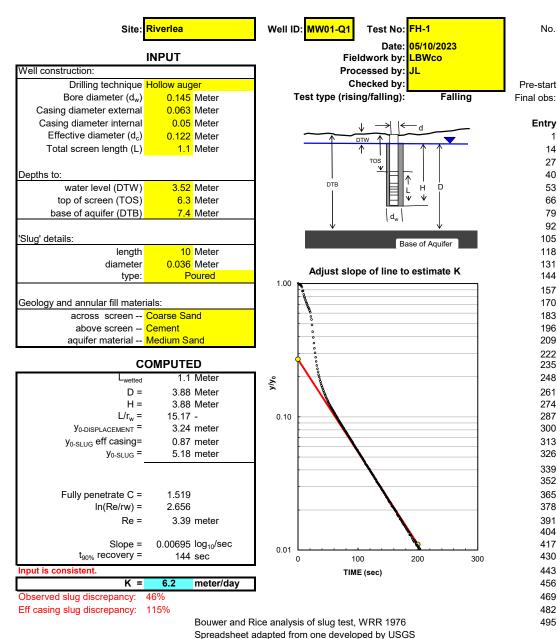
0:05:41.0

0:05:51.0

0:06:01.0

0:06:11.0

0:06:21.0


Effective casing radius (m)	0.050
Effective casing diameter (m)	0.099

Check significance of varying screen length during test

Was the water level always above top of screen?	Yes
Displacement (yo) as % of initial saturated screen length	-

REMARKS:

Top of screen in well is at 2.5m bgl (3.35m btoc) but adjusted to 3.1m (3.95m btoc) because sandy clay to 3.1m depth likely does not contribute to flows in/out of the well.

No. of data points:

Elapsed

time

Hr:Min:Sec

0:00:00.0

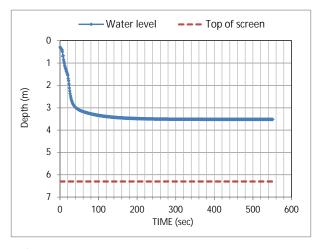
0:09:12.0

552

Water

Level

Meter


3.521

Draw-

down

Meter

-0.001

USEPA EPA/600/R-93/202, 1994

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.27
Observed drawdown (m)	3.2350
Inferred drawdown for formation (m)	0.8735
Expected displacement based on slug volume (m)	5.1840
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0085 0.0117
Specific yield of filter pack (-)	0.72
Effective casing radius (m)	0.061
Effective casing diameter (m)	0.122

Butler, 1997

Effective casing radius (m)	0.061
Effective casing diameter (m)	0.122

Check significance of varying screen length during test

Was the water level a	lways above top	of screen?		Yes
Displacement (yo) as	% of initial satura	ated screen I	ength	_

REMARKS:

Base of screen in well is 7.15m bgl (7.85m btoc) but base of sandy gravel is 6.6m bgl so effective base of screen set to 6.6m bgl (7.4m btoc). Top of screen 5.65m bgl but aquifer (sandy gravel) fully saturated from 5.5 to 6.6m bgl (6.3 to 7.4m btoc) so effective top of screen set at 5.5m bgl (6.3m btoc).

456

469

482

495

0:07:36.0

0:07:49.0

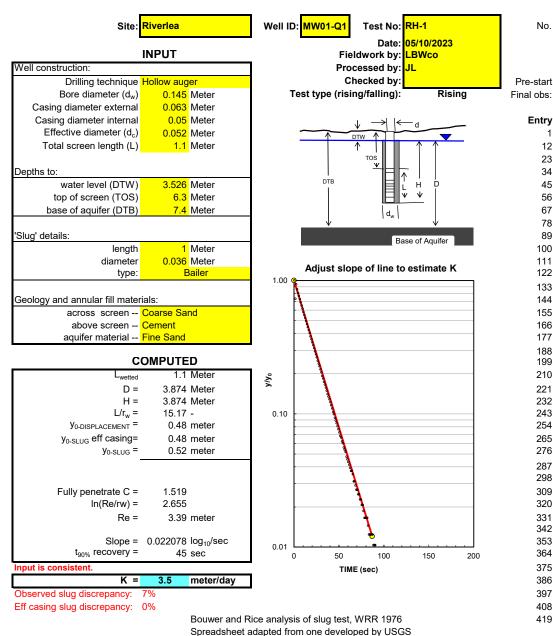
0:08:02.0

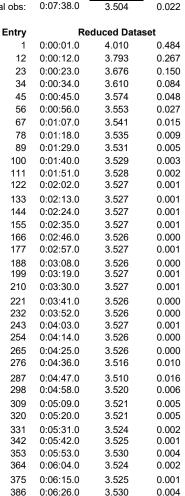
0:08:15.0

3.520

3.520

3.520


3.520


0.000

0.000

0.000

0.000

Elapsed

time

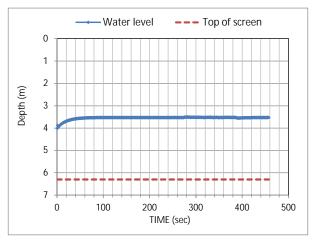
Hr:Min:Sec

0:00:00.0

458

Water

Level


Meter

3.526

Draw-

down

Meter

USEPA EPA/600/R-93/202, 1994

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	0.4840
Inferred drawdown for formation (m)	0.4840
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0001 0.0065
Specific yield of filter pack (-)	0.01
Effective casing radius (m)	0.026
Effective casing diameter (m)	0.052

Butler, 1997

Effective casing radius (m)	0.026
Effective casing diameter (m)	0.052

Check significance of varying screen length during test

Was the wat	er level alwa	ays above	top of screen?		Yes
Displacemen	t (yo) as %	of initial sa	turated screen	length	-

REMARKS:

Base of screen in well is 7.15m bgl (7.85m btoc) but base of sandy gravel is 6.6m bgl so effective base of screen set to 6.6m bgl (7.4m btoc). Top of screen 5.65m bgl but aquifer (sandy gravel) fully saturated from 5.5 to 6.6m bgl (6.3 to 7.4m btoc) so effective top of screen set at 5.5m bgl (6.3m btoc).

397

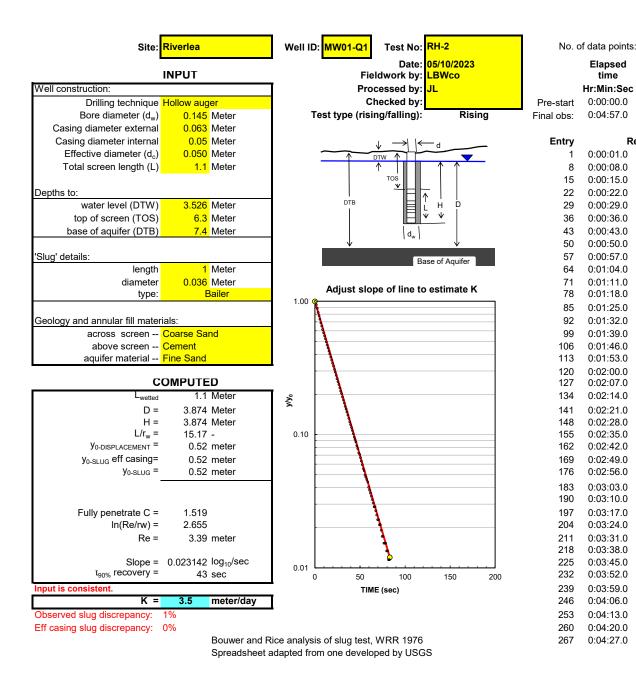
408

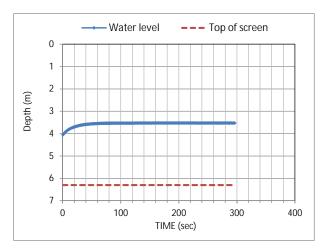
419

0:06:37.0

0:06:48.0

0:06:59.0


3.547


3.538

3.533

0.021

0.012

00217(217000)((00)202, 100-	
Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	0.5210
Inferred drawdown for formation (m)	0.5210
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3)	0.0000
Vol. filter pack that recharged water originated from (m3)	0.0070
Specific yield of filter pack (-)	0.00
Effective casing radius (m)	0.025
Effective casing diameter (m)	0.050

Butler, 1997

297

Water

Level

Meter

3.526

3.525

Reduced Dataset

4.047

3.866

3.759

3.687

3.637

3.603

3.579

3.563

3.551

3.543

3.538

3.534

3.531

3.530

3 528

3.527

3.527

3.526

3.525

3.525

3.525

3.526

3.525

3.525

3.525

3.525

3.525

3.525

3.525

3.525

3.525

3.525

3.525

3.526

3.525

3.525

3.525

3.525

3.525

Draw-

down

Meter

0.001

0.521

0.340

0.233

0.161

0.111

0.077

0.053

0.037

0.025

0.017

0.012

0.008

0.005

0.004

0.002

0.001

0.001

0.000

0.001

0.001

0.001

0.000

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.000

0.001

0.001

0.001

0.001

0.001

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:04:57.0

0:00:01.0

0:00:08.0

0:00:15.0

0:00:22.0

0:00:29.0

0:00:36.0

0:00:43.0

0:00:50.0

0:00:57.0

0:01:04.0

0:01:11.0

0:01:18.0

0:01:25.0

0:01:32.0

0:01:39.0

0:01:46.0

0:01:53.0

0:02:00.0

0:02:07.0

0:02:14.0

0:02:21.0

0:02:28.0

0:02:35.0

0:02:42.0

0:02:49.0

0:02:56.0

0:03:03.0

0:03:10.0

0:03:17.0

0:03:24.0

0:03:31.0

0:03:38.0

0:03:45.0

0:03:52.0

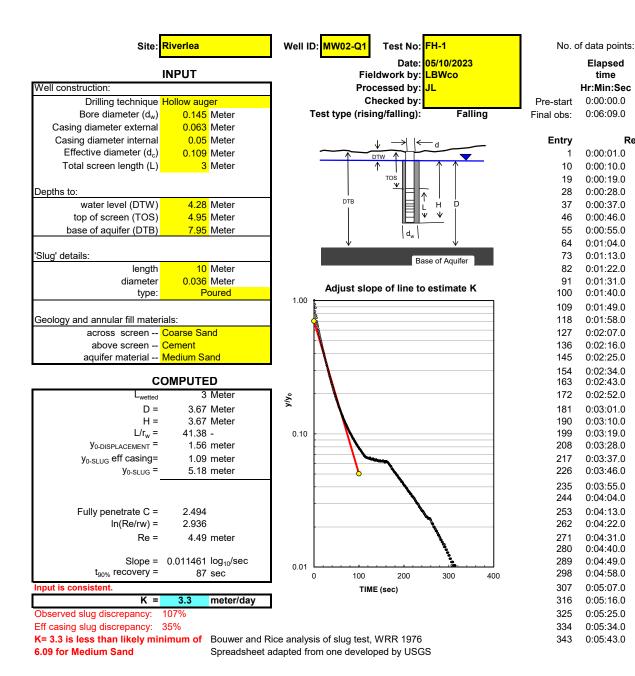
0:03:59.0

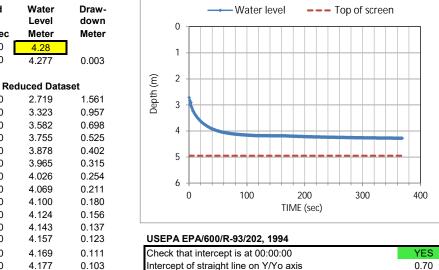
0:04:06.0

0:04:13.0

0:04:20.0

0:04:27.0


Effective casing radius (m)	0.025
Effective casing diameter (m)	0.050


Check significance of varying screen length during test

Was the water level a	always above top	of screen?		Yes
Displacement (yo) as	% of initial satur	ated screen le	enath	_

REMARKS:

Base of screen in well is 7.15m bgl (7.85m btoc) but base of sandy gravel is 6.6m bgl so effective base of screen set to 6.6m bgl (7.4m btoc). Top of screen 5.65m bgl but aguifer (sandy gravel) fully saturated from 5.5 to 6.6m bgl (6.3 to 7.4m btoc) so effective top of screen set at 5.5m bgl (6.3m btoc).

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.70
Observed drawdown (m)	1.5610
Inferred drawdown for formation (m)	1.0927
Expected displacement based on slug volume (m)	5.1840
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0080 0.0146
Specific yield of filter pack (-)	0.55
Effective casing radius (m)	0.054
Effective casing diameter (m)	0.109

Butler, 1997

369

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:06:09.0

0:00:01.0

0:00:10.0

0:00:19.0

0:00:28.0

0:00:37.0

0:00:46.0

0:00:55.0

0:01:04.0

0:01:13.0

0:01:22.0

0:01:31.0

0:01:40.0

0:01:49.0

0:01:58.0

0:02:07.0

0:02:16.0

0:02:25.0

0:02:34.0

0:02:43.0

0:02:52.0

0:03:01.0

0:03:10.0

0:03:19.0

0:03:28.0

0:03:37.0

0:03:46.0

0:03:55.0

0:04:04.0

0:04:13.0

0:04:22.0

0:04:31.0

0:04:40.0

0:04:49.0

0:04:58.0

0:05:07.0

0:05:16.0

0:05:25.0

0:05:34.0

0:05:43.0

4.179

4.181

4.183

4.182

4.184

4.191

4.200

4.208

4.214

4.220

4.225

4.231

4.236

4.240

4.243

4.246

4.250

4.254

4.257

4.260

4.264

4.265

4.268

4.270

4.272

0.101

0.099

0.097

0.098

0.096

0.089

0.080

0.072

0.066

0.060

0.055

0.049

0.044

0.040

0.037

0.034

0.030

0.026

0.023

0.020

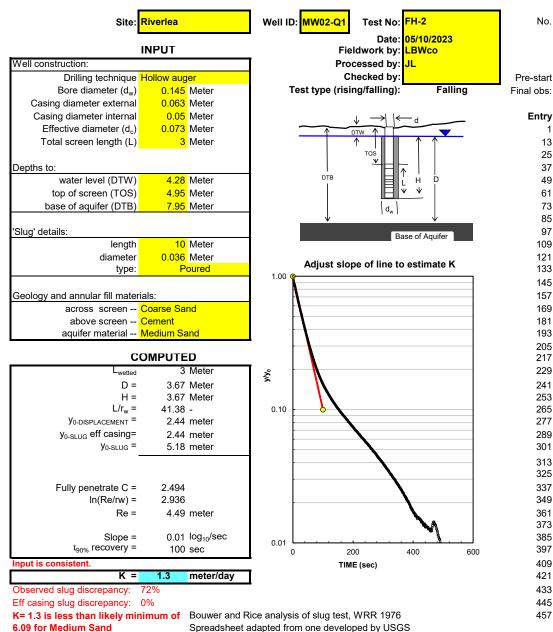
0.016

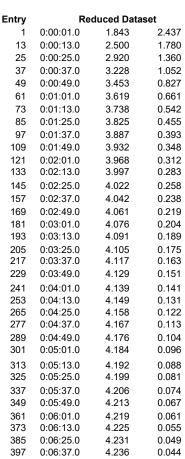
0.015

0.012

0.010

800.0


Effective casing radius (m)	0.054
Effective casing diameter (m)	0.109


Check significance of varying screen length during test

Was the wat	er level alwa	ays above	top of screen?		Yes
Displacemen	t (yo) as %	of initial sa	turated screen	length	-

REMARKS:

Base of screen in well is 7.5m bgl (8.45m btoc) but base of sand is 7m bgl so effective base of screen set to 7m bgl (7.95m btoc). Top of screen 3m bgl but aguifer (sand) starts at 4m bgl so effective top of screen set at 4m bgl (4.95m btoc).

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:08:31.0

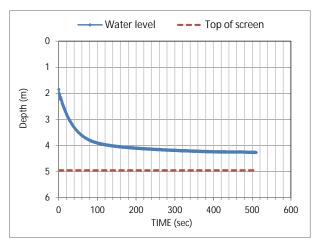
511

Water

Level

Meter

4.28


4.264

Draw-

down

Meter

0.016

USEPA EPA/600/R-93/202, 1994

USEFA EFA/000/R-93/202, 1994	
Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	2.4370
Inferred drawdown for formation (m)	2.4370
Expected displacement based on slug volume (m)	5.1840
Vol. water recharged by filter pack (m3)	0.0054
Vol. filter pack that recharged water originated from (m3)	0.0326
Specific yield of filter pack (-)	0.17
Effective casing radius (m)	0.036
Effective casing diameter (m)	0.073

Butler, 1997

Effective casing radius (m)	0.036
Effective casing diameter (m)	0.073

Check significance of varying screen length during test

Was the water level alv	ways above top	of screen?		Yes
Displacement (yo) as %			ength	-

REMARKS:

Base of screen in well is 7.5m bgl (8.45m btoc) but base of sand is 7m bgl so effective base of screen set to 7m bgl (7.95m btoc). Top of screen 3m bgl but aguifer (sand) starts at 4m bgl so effective top of screen set at 4m bgl (4.95m btoc).

409

421

433

445

457

0:06:49.0

0:07:01.0

0:07:13.0

0:07:25.0

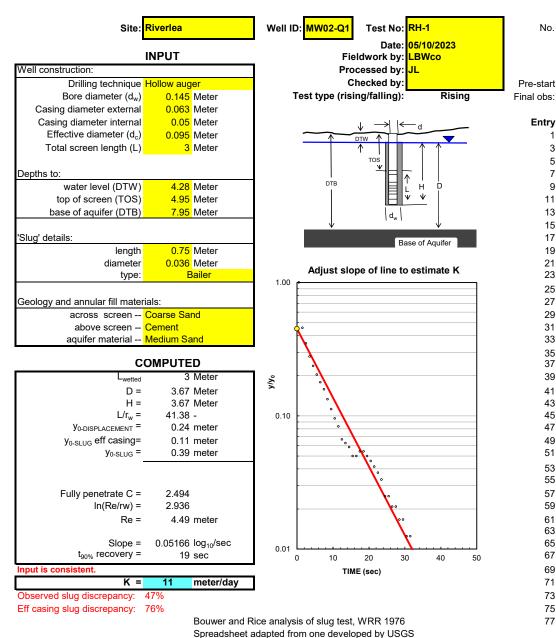
0:07:37.0

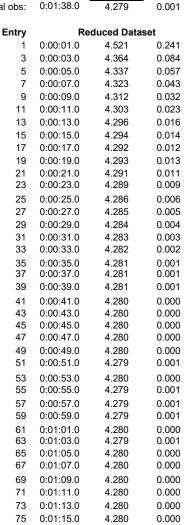
4.241

4.243

4.246

4.248


4.250


0.039

0.037

0.034

0.032

Elapsed

time

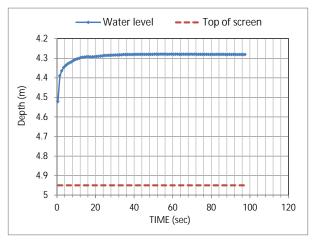
Hr:Min:Sec

0:00:00.0

98

Water

Level


Meter

4.28

Draw-

down

Meter

USEPA EPA/600/R-93/202, 1994

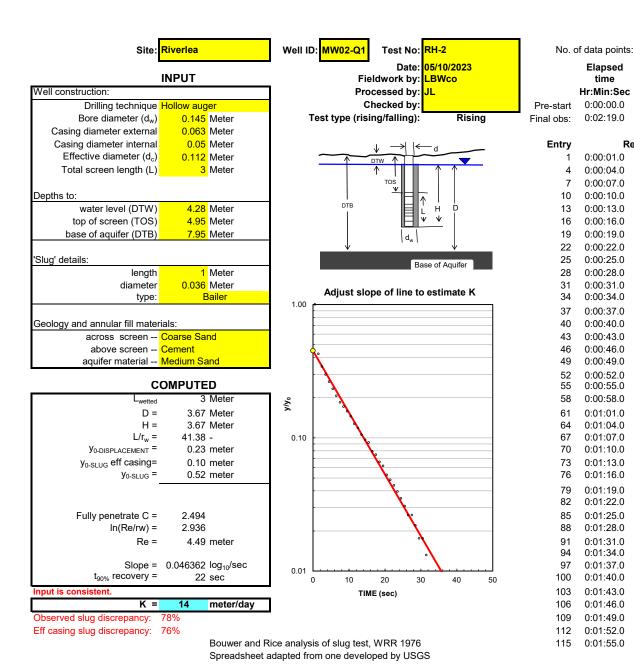
Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.45
Observed drawdown (m)	0.2410
Inferred drawdown for formation (m)	0.1085
Expected displacement based on slug volume (m)	0.3888
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0006 0.0015
Specific yield of filter pack (-)	0.38
Effective casing radius (m)	0.047
Effective casing diameter (m)	0.095

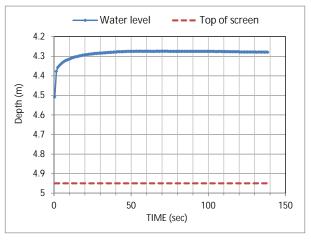
Butler, 1997

Effective casing radius (m)	0.047
Effective casing diameter (m)	0.095

Check significance of varying screen length during test

Was the water level al	ways above top	of screen?		Yes
Displacement (yo) as 9	% of initial satur	ated screen l	ength	-


REMARKS:


Base of screen in well is 7.5m bgl (8.45m btoc) but base of sand is 7m bgl so effective base of screen set to 7m bgl (7.95m btoc). Top of screen 3m bgl but aguifer (sand) starts at 4m bgl so effective top of screen set at 4m bgl (4.95m btoc).

77

0:01:17.0

4.280

·	
Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.45
Observed drawdown (m)	0.2280
Inferred drawdown for formation (m)	0.1026
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0008 0.0014
Specific yield of filter pack (-)	0.59
Effective casing radius (m)	0.056
Effective casing diameter (m)	0.112

Butler, 1997

139

Water

Level

Meter

4.28

4.274

Reduced Dataset

4.508

4.348

4.327

4.316

4.307

4.301

4.295

4.291

4.288

4.286

4.284

4.282

4.280

4.278

4.277

4.276

4.275

4.275

4.275

4.275

4.275

4.275

4.274

4.274

4.274

4.275

4.275

4.275

4.275

4.275

4.275

4.275

4.275

4.275

4.275

4.276

4.276

4.277

4.277

Draw-

down

Meter

0.006

0.228

0.068

0.047

0.036

0.027

0.021

0.015

0.011

800.0

0.006

0.004

0.002

0.000

0.002

0.003

0.004

0.005

0.005

0.005

0.005

0.005

0.005

0.006

0.006

0.006

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.004

0.004

0.003

0.003

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:02:19.0

0:00:01.0

0:00:04.0

0:00:07.0

0:00:10.0

0:00:13.0

0:00:16.0

0:00:19.0

0:00:22.0

0:00:25.0

0:00:28.0

0:00:31.0

0:00:34.0

0:00:37.0

0:00:40.0

0:00:43.0

0:00:46.0

0:00:49.0

0:00:52.0

0:00:55.0

0:00:58.0

0:01:01.0

0:01:04.0

0:01:07.0

0:01:10.0

0:01:13.0

0:01:16.0

0:01:19.0

0:01:22.0

0:01:25.0

0:01:28.0

0:01:31.0

0:01:34.0

0:01:37.0

0:01:40.0

0:01:43.0

0:01:46.0

0:01:49.0

0:01:52.0

0:01:55.0

4

10

13

16

19

22

25

28

31

34

37

40

43

46

49

52

55

58

61

64

67

70

73

76

79

82

85

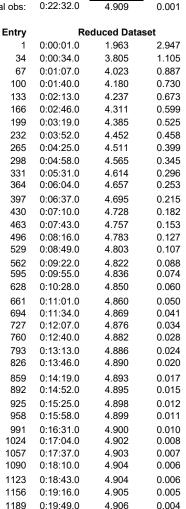
88

91

94

97

Effective casing radius (m)	0.056
Effective casing diameter (m)	0.112


Check significance of varying screen length during test

Was the water level always above top of screen?	Yes
Displacement (yo) as % of initial saturated screen length	-

REMARKS:

Base of screen in well is 7.5m bgl (8.45m btoc) but base of sand is 7m bgl so effective base of screen set to 7m bgl (7.95m btoc). Top of screen 3m bgl but aquifer (sand) starts at 4m bgl so effective top of screen set at 4m bgl (4.95m btoc).

Elapsed

time

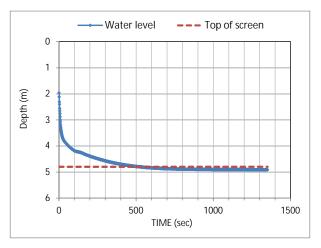
Hr:Min:Sec

0:00:00.0

1352

Water

Level


Meter

4.91

Draw-

down

Meter

USEPA EPA/600/R-93/202, 1994

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.55
Observed drawdown (m)	2.9470
Inferred drawdown for formation (m)	1.6209
Expected displacement based on slug volume (m)	5.1840
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0070 0.0217
Specific yield of filter pack (-)	0.32
Effective casing radius (m)	0.045
Effective casing diameter (m)	0.089

Butler, 1997

Effective casing radius (m)	0.045
Effective casing diameter (m)	0.089

Check significance of varying screen length during test

Was the water level always above top of screen?	No
Displacement (yo) as % of initial saturated screen length	156%

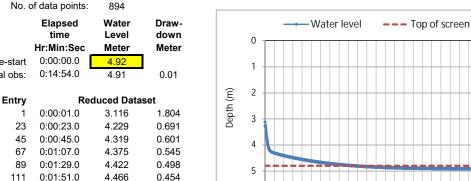
REMARKS:

0.003

0.003

4.907

4.907


Base of screen in well is 6.5m bgl (7.3m btoc) but base of sand is 6m so effective base of screen set to 6m bgl (6.8m btoc). Top of screen 4m bgl (4.8m btoc) at inferred top of Q1.

1255

0:20:22.0

0:20:55.0

200

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.50
Observed drawdown (m)	1.8040
Inferred drawdown for formation (m)	0.9020
Expected displacement based on slug volume (m)	2.5920
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0033 0.0121
Specific yield of filter pack (-)	0.27
Effective casing radius (m)	0.042
Effective casing diameter (m)	0.085

400

TIME (sec)

600

800

1000

Butler, 1997

Effective casing radius (m)	0.042
Effective casing diameter (m)	0.085

Check significance of varying screen length during test

Was the water level always above top of screen?	No
Displacement (yo) as % of initial saturated screen length	95%

REMARKS:

Base of screen in well is 6.5m bgl (7.3m btoc) but base of sand is 6m so effective base of screen set to 6m bgl (6.8m btoc). Top of screen 4m bgl (4.8m btoc) at inferred top of Q1.

133

155

177

199

221

243

265

287

309

331

353

375

397

419

441

463

485

507

529

551

573

595

617

639

661

683

705

727

749

771

793

815

837

0:02:13.0

0:02:35.0

0:02:57.0

0:03:19.0

0:03:41.0

0:04:03.0

0:04:25.0

0:04:47.0

0:05:09.0

0:05:31.0

0:05:53.0

0:06:15.0

0:06:37.0

0:06:59.0

0:07:21.0

0:07:43.0

0:08:05.0

0:08:27.0

0:08:49.0

0:09:11.0

0:09:33.0

0:09:55.0

0:10:17.0

0:10:39.0

0:11:01.0

0:11:23.0

0:11:45.0

0:12:07.0

0:12:29.0

0:12:51.0

0:13:13.0

0:13:35.0

0:13:57.0

4.506

4.544

4.579

4.612

4.641

4.669

4.694

4.717

4.738

4.758

4.776

4.792

4.806

4.819

4.831

4.840

4.850

4.858

4.866

4.872

4.878

4.883

4.886

4.890

4.893

4.896

4.899

4.901

4.903

4.905

4.906

4.907

4.909

0.414

0.376

0.341

0.308

0.279

0.251

0.226

0.203

0.182

0.162

0.144

0.128

0.114

0.101

0.089

0.080

0.070

0.062

0.054

0.048

0.042

0.037

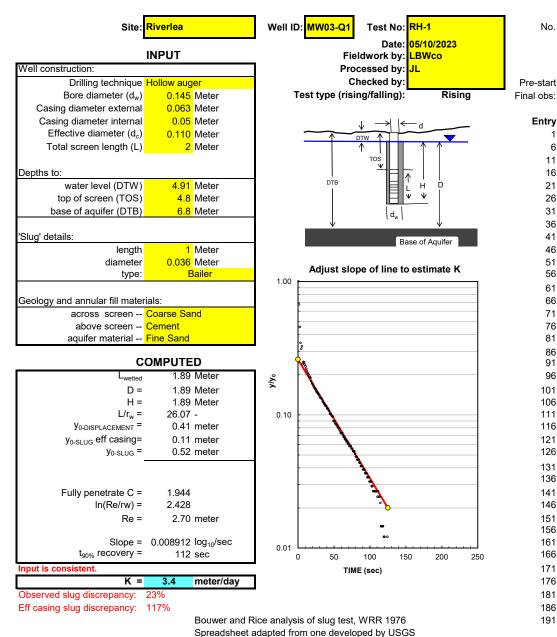
0.034

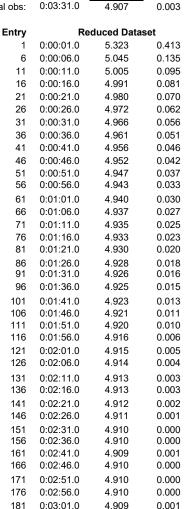
0.030

0.027

0.024

0.021


0.019


0.017

0.015

0.014

0.013

Elapsed

time

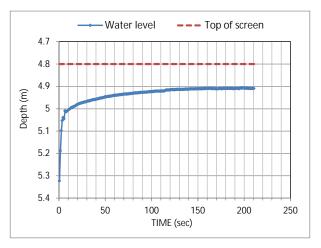
Hr:Min:Sec

0:00:00.0

211

Water

Level


Meter

4.91

Draw-

down

Meter

USEPA EPA/600/R-93/202, 1994

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.26
Observed drawdown (m)	0.4130
Inferred drawdown for formation (m)	0.1074
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0008 0.0014
Specific yield of filter pack (-)	0.56
Effective casing radius (m)	0.055
Effective casing diameter (m)	0.110

Butler, 1997

Effective casing radius (m)	0.055
Effective casing diameter (m)	0.110

Check significance of varying screen length during test

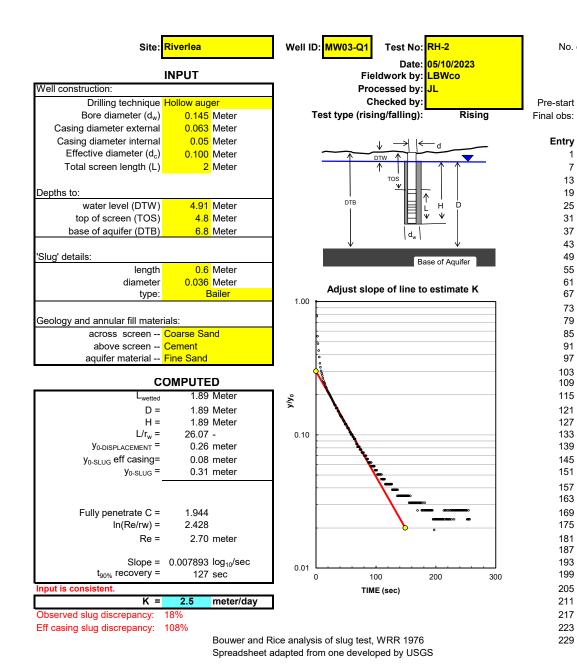
Was the water level always above top of screen?	No
Displacement (yo) as % of initial saturated screen length	22%

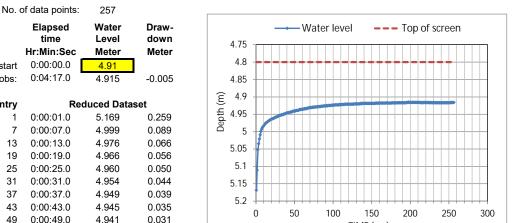
REMARKS:

Base of screen in well is 6.5m bgl (7.3m btoc) but base of sand is 6m so effective base of screen set to 6m bgl (6.8m btoc). Top of screen 4m bgl (4.8m btoc) at inferred top of Q1.

186

191


0:03:06.0


0:03:11.0

4.909

4.909

0.001

·	
Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.30
Observed drawdown (m)	0.2590
Inferred drawdown for formation (m)	0.0777
Expected displacement based on slug volume (m)	0.3110
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0005 0.0010
Specific yield of filter pack (-)	0.44
Effective casing radius (m)	0.050
Effective casing diameter (m)	0.100

TIME (sec)

Butler, 1997

Effective casing radius (m)	0.050
Effective casing diameter (m)	0.100

Check significance of varying screen length during test

Was the water level always above top of screen?	No
Displacement (yo) as % of initial saturated screen length	14%

REMARKS:

Base of screen in well is 6.5m bgl (7.3m btoc) but base of sand is 6m so effective base of screen set to 6m bgl (6.8m btoc). Top of screen 4m bgl (4.8m btoc) at inferred top of Q1.

0:00:55.0

0:01:01.0

0:01:07.0

0:01:13.0

0:01:19.0

0:01:25.0

0:01:31.0

0:01:37.0

0:01:43.0

0:01:49.0

0:01:55.0

0:02:01.0

0:02:07.0

0:02:13.0

0:02:19.0

0:02:25.0

0:02:31.0

0:02:37.0

0:02:43.0

0:02:49.0

0:02:55.0

0:03:01.0

0:03:07.0

0:03:13.0

0:03:19.0

0:03:25.0

0:03:31.0

0:03:37.0

0:03:43.0

0:03:49.0

4.939

4.936

4.933

4.931

4.929

4.927

4.926

4.925

4.923

4.922

4.922

4.921

4.921

4.920

4.919

4.919

4.919

4.918

4.918

4.918

4.918

4.917

4.917

4.917

4.916

4.916

4.916

4.917

4.916

4.917

0.029

0.026

0.023

0.021

0.019

0.017

0.016

0.015

0.013

0.012

0.012

0.011

0.011

0.010

0.009

0.009

0.009

800.0

800.0

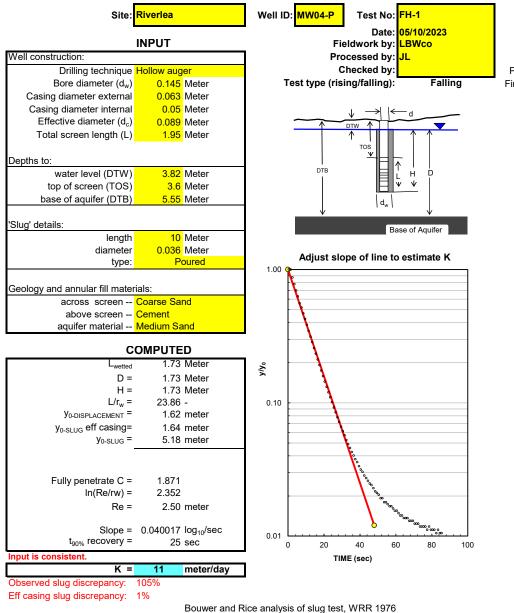
800.0

800.0

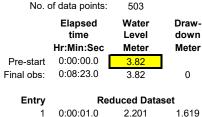
0.007

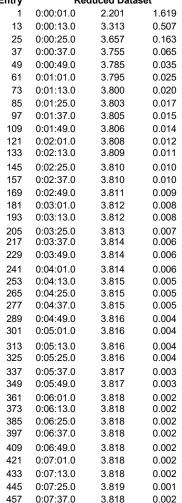
0.007

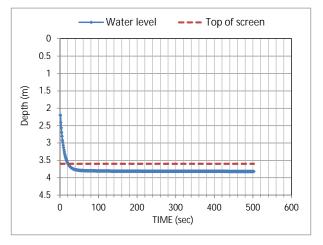
0.007


0.006

0.006


0.006


0.007

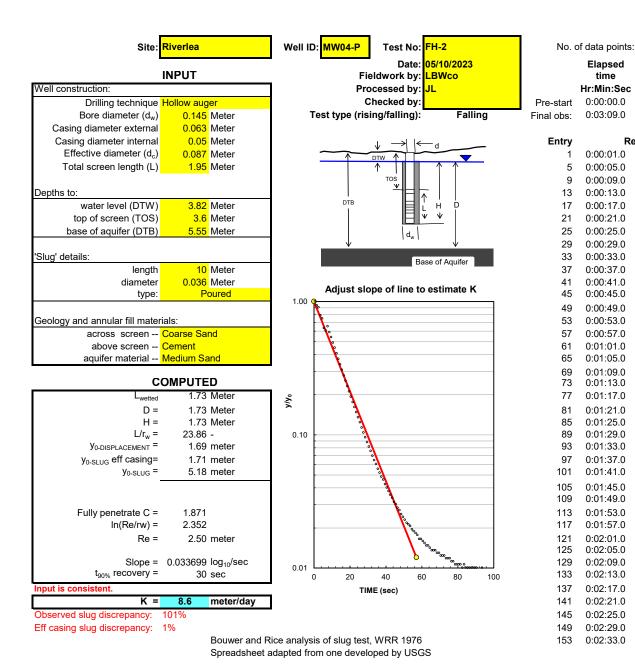

0.006

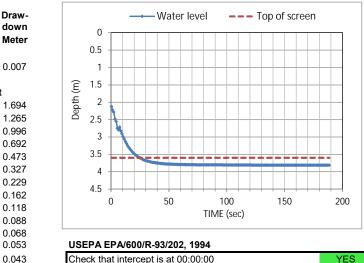
Spreadsheet adapted from one developed by USGS

USEPA EPA/600/R-93/202, 1994

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	1.6190
Inferred drawdown for formation (m)	1.6190
Expected displacement based on slug volume (m)	5.1840
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0070 0.0217
Specific yield of filter pack (-)	0.32
Effective casing radius (m)	0.045
Effective casing diameter (m)	0.089

Butler, 1997


Effective casing radius (m)	0.045
Effective casing diameter (m)	0.089


Check significance of varying screen length during test

Was the water level always above top of screen?	No
Displacement (yo) as % of initial saturated screen length	94%

REMARKS:

BH log shows mainly sand from 2.8m to 4.75m bgl (3.6 to 5.55m btoc) with predominantly clay above and below. Effective base of screen and aquifer assumed to be 4.75m bgl (5.55m btoc).

00E1 A E1 A1000/1C-33/202, 1334	
Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	1.6940
Inferred drawdown for formation (m)	1.6940
Expected displacement based on slug volume (m)	5.1840
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0069 0.0227
Specific yield of filter pack (-)	0.30
Effective casing radius (m)	0.044
Effective casing diameter (m)	0.087

Butler, 1997

189

Water

Level

Meter

3.82

3.813

Reduced Dataset

2.126

2.555

2.824

3.128

3.347

3.493

3.591

3.658

3.702

3.732

3.752

3.767

3.777

3.784

3.789

3.793

3.796

3.798

3.799

3.801

3.802

3.803

3.803

3.804

3.804

3.805

3.805

3.806

3.807

3.807

3.808

3.809

3.809

3.809

3.810

3.810

3.810

3.811

3.811

0.036

0.031

0.027

0.024

0.022

0.021

0.019

0.018

0.017

0.017

0.016

0.016

0.015

0.015

0.014

0.013

0.013

0.012

0.011

0.011

0.011

0.010

0.010

0.010

0.009

0.009

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:03:09.0

0:00:01.0

0:00:05.0

0:00:09.0

0:00:13.0

0:00:17.0

0:00:21.0

0:00:25.0

0:00:29.0

0:00:33.0

0:00:37.0

0:00:41.0

0:00:45.0

0:00:49.0

0:00:53.0

0:00:57.0

0:01:01.0

0:01:05.0

0:01:09.0

0:01:13.0

0:01:17.0

0:01:21.0

0:01:25.0

0:01:29.0

0:01:33.0

0:01:37.0

0:01:41.0

0:01:45.0

0:01:49.0

0:01:53.0

0:01:57.0

0:02:01.0

0:02:05.0

0:02:09.0

0:02:13.0

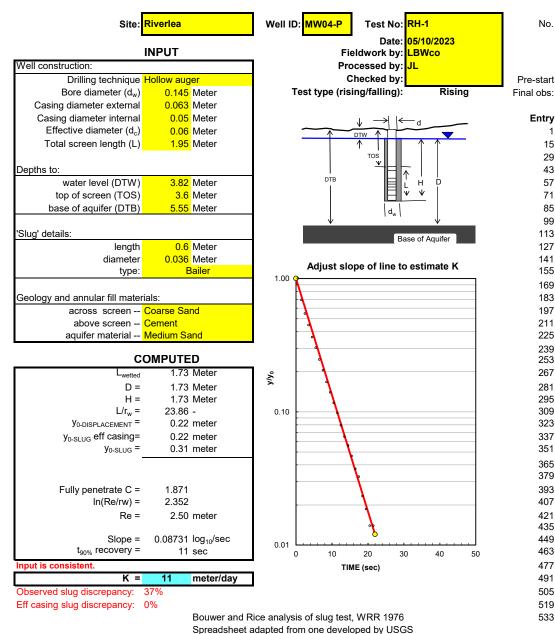
0:02:17.0

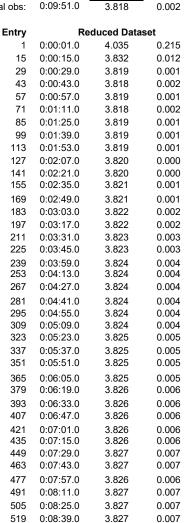
0:02:21.0

0:02:25.0

0:02:29.0

0:02:33.0


Effective casing radius (m)	0.044
Effective casing diameter (m)	0.087


Check significance of varying screen length during test

Was the water level always above top of screen?	No
Displacement (yo) as % of initial saturated screen length	98%

REMARKS:

BH log shows mainly sand from 2.8m to 4.75m bgl (3.6 to 5.55m btoc) with predominantly clay above and below. Effective base of screen and aquifer assumed to be 4.75m bgl (5.55m btoc)

Elapsed

time

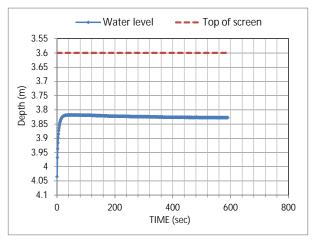
Hr:Min:Sec

0:00:00.0

591

Water

Level


Meter

3.82

Draw-

down

Meter

USEPA EPA/600/R-93/202, 1994

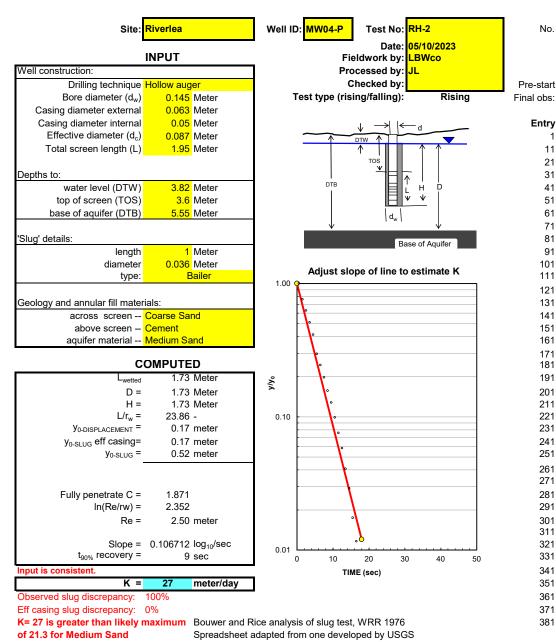
·	
Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	0.2150
Inferred drawdown for formation (m)	0.2150
Expected displacement based on slug volume (m)	0.3110
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0002 0.0029
Specific yield of filter pack (-)	0.07
Effective casing radius (m)	0.030
Effective casing diameter (m)	0.060

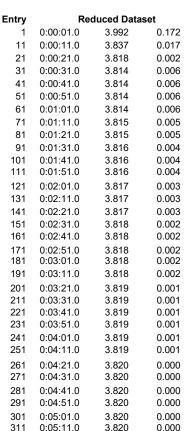
Butler, 1997

Effective casing radius (m)	0.030
Effective casing diameter (m)	0.060

Check significance of varying screen length during test

Was the water level always above top of screen?	No
Displacement (yo) as % of initial saturated screen length	12%


REMARKS:


BH log shows mainly sand from 2.8m to 4.75m bgl (3.6 to 5.55m btoc) with predominantly clay above and below. Effective base of screen and aquifer assumed to be 4.75m bgl (5.55m btoc)

533

0:08:53.0

3.827

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:07:02.0

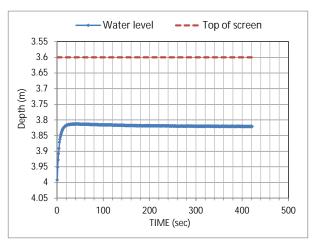
422

Water

Level

Meter

3.82


3.813

Draw-

down

Meter

0.007

USEPA EPA/600/R-93/202, 1994

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	0.1720
Inferred drawdown for formation (m)	0.1720
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0007 0.0023
Specific yield of filter pack (-)	0.30
Effective casing radius (m)	0.043
Effective casing diameter (m)	0.087

Butler, 1997

Effective casing radius (m)	0.043
Effective casing diameter (m)	0.087

Check significance of varying screen length during test

Was the water level always above top of screen?	No
Displacement (yo) as % of initial saturated screen length	10%

REMARKS:

BH log shows mainly sand from 2.8m to 4.75m bgl (3.6 to 5.55m btoc) with predominantly clay above and below. Effective base of screen and aquifer assumed to be 4.75m bgl (5.55m btoc)

321

331

341

351

361

371

381

0:05:21.0

0:05:31.0

0:05:41.0

0:05:51.0

0:06:01.0

0:06:11.0

0:06:21.0

3.820

3.820

3.820

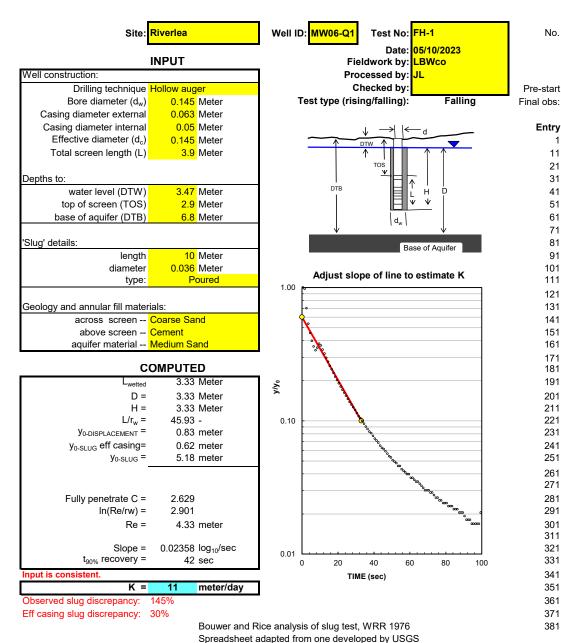
3.821

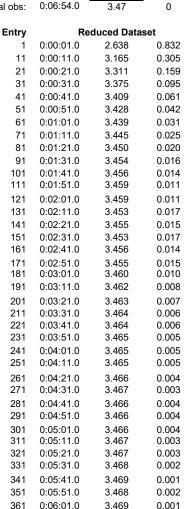
3.820

3.821

3.820

0.000


0.000


0.000

0.001

0.000

0.001

Elapsed

time

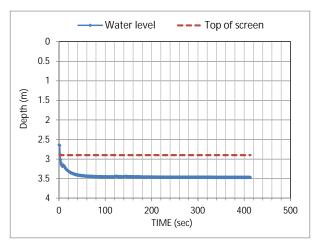
Hr:Min:Sec

0:00:00.0

414

Water

Level


Meter

3.47

Draw-

down

Meter

USEPA EPA/600/R-93/202, 1994

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.60
Observed drawdown (m)	0.8320
Inferred drawdown for formation (m)	0.4992
Expected displacement based on slug volume (m)	5.1840
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0092 0.0067
Specific yield of filter pack (-)	1.38
Effective casing radius (m)	0.081
Effective casing diameter (m)	0.161

Butler, 1997

Effective casing radius (m)	0.081
Effective casing diameter (m)	0.161

Check significance of varying screen length during test

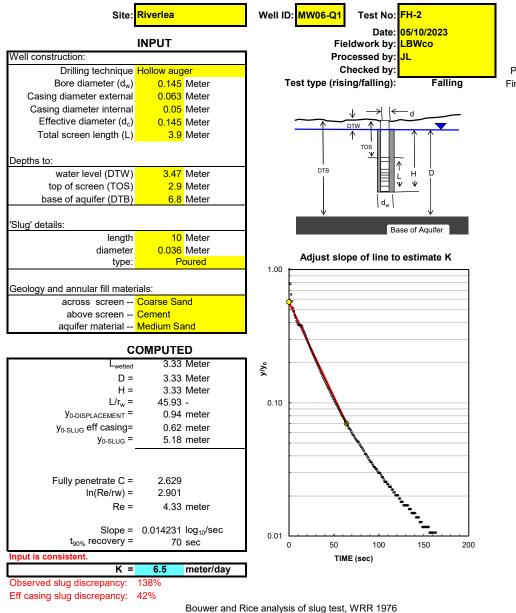
	-
Was the water level always above top of screen?	No
Displacement (yo) as % of initial saturated screen length	25%

REMARKS:

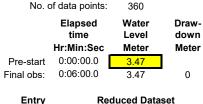
Base of screen in well is 6.5m bgl (7.4m btoc) but base of sand is 5.9m so effective base of screen set to 5.9m (6.8m btoc).

371

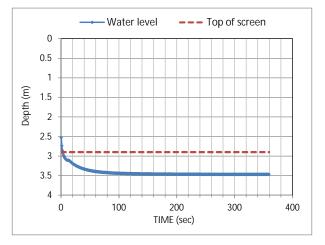
381


0:06:11.0

0:06:21.0


3.469

3.469


0.001

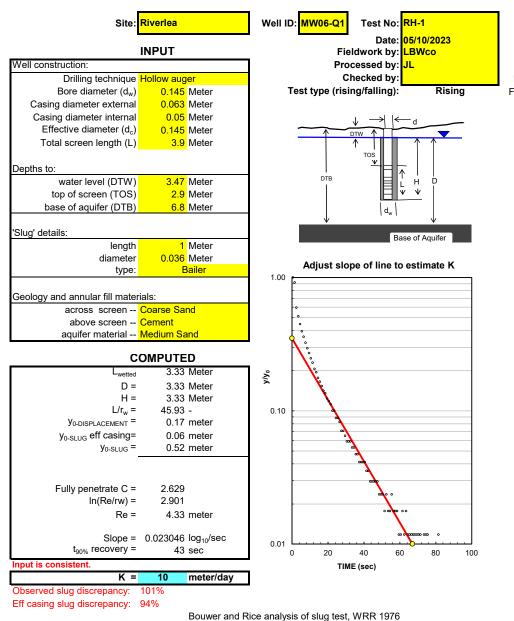
Spreadsheet adapted from one developed by USGS

Liiti y	110	uuceu Dala	361
1	0:00:01.0	2.526	0.944
10	0:00:10.0	3.098	0.372
19	0:00:19.0	3.170	0.300
28	0:00:28.0	3.258	0.212
37	0:00:37.0	3.315	0.155
46	0:00:46.0	3.355	0.115
55	0:00:55.0	3.383	0.087
64	0:01:04.0	3.403	0.067
73	0:01:13.0	3.417	0.053
82	0:01:22.0	3.427	0.043
91	0:01:31.0	3.436	0.034
100	0:01:40.0	3.442	0.028
109	0:01:49.0	3.446	0.024
118	0:01:58.0	3.450	0.020
127	0:02:07.0	3.453	0.017
136	0:02:16.0	3.455	0.015
145	0:02:25.0	3.457	0.013
154 163	0:02:34.0 0:02:43.0	3.459 3.460	0.011 0.010
172	0:02:43.0	3.461	0.010
181	0:02:32.0	3.463	0.009
190	0:03:01.0	3.463	0.007
199	0:03:10.0	3.464	0.007
208	0:03:28.0	3.465	0.005
217	0:03:37.0	3.466	0.004
226	0:03:46.0	3.466	0.004
235	0:03:55.0	3.467	0.003
244	0:04:04.0	3.468	0.002
253	0:04:13.0	3.468	0.002
262	0:04:22.0	3.468	0.002
271	0:04:31.0	3.469	0.001
280	0:04:40.0	3.469	0.001
289	0:04:49.0	3.469	0.001
298	0:04:58.0	3.468	0.002
307	0:05:07.0	3.469	0.001
316	0:05:16.0	3.469	0.001
325	0:05:25.0	3.469	0.001
334	0:05:34.0	3.469	0.001
343	0:05:43.0	3.470	0.000

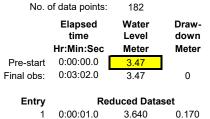
USEPA EPA/600/R-93/202, 1994

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.57
Observed drawdown (m)	0.9440
Inferred drawdown for formation (m)	0.5381
Expected displacement based on slug volume (m)	5.1840
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0091 0.0072
Specific yield of filter pack (-)	1.27
Effective casing radius (m)	0.078
Effective casing diameter (m)	0.155

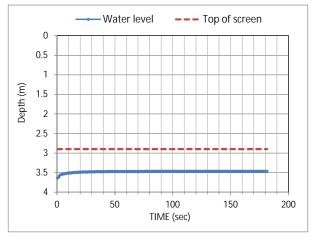
Butler, 1997


Effective casing radius (m)	0.078
Effective casing diameter (m)	0.155

Check significance of varying screen length during test


Was the water level always above top of screen?	No
Displacement (yo) as % of initial saturated screen length	28%

REMARKS:


Base of screen in well is 6.5m bgl (7.4m btoc) but base of sand is 5.9m so effective base of screen set to 5.9m (6.8m btoc).

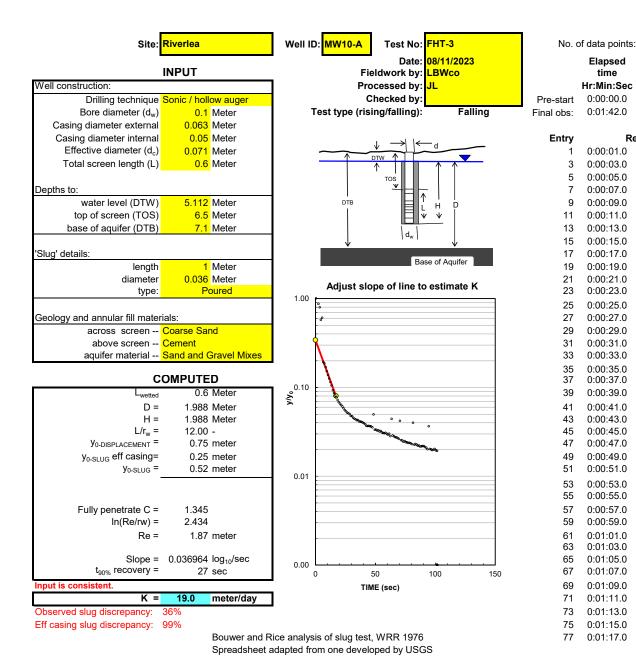
Spreadsheet adapted from one developed by USGS

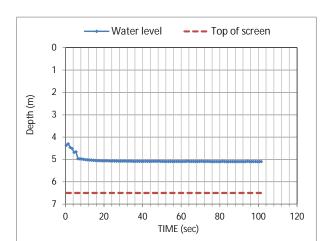
Re	uuceu Dala	sei
0:00:01.0	3.640	0.170
0:00:05.0	3.546	0.076
0:00:09.0	3.520	0.050
0:00:13.0	3.505	0.035
0:00:17.0	3.496	0.026
0:00:21.0	3.490	0.020
0:00:25.0	3.485	0.015
		0.012
		0.010
		0.008
		0.007
		0.005
		0.004
		0.004
		0.003
		0.002
		0.002
		0.002 0.001
		0.001
		0.001
		0.001
		0.001
0:01:33.0	3.471	0.001
0:01:37.0	3.471	0.001
0:01:41.0	3.471	0.001
0:01:45.0	3.470	0.000
0:01:49.0	3.470	0.000
0:01:53.0	3.471	0.001
0:01:57.0	3.471	0.001
0:02:01.0	3.470	0.000
		0.000
		0.000
		0.000
		0.000
		0.000
		0.000
		0.001
0:02:33.0	3.470	0.000
	0:00:01.0 0:00:05.0 0:00:09.0 0:00:13.0 0:00:17.0 0:00:21.0 0:00:29.0 0:00:33.0 0:00:37.0 0:00:41.0 0:00:45.0 0:00:53.0 0:00:57.0 0:01:01.0 0:01:13.0 0:01:17.0 0:01:25.0 0:01:25.0 0:01:33.0 0:01:37.0 0:01:41.0 0:01:45.0 0:01:49.0 0:01:53.0 0:01:49.0 0:01:57.0	0:00:05.0 3.546 0:00:09.0 3.520 0:00:13.0 3.505 0:00:17.0 3.496 0:00:21.0 3.490 0:00:25.0 3.485 0:00:29.0 3.482 0:00:33.0 3.480 0:00:37.0 3.478 0:00:41.0 3.477 0:00:45.0 3.475 0:00:49.0 3.474 0:00:57.0 3.473 0:01:01.0 3.472 0:01:05.0 3.472 0:01:09.0 3.471 0:01:27.0 3.471 0:01:28.0 3.471 0:01:29.0 3.471 0:01:37.0 3.471 0:01:41.0 3.471 0:01:55.0 3.471 0:01:29.0 3.471 0:01:49.0 3.471 0:01:57.0 3.471 0:01:50.0 3.470 0:01:57.0 3.471 0:01:50.0 3.470 0:02:05.0 3.470 0:02:05.0

USEPA EPA/600/R-93/202, 1994

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.35
Observed drawdown (m)	0.1700
Inferred drawdown for formation (m)	0.0595
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0009 0.0008
Specific yield of filter pack (-)	1.13
Effective casing radius (m)	0.074
Effective casing diameter (m)	0.148

Butler, 1997


Effective casing radius (m)	0.074
Effective casing diameter (m)	0.148


Check significance of varying screen length during test

Was the water level always above top of screen?	No
Displacement (yo) as % of initial saturated screen length	5%

REMARKS:

Base of screen in well is 6.5m bgl (7.4m btoc) but base of sand is 5.9m so effective base of screen set to 5.9m (6.8m btoc).

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.34
Observed drawdown (m)	0.7483
Inferred drawdown for formation (m)	0.2544
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0005 0.0012
Specific yield of filter pack (-)	0.43
Effective casing radius (m)	0.036
Effective casing diameter (m)	0.071

Butler, 1997

102

Water

Level

Meter

5.112

5.0976

Reduced Dataset

4.364

4.460

4.683

4.969

4.986

5.009

5.027

5.043

5.052

5.058

5.063

5.067

5.071

5.073

5.075

5.077

5.079

5.080

5.081

5.082

5.083

5.084

5.085

5.085

5.075

5.087

5.087

5.088

5.089

5.089

5.090

5.091

5.091

5.092

5.092

5.081

5.093

5.094

5.094

Draw-

down

Meter

0.0144

0.748

0.652

0.429

0.144

0.126

0.103

0.085

0.069

0.061

0.054

0.049

0.045

0.041

0.039

0.037

0.035

0.033

0.032

0.031

0.031

0.030

0.028

0.027

0.027

0.037

0.025

0.025

0.024

0.023

0.023

0.022

0.021

0.021

0.021

0.020

0.031

0.019

0.019

0.018

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:01:42.0

0:00:01.0

0:00:03.0

0:00:05.0

0:00:07.0

0:00:09.0

0:00:11.0

0:00:13.0

0:00:15.0

0:00:17.0

0:00:19.0

0:00:21.0

0:00:23.0

0:00:25.0

0:00:27.0

0:00:29.0

0:00:31.0

0:00:33.0

0:00:35.0

0:00:37.0

0:00:39.0

0:00:41.0

0:00:43.0

0:00:45.0

0:00:47.0

0:00:49.0

0:00:51.0

0:00:53.0

0:00:55.0

0:00:57.0

0:00:59.0

0:01:01.0

0:01:03.0

0:01:05.0

0:01:07.0

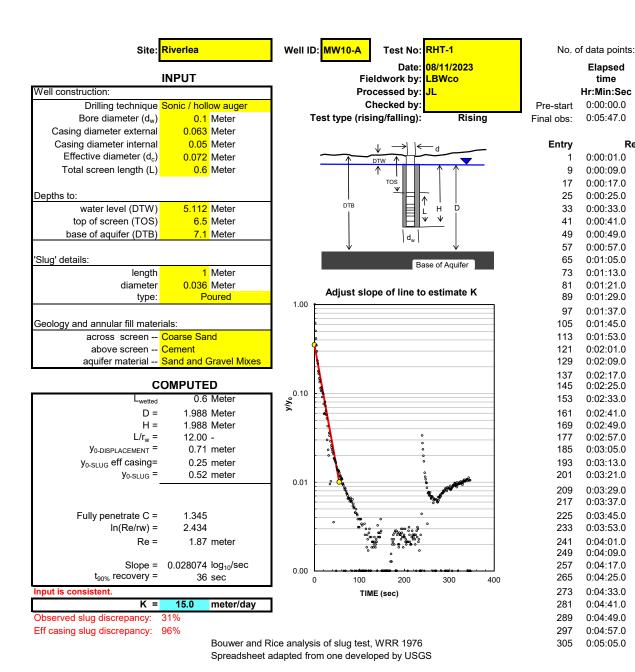
0:01:09.0

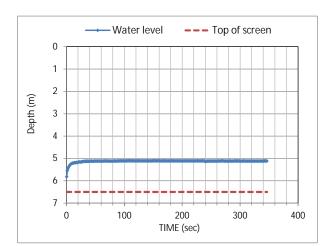
0:01:11.0

0:01:13.0

0:01:15.0

0:01:17.0


Effective casing radius (m)	0.036
Effective casing diameter (m)	0.071


Check significance of varying screen length during test

Was the water level always above top of screen?	Yes
Displacement (yo) as % of initial saturated screen length	-

REMARKS:

Top of screen in well is 5.2m bgl (6.1m btoc) but until 5.6m (6.5m btoc) is stiff clay, so excluded from assessment. Screened interval from 5.6 to 6.2m (6.5 to 7.1m btoc) is sandy clay then gravelly clay, with soft to stiff clay beneath (assumed aquitard).

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.35
Observed drawdown (m)	0.7064
Inferred drawdown for formation (m)	0.2472
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0005 0.0012
Specific yield of filter pack (-)	0.45
Effective casing radius (m)	0.036
Effective casing diameter (m)	0.072

Butler, 1997

347

Water

Level

Meter

5.112

5.0947

Reduced Dataset

5.818

5.237

5.189

5.163

5.137

5.127

5.112

5.120

5.119

5.117

5.117

5.116

5.115

5.114

5 114

5.102

5.114

5.113

5.114

5.107

5.108

5.101

5.114

5.114

5.114

5.114

5.114

5.114

5.113

5.114

5.131

5.119

5.117

5.116

5.116

5.117

5.118

5.118

5.118

Draw-

down

Meter

0.0173

0.706

0.125

0.077

0.051

0.025

0.015

0.000

0.008

0.006

0.005

0.005

0.004

0.003

0.002

0.002

0.010

0.002

0.001

0.002

0.005

0.004

0.011

0.002

0.002

0.002

0.002

0.002

0.002

0.001

0.002 0.019

0.007

0.005

0.004

0.004

0.005

0.005

0.006

0.006

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:05:47.0

0:00:01.0

0:00:09.0

0:00:17.0

0:00:25.0

0:00:33.0

0:00:41.0

0:00:49.0

0:00:57.0

0:01:05.0

0:01:13.0

0:01:21.0

0:01:29.0

0:01:37.0

0:01:45.0

0:01:53.0

0:02:01.0

0:02:09.0

0:02:17.0

0:02:25.0

0:02:33.0

0:02:41.0

0:02:49.0

0:02:57.0

0:03:05.0

0:03:13.0

0:03:21.0

0:03:29.0

0:03:37.0

0:03:45.0

0:03:53.0

0:04:01.0

0:04:09.0

0:04:17.0

0:04:25.0

0:04:33.0

0:04:41.0

0:04:49.0

0:04:57.0

0:05:05.0

9

17

25

33

41

49

57

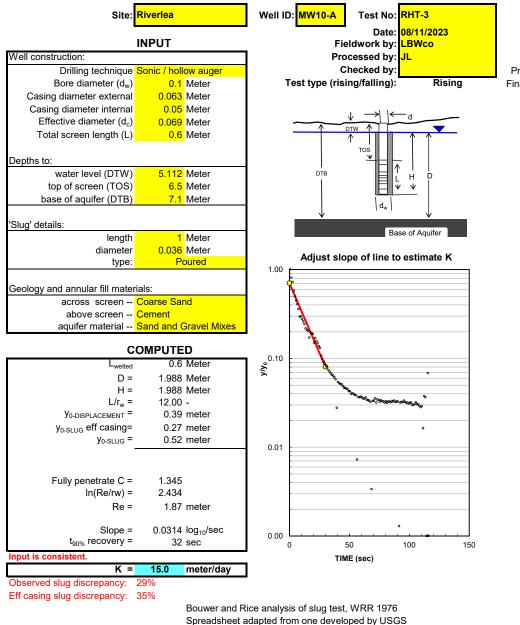
65

73

81

89

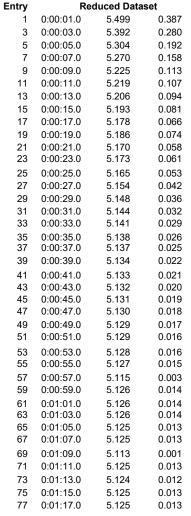
97

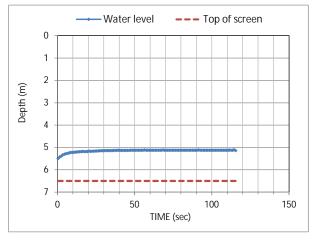

Effective casing radius (m)	0.036
Effective casing diameter (m)	0.072


Check significance of varying screen length during test

Was the water level always above top of screen?	Yes
Displacement (yo) as % of initial saturated screen length	-

REMARKS:


Top of screen in well is 5.2m bgl (6.1m btoc) but until 5.6m (6.5m btoc) is stiff clay, so excluded from assessment. Screened interval from 5.6 to 6.2m (6.5 to 7.1m btoc) is sandy clay then gravelly clay, with soft to stiff clay beneath (assumed aquitard).



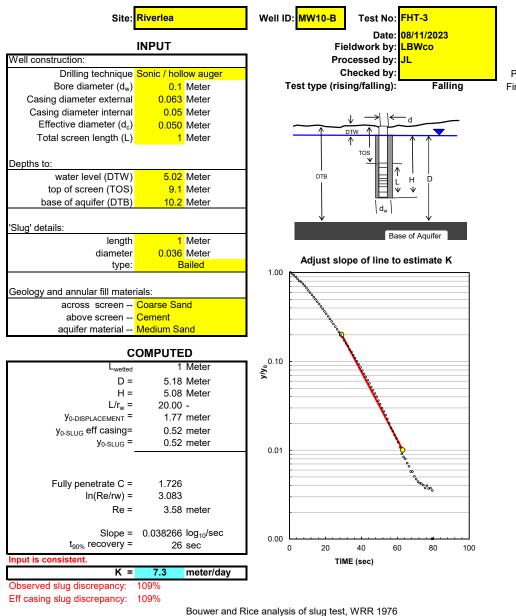
116

No. of data points:

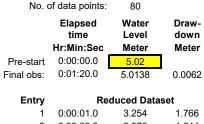
USEPA EPA/600/R-93/202, 1994

0021712171000711007202, 100-7	
Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.70
Observed drawdown (m)	0.3870
Inferred drawdown for formation (m)	0.2709
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3)	0.0005
Vol. filter pack that recharged water originated from (m3)	0.0013
Specific yield of filter pack (-)	0.38
Effective casing radius (m)	0.035
Effective casing diameter (m)	0.069

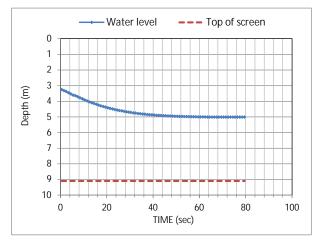
Butler, 1997


Effective casing radius (m)	0.035
Effective casing diameter (m)	0.069

Check significance of varying screen length during test


Was the water level always above top of screen?	Yes
Displacement (yo) as % of initial saturated screen length	-

REMARKS:


Top of screen in well is 5.2m bgl (6.1m btoc) but until 5.6m (6.5m btoc) is stiff clay, so excluded from assessment. Screened interval from 5.6 to 6.2m (6.5 to 7.1m btoc) is sandy clay then gravelly clay, with soft to stiff clay beneath (assumed aquitard).

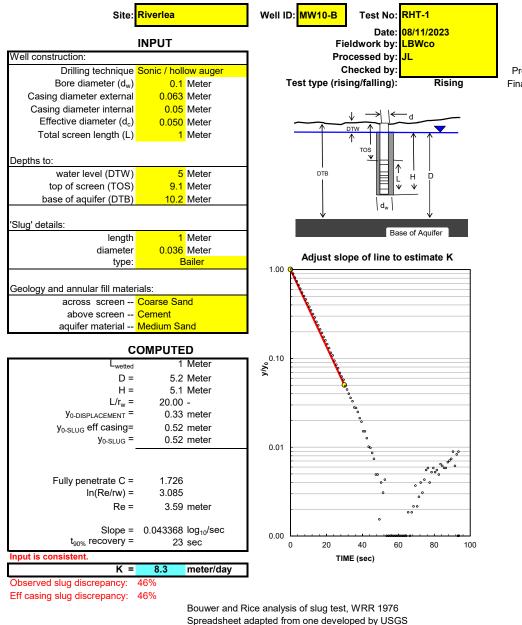
Spreadsheet adapted from one developed by USGS

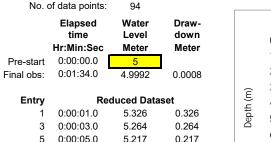
re	uuceu Dala	sei
0:00:01.0	3.254	1.766
0:00:03.0	3.376	1.644
0:00:05.0	3.530	1.490
0:00:07.0	3.639	1.381
0:00:09.0	3.779	1.241
0:00:11.0	3.911	1.109
0:00:13.0	4.033	0.987
		0.876
		0.777
		0.686
		0.604
		0.530
		0.463
		0.404
		0.350
		0.302
		0.262
		0.224 0.191
		0.163
		0.138
		0.138
		0.099
	4.937	0.083
0:00:49.0	4.950	0.070
0:00:51.0	4.962	0.058
0:00:53.0	4.972	0.048
0:00:55.0	4.980	0.040
0:00:57.0	4.989	0.031
0:00:59.0	4.994	0.026
0:01:01.0	4.998	0.022
0:01:03.0	5.004	0.016
		0.014
		0.012
		0.010
		0.008
	5.013	0.007
	5.013	0.007
0:01:17.0	5.013	0.007
	0:00:01.0 0:00:03.0 0:00:05.0 0:00:07.0 0:00:09.0 0:00:11.0 0:00:15.0 0:00:15.0 0:00:21.0 0:00:21.0 0:00:23.0 0:00:25.0 0:00:27.0 0:00:33.0 0:00:33.0 0:00:35.0 0:00:37.0 0:00:41.0 0:00:43.0 0:00:45.0 0:00:45.0 0:00:45.0 0:00:45.0 0:00:45.0 0:00:45.0 0:00:45.0 0:00:45.0 0:00:45.0 0:00:45.0 0:00:45.0 0:00:45.0 0:00:45.0 0:00:45.0 0:00:45.0 0:00:45.0 0:00:45.0 0:00:45.0 0:00:55.0 0:00:55.0 0:00:59.0 0:01:01.0	0:00:03.0 3.376 0:00:05.0 3.530 0:00:07.0 3.639 0:00:09.0 3.779 0:00:11.0 3.911 0:00:15.0 4.144 0:00:15.0 4.144 0:00:19.0 4.334 0:00:21.0 4.416 0:00:23.0 4.490 0:00:25.0 4.557 0:00:27.0 4.616 0:00:29.0 4.670 0:00:31.0 4.718 0:00:33.0 4.758 0:00:35.0 4.796 0:00:37.0 4.829 0:00:37.0 4.829 0:00:37.0 4.882 0:00:37.0 4.829 0:00:37.0 4.982 0:00:41.0 4.937 0:00:45.0 4.902 0:00:47.0 4.937 0:00:51.0 4.962 0:00:55.0 4.980 0:00:57.0 4.989 0:00:59.0 4.994 0:01:01.0 4.998 0:01:03.0

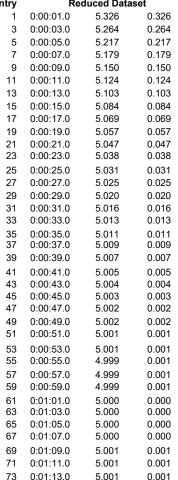
USEPA EPA/600/R-93/202, 1994

00E1 A E1 A000/N-30/202, 1334	
Check that intercept is at 00:00:00	NO
Intercept of straight line on Y/Yo axis	0.20
Observed drawdown (m)	1.7656
Inferred drawdown for formation (m)	0.3531
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3)	0.0003
Vol. filter pack that recharged water originated from (m3)	0.0017
Specific yield of filter pack (-)	0.19
Effective casing radius (m)	0.030
Effective casing diameter (m)	0.061

Butler, 1997

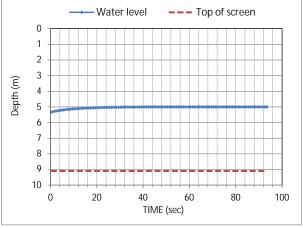

Effective casing radius (m)	0.030
Effective casing diameter (m)	0.061


Check significance of varying screen length during test


Was the water level	always above top	of screen?		Yes
Displacement (yo) a	s % of initial satura	ated screen I	ength	_

REMARKS:

Log shows sand from 8.0 to 8.5m bgl (8.9 to 9.4m btoc) then soft gravelly clay to 9.3m (10.2m btoc). Screen from 8.2 to 9.2m (9.1 to 10.1m btoc).



5.001

5.002

0.001

0.002

USEPA EPA/600/R-93/202, 1994

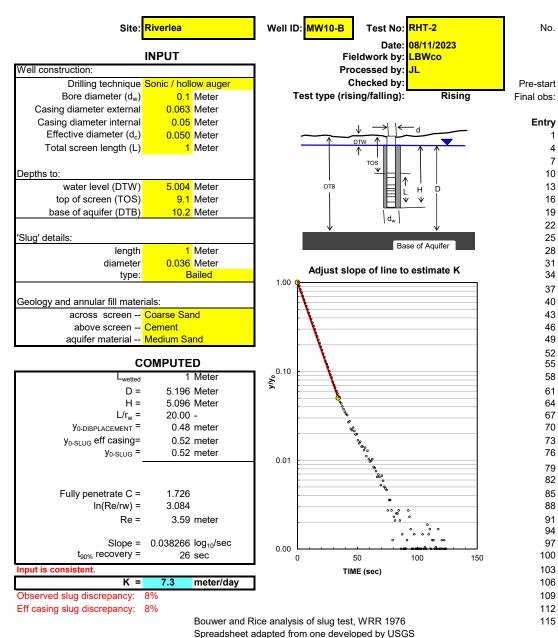
Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	0.3262
Inferred drawdown for formation (m)	0.3262
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0004 0.0015
Specific yield of filter pack (-)	0.24
Effective casing radius (m)	0.032
Effective casing diameter (m)	0.063

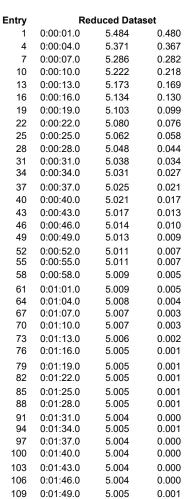
Butler, 1997

Effective casing radius (m)	0.032
Effective casing diameter (m)	0.063

Check significance of varying screen length during test

Was the water level alv	ways above top	of screen?	Ye	S
Displacement (yo) as %	6 of initial satur	ated screen le	ength -	


REMARKS:


Log shows sand from 8.0 to 8.5m bgl (8.9 to 9.4m btoc) then soft gravelly clay to 9.3m (10.2m btoc). Screen from 8.2 to 9.2m (9.1 to 10.1m btoc).

75

0:01:15.0

0:01:17.0

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:02:04.0

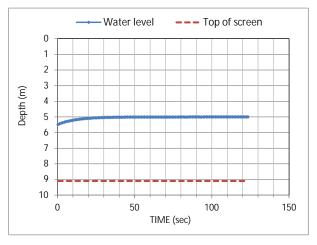
124

Water

Level

Meter

5.004


5.0039

Draw-

down

Meter

1E-04

USEPA EPA/600/R-93/202, 1994

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	0.4797
Inferred drawdown for formation (m)	0.4797
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0001 0.0023
Specific yield of filter pack (-)	0.03
Effective casing radius (m)	0.026
Effective casing diameter (m)	0.052

Butler, 1997

Effective casing radius (m)	0.026
Effective casing diameter (m)	0.052

Check significance of varying screen length during test

Was the water level	always above top	of screen?	Y	'es
Displacement (yo) as	% of initial satur	ated screen	enath	_

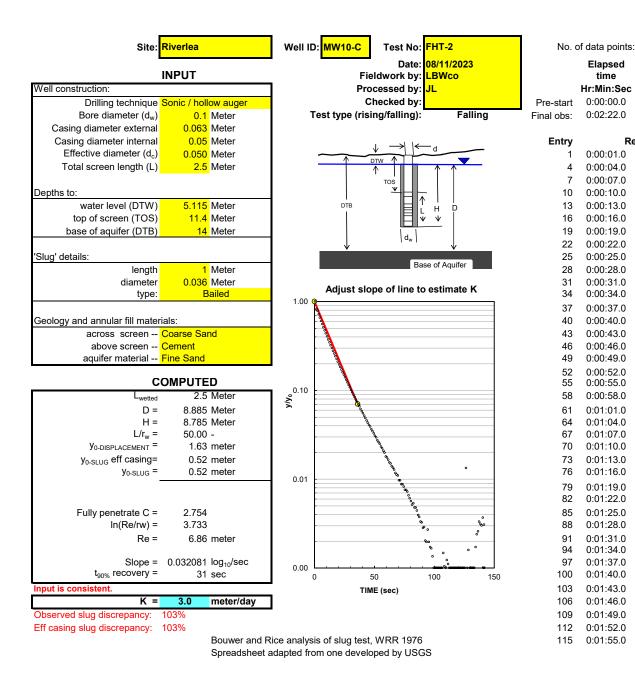
REMARKS:

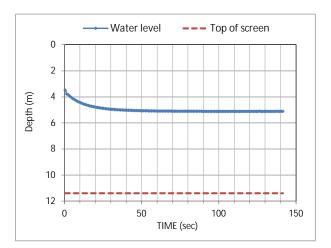
0.000

0.000

5.004

5.004


Log shows sand from 8.0 to 8.5m bgl (8.9 to 9.4m btoc) then soft gravelly clay to 9.3m (10.2m btoc). Screen from 8.2 to 9.2m (9.1 to 10.1m btoc).


112

115

0:01:52.0

0:01:55.0

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	1.6284
Inferred drawdown for formation (m)	1.6284
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	-0.0022 0.0077
Specific yield of filter pack (-)	-0.28
Effective casing radius (m)	0.014
Effective casing diameter (m)	0.028

Butler, 1997

142

Water

Level

Meter

5.115

5.1245

Reduced Dataset

3.487

3.947

4.211

4.405

4.551

4.662

4.749

4.818

4.871

4.915

4.950

4.978

5.002

5.020

5.036

5.049

5.059

5.067

5.074

5.081

5.087

5.091

5.094

5.097

5.101

5.103

5.104

5.107

5.107

5.109

5.110

5.112

5.112

5.114

5.114

5.115

5.113

5.113

5.114

Draw-

down

Meter

-0.0095

1.628

1.168

0.904

0.710

0.564

0.453

0.366

0.297

0.244

0.200

0.165

0.137

0.113

0.095

0.079

0.066

0.056

0.048

0.041

0.034

0.028

0.024

0.021

0.018

0.014

0.012

0.011

800.0

0.008

0.006

0.005

0.003

0.003

0.001

0.001

0.000

0.002

0.002

0.001

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:02:22.0

0:00:01.0

0:00:04.0

0:00:07.0

0:00:10.0

0:00:13.0

0:00:16.0

0:00:19.0

0:00:22.0

0:00:25.0

0:00:28.0

0:00:31.0

0:00:34.0

0:00:37.0

0:00:40.0

0:00:43.0

0:00:46.0

0:00:49.0

0:00:52.0

0:00:55.0

0:00:58.0

0:01:01.0

0:01:04.0

0:01:07.0

0:01:10.0

0:01:13.0

0:01:16.0

0:01:19.0

0:01:22.0

0:01:25.0

0:01:28.0

0:01:31.0

0:01:34.0

0:01:37.0

0:01:40.0

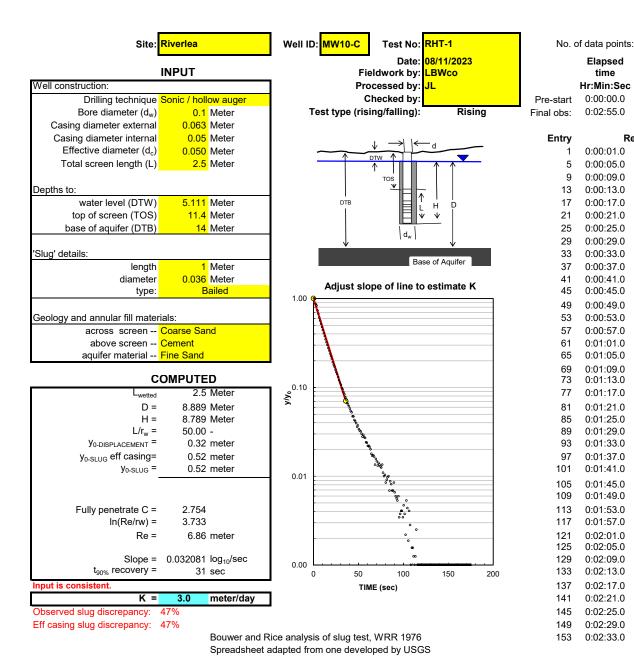
0:01:43.0

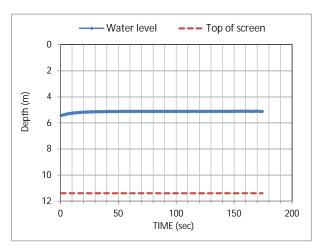
0:01:46.0

0:01:49.0

0:01:52.0

0:01:55.0


Effective casing radius (m)	0.014
Effective casing diameter (m)	0.028


Check significance of varying screen length during test

Was the water level a	lways above top	of screen?		Yes
Displacement (yo) as	% of initial satura	ated screen I	ength	-

REMARKS:

Log shows sand from 10.2 to 10.3m bgl (11.1 to 11.2 m btoc) and from 10.6 to 13.0 mbgl (11.5 to 14m btoc) (end of hole)

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	0.3202
Inferred drawdown for formation (m)	0.3202
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0004 0.0015
Specific yield of filter pack (-)	0.26
Effective casing radius (m)	0.032
Effective casing diameter (m)	0.064

Butler, 1997

175

Water

Level

Meter

5.111

5.1084

Reduced Dataset

5.431

5.345

5.277

5.231

5.200

5.178

5.162

5.150

5.141

5.134

5.129

5.126

5.123

5.121

5 120

5.118

5.117

5.115

5.116

5.115

5.114

5.113

5.113

5.113

5.112

5.113

5.112

5.111

5.111

5.111

5.111

5.111

5.110

5.111

5.111

5.111

5.110

5.111

5.110

Draw-

down

Meter

0.0026

0.320

0.234

0.166

0.120

0.089

0.067

0.051

0.039

0.030

0.023

0.018

0.015

0.012

0.010

0.009

0.007

0.006

0.004

0.005

0.004

0.003

0.002

0.002

0.002

0.001

0.002

0.001

0.000

0.000

0.000

0.000

0.000

0.001

0.000

0.000

0.000

0.001

0.000

0.001

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:02:55.0

0:00:01.0

0:00:05.0

0:00:09.0

0:00:13.0

0:00:17.0

0:00:21.0

0:00:25.0

0:00:29.0

0:00:33.0

0:00:37.0

0:00:41.0

0:00:45.0

0:00:49.0

0:00:53.0

0:00:57.0

0:01:01.0

0:01:05.0

0:01:09.0

0:01:13.0

0:01:17.0

0:01:21.0

0:01:25.0

0:01:29.0

0:01:33.0

0:01:37.0

0:01:41.0

0:01:45.0

0:01:49.0

0:01:53.0

0:01:57.0

0:02:01.0

0:02:05.0

0:02:09.0

0:02:13.0

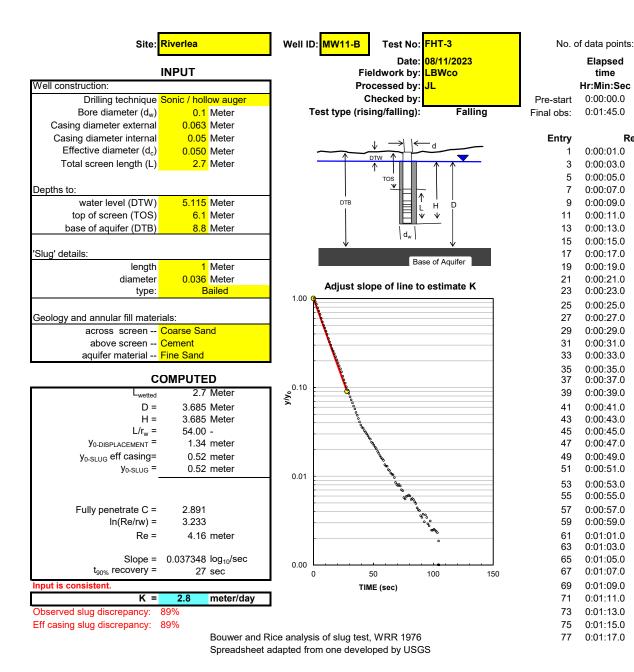
0:02:17.0

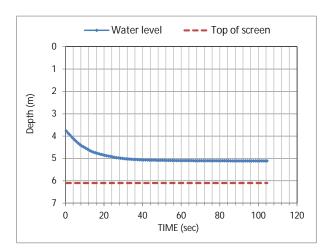
0:02:21.0

0:02:25.0

0:02:29.0

0:02:33.0


Effective casing radius (m)	0.032
Effective casing diameter (m)	0.064


Check significance of varying screen length during test

Was the water level alv	ways above top	of screen?	Ye	S
Displacement (yo) as %	6 of initial satur	ated screen le	ength -	

REMARKS:

Log shows sand from 10.2 to 10.3m bgl (11.1 to 11.2 m btoc) and from 10.6 to 13.0 mbgl (11.5 to 14m btoc) (end of hole).

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	1.3436
Inferred drawdown for formation (m)	1.3436
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	-0.0016 0.0064
Specific yield of filter pack (-)	-0.25
Effective casing radius (m)	0.016
Effective casing diameter (m)	0.031

Butler, 1997

105

Water

Level

Meter

5.115

5.1125

Reduced Dataset

3.771

3.962

4.146

4.309

4.446

4.539

4.640

4.715

4.771

4.819

4.861

4.898

4.936

4.966

4.990

5.010

5.025

5.038

5.050

5.060

5.067

5.071

5.075

5.079

5.083

5.085

5.088

5.091

5.093

5.095

5.098

5.099

5.101

5.101

5.104

5.105

5.105

5.106

5.108

Draw-

down

Meter

0.0025

1.344

1.153

0.969

0.806

0.669

0.576

0.475

0.400

0.344

0.296

0.254

0.217

0.179

0.149

0.125

0.105

0.090

0.077

0.065

0.055

0.048

0.044

0.040

0.036

0.032

0.030

0.027

0.024

0.022

0.020

0.017

0.016

0.015

0.014

0.011

0.011

0.010

0.009

0.007

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:01:45.0

0:00:01.0

0:00:03.0

0:00:05.0

0:00:07.0

0:00:09.0

0:00:11.0

0:00:13.0

0:00:15.0

0:00:17.0

0:00:19.0

0:00:21.0

0:00:23.0

0:00:25.0

0:00:27.0

0:00:29.0

0:00:31.0

0:00:33.0

0:00:35.0

0:00:37.0

0:00:39.0

0:00:41.0

0:00:43.0

0:00:45.0

0:00:47.0

0:00:49.0

0:00:51.0

0:00:53.0

0:00:55.0

0:00:57.0

0:00:59.0

0:01:01.0

0:01:03.0

0:01:05.0

0:01:07.0

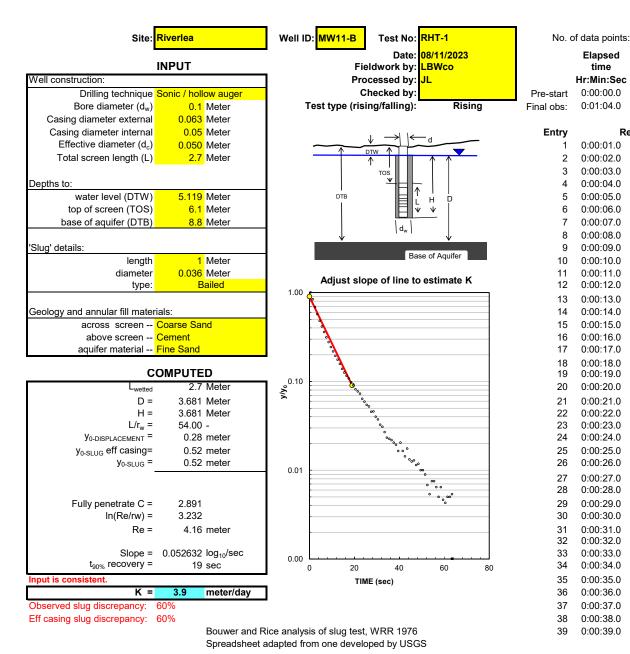
0:01:09.0

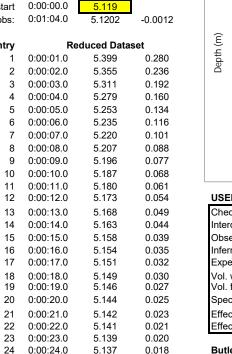
0:01:11.0

0:01:13.0

0:01:15.0

0:01:17.0


Effective casing radius (m)	0.016
Effective casing diameter (m)	0.031


Check significance of varying screen length during test

Was the water level alv	ways above top	of screen?	Ye	S
Displacement (yo) as %	6 of initial satur	ated screen le	ength -	

REMARKS:

Moist zone of mainly clayey sand and sandy clay from 5.0 to 7.7 m bgl (6.1 to 8.8m btoc), with stiff clay above and hard, high plasticity clay below

5.136

5.134

5.134

5.132

5.132

5.130

5.129

5.128

5.128

5.127

5.126

5.125

5.125

5.125

5.124

0.016

0.015

0.015

0.013

0.013

0.011

0.010

0.009

0.009

0.008

0.006

0.006

0.006

0.006

0.005

64

Water

Level

Meter

Draw-

down

Meter

Elapsed

time

Hr:Min:Sec

0:00:25.0

0:00:26.0

0:00:27.0

0:00:28.0

0:00:29.0

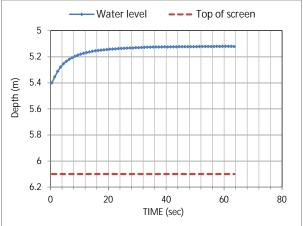
0:00:30.0

0:00:31.0

0:00:32.0

0:00:33.0

0:00:34.0


0:00:35.0

0:00:36.0

0:00:37.0

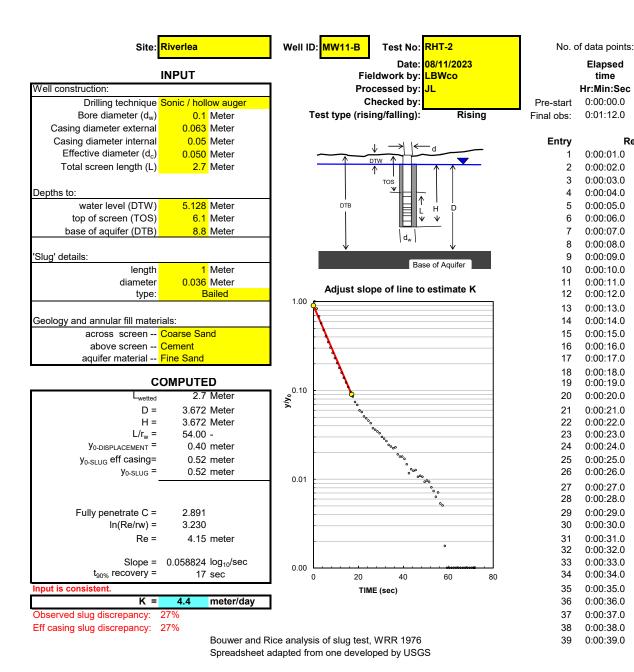
0:00:38.0

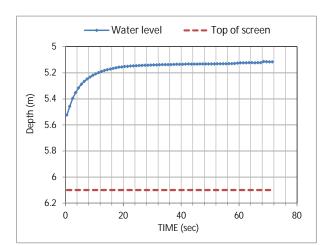
0:00:39.0

USEPA EPA/600/R-93/202, 1994

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.90
Observed drawdown (m)	0.2804
Inferred drawdown for formation (m)	0.2524
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0005 0.0012
Specific yield of filter pack (-)	0.44
Effective casing radius (m)	0.036
Effective casing diameter (m)	0.072

Butler, 1997


Effective casing radius (m)	0.036
Effective casing diameter (m)	0.072


Check significance of varying screen length during test

Was the water level alv	ways above top	of screen?	Ye	S
Displacement (yo) as %	6 of initial satur	ated screen le	ength -	

REMARKS:

Moist zone of mainly clayey sand and sandy clay from 5.0 to 7.7 m bgl (6.1 to 8.8m btoc), with stiff clay above and hard, high plasticity clay below

·	
Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.90
Observed drawdown (m)	0.3958
Inferred drawdown for formation (m)	0.3562
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0003 0.0017
Specific yield of filter pack (-)	0.19
Effective casing radius (m)	0.030
Effective casing diameter (m)	0.060

Butler, 1997

72

Water

Level

Meter

5.128

5.1138

Reduced Dataset

5.524

5.458

5.396

5.352

5.317

5.288

5.265

5.248

5.232

5.219

5.208

5.199

5.190

5.183

5 176

5.171

5.166

5.162

5.157

5.155

5.152

5.151

5.148

5.147

5.146

5.145

5.143

5.142

5.142

5.141

5.140

5.139

5.139

5.138

5.137

5.137

5.137

5.136

5.135

Draw-

down

Meter

0.0142

0.396

0.330

0.268

0.224

0.189

0.160

0.137

0.119

0.104

0.091

0.080

0.071

0.062

0.054

0.048

0.043

0.038

0.034

0.029

0.027

0.023

0.022

0.020

0.019

0.018

0.017

0.015

0.014

0.014

0.013

0.012

0.011

0.011

0.010

0.009

0.009

0.009

0.007

0.007

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:01:12.0

0:00:01.0

0:00:02.0

0:00:03.0

0:00:04.0

0:00:05.0

0:00:06.0

0:00:07.0

0:80:00:0

0:00:09.0

0:00:10.0

0:00:11.0

0:00:12.0

0:00:13.0

0:00:14.0

0:00:15.0

0:00:16.0

0:00:17.0

0:00:18.0

0:00:19.0

0:00:20.0

0:00:21.0

0:00:22.0

0:00:23.0

0:00:24.0

0:00:25.0

0:00:26.0

0:00:27.0

0:00:28.0

0:00:29.0

0:00:30.0

0:00:31.0

0:00:32.0

0:00:33.0

0:00:34.0

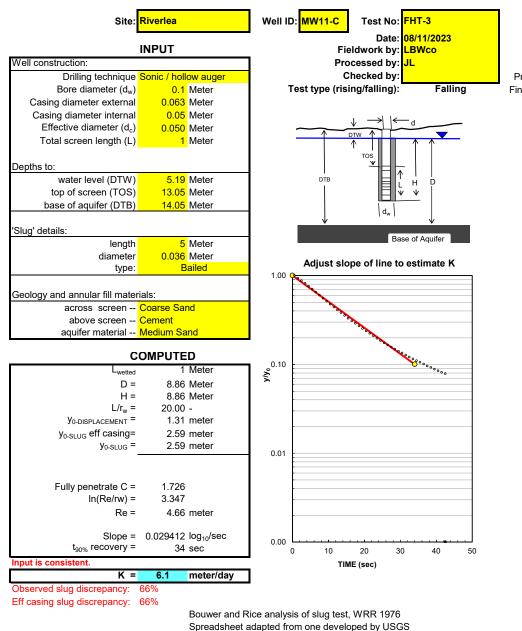
0:00:35.0

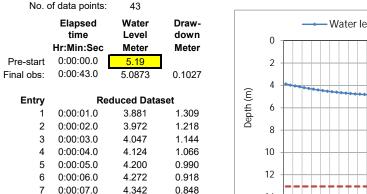
0:00:36.0

0:00:37.0

0:00:38.0

0:00:39.0


Effective casing radius (m)	0.030
Effective casing diameter (m)	0.060


Check significance of varying screen length during test

Was the water level alv	ways above top	of screen?	Ye	S
Displacement (yo) as %	6 of initial satur	ated screen le	ength -	

REMARKS:

Moist zone of mainly clayey sand and sandy clay from 5.0 to 7.7 m bgl (6.1 to 8.8m btoc), with stiff clay above and hard, high plasticity clay below

0.785

0.726

0.672

0.623

0.577

0.536

0.498

0.464

0.432

0.404

0.378

0.353

0.331

0.310

0.292

0.274

0.257

0.242

0.229

0.216

0.205

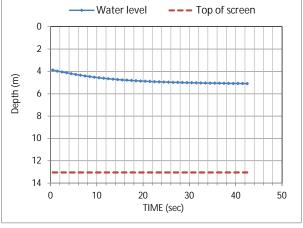
0.194

0.184 0.175

0.166

0.158

0.150


0.144

0.138

0.132

0.125

0.121

USEPA EPA/600/R-93/202, 1994

00L1 A L1 A 000/11-30/202, 1334	
Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	1.3090
Inferred drawdown for formation (m)	1.3090
Expected displacement based on slug volume (m)	2.5920
Vol. water recharged by filter pack (m3)	0.0025
Vol. filter pack that recharged water originated from (m3)	0.0062
Specific yield of filter pack (-)	0.41
Effective casing radius (m)	0.035
Effective casing diameter (m)	0.070

Butler, 1997

Effective casing radius (m)	0.035
Effective casing diameter (m)	0.070

Check significance of varying screen length during test

Was the water level a	lways above top	of screen?		Yes
Displacement (yo) as	% of initial satura	ated screen I	ength	-

REMARKS:

Screen 10 to 13 m bgl (11.05 to 14.05 m btoc) in mainly clay and sandy clay but which contains pocktes of gravelly sand with wet (saturated) zones from 10.8 to 11.3m (11.85 to 12.35m btoc) and from 12.5 to 13 m (13.55 to 14.05m btoc), so effective screen length is 1 m

8

10

11

12

13

14

15

16

17 18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

0:80:00:0

0:00:09.0

0:00:10.0

0:00:11.0

0:00:12.0

0:00:13.0

0:00:14.0

0:00:15.0

0:00:16.0

0:00:17.0

0:00:18.0

0:00:19.0

0:00:20.0

0:00:21.0

0:00:22.0

0:00:23.0

0:00:24.0

0:00:25.0

0:00:26.0

0:00:27.0

0:00:28.0

0:00:29.0

0:00:30.0

0:00:31.0

0:00:32.0

0:00:33.0

0:00:34.0

0:00:35.0

0:00:36.0

0:00:37.0

0:00:38.0

0:00:39.0

4.405

4.464

4.518

4.567

4.613

4.654

4.692

4.726

4.758

4.786

4.812

4.837

4.859

4.880

4.898

4.916

4.933

4.948

4.961

4.974

4.985

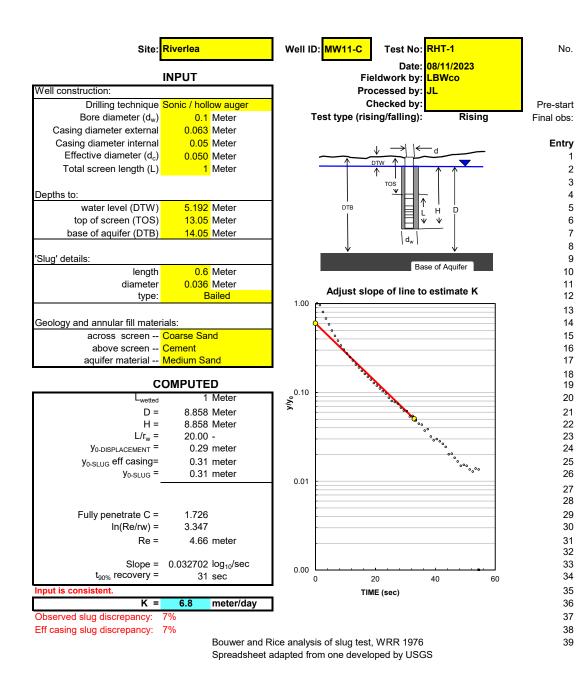
4.996

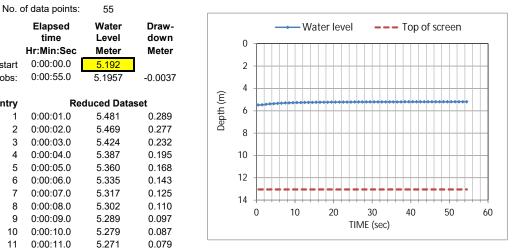
5.006

5.015

5.024

5.032


5.040


5.046

5.052

5.058

5.065

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.60
Observed drawdown (m)	0.2894
Inferred drawdown for formation (m)	0.1736
Expected displacement based on slug volume (m)	0.3110
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0003 0.0008
Specific yield of filter pack (-)	0.33
Effective casing radius (m)	0.033
Effective casing diameter (m)	0.067

Butler, 1997

Effective casing radius (m)	0.033
Effective casing diameter (m)	0.067

Check significance of varying screen length during test

Was the water level	always above top	of screen?	Y	'es
Displacement (yo) as	% of initial satur	ated screen	enath	_

REMARKS:

Screen 10 to 13 m bgl (11.05 to 14.05 m btoc) in mainly clay and sandy clay but which contains pocktes of gravelly sand with wet (saturated) zones from 10.8 to 11.3m (11.85 to 12.35m btoc) and from 12.5 to 13 m (13.55 to 14.05m btoc), so effective screen length is 1 m

0:00:12.0

0:00:13.0

0:00:14.0

0:00:15.0

0:00:16.0

0:00:17.0

0:00:18.0

0:00:19.0

0:00:20.0

0:00:21.0

0:00:22.0

0:00:23.0

0:00:24.0

0:00:25.0

0:00:26.0

0:00:27.0

0:00:28.0

0:00:29.0

0:00:30.0

0:00:31.0

0:00:32.0

0:00:33.0

0:00:34.0

0:00:35.0

0:00:36.0

0:00:37.0

0:00:38.0

0:00:39.0

5.264

5.258

5.251

5 247

5.242

5.239

5.235

5.232

5.229

5.226

5.224

5.222

5.220

5.217

5.215

5.214

5.214

5.211

5.210

5.210

5.207

5.208

5.206

5.205

5.205

5.203

5.203

5.201

0.072

0.066

0.059

0.055

0.050

0.047

0.043

0.040

0.037

0.034

0.032

0.030

0.028

0.025

0.023

0.022

0.022

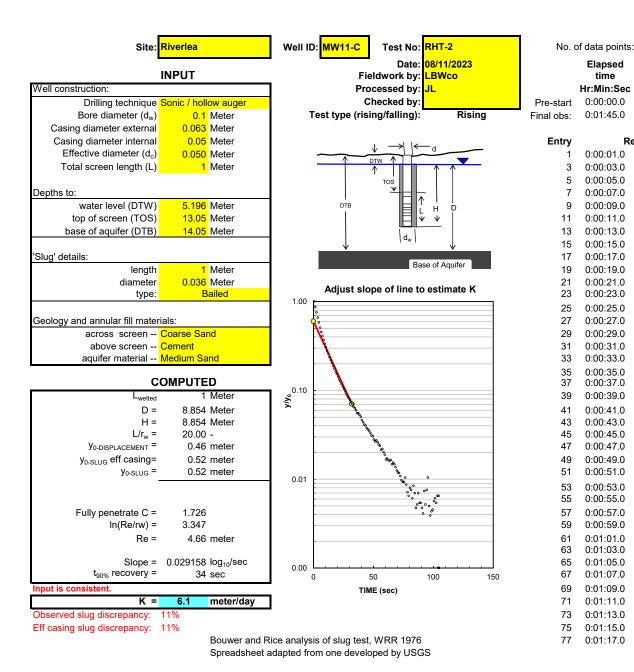
0.019

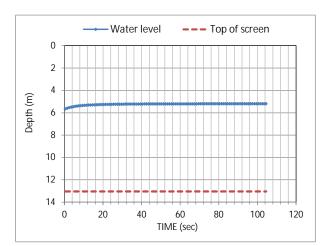
0.018

0.018

0.015

0.016


0.014


0.013

0.013

0.011

0.011

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.60
Observed drawdown (m)	0.4626
Inferred drawdown for formation (m)	0.2776
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0005 0.0013
Specific yield of filter pack (-)	0.36
Effective casing radius (m)	0.034
Effective casing diameter (m)	0.068

Butler, 1997

105

Water

Level

Meter

5.196

5.1978

Reduced Dataset

5.659

5.544

5.464

5.406

5.366

5.337

5.315

5.297

5.284

5.271

5.262

5.254

5.247

5.241

5.236

5.232

5.228

5.225

5.222

5.221

5.217

5.215

5.213

5.212

5.210

5.209

5.209

5.207

5.206

5.205

5.204

5.204

5.204

5.203

5.202

5.202

5.201

5.200

5.201

Draw-

down

Meter

-0.0018

0.463

0.348

0.268

0.210

0.170

0.141

0.119

0.101

0.088

0.075

0.066

0.058

0.051

0.045

0.040

0.036

0.032

0.029

0.026

0.025

0.021

0.019

0.017

0.016

0.014

0.013

0.013

0.011

0.010

0.009

0.008

0.008

0.008

0.007

0.006

0.006

0.005

0.004

0.005

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:01:45.0

0:00:01.0

0:00:03.0

0:00:05.0

0:00:07.0

0:00:09.0

0:00:11.0

0:00:13.0

0:00:15.0

0:00:17.0

0:00:19.0

0:00:21.0

0:00:23.0

0:00:25.0

0:00:27.0

0:00:29.0

0:00:31.0

0:00:33.0

0:00:35.0

0:00:37.0

0:00:39.0

0:00:41.0

0:00:43.0

0:00:45.0

0:00:47.0

0:00:49.0

0:00:51.0

0:00:53.0

0:00:55.0

0:00:57.0

0:00:59.0

0:01:01.0

0:01:03.0

0:01:05.0

0:01:07.0

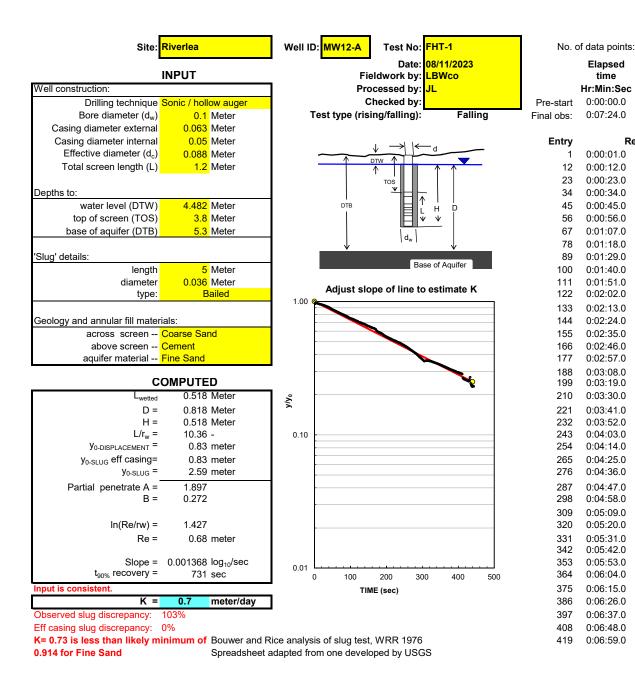
0:01:09.0

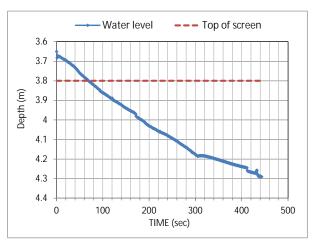
0:01:11.0

0:01:13.0

0:01:15.0

0:01:17.0


Effective casing radius (m)	0.034
Effective casing diameter (m)	0.068


Check significance of varying screen length during test

Was the water level always above top of screen?	Yes
Displacement (yo) as % of initial saturated screen length	-

REMARKS:

Screen 10 to 13 m bgl (11.05 to 14.05 m btoc) in mainly clay and sandy clay but which contains pocktes of gravelly sand with wet (saturated) zones from 10.8 to 11.3m (11.85 to 12.35m btoc) and from 12.5 to 13 m (13.55 to 14.05m btoc), so effective screen length is 1 m

00E1 A E1 A/000/10-33/202, 1334	
Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	0.8319
Inferred drawdown for formation (m)	0.8319
Expected displacement based on slug volume (m)	2.5920
Vol. water recharged by filter pack (m3)	0.0035
Vol. filter pack that recharged water originated from (m3)	0.0039
Specific yield of filter pack (-)	0.88
Effective casing radius (m)	0.044
Effective casing diameter (m)	0.088

Butler, 1997

444

Water

Level

Meter

4.482

4.2919

Reduced Dataset

3.650

3.683

3.699

3.719

3.743

3.771

3.793

3.816

3.837

3.860

3.877

3.897

3.912

3.929

3 946

3.960

3.990

4.006

4.028

4.043

4.059

4.070

4.084

4.099

4.116

4.134

4.152

4.172

4.184

4.184

4.190

4.198

4.205

4.214

4.222

4.230

4.237

4.242

4.266

Draw-

down

Meter

0.1901

0.832

0.799

0.783

0.763

0.740

0.711

0.689

0.666

0.645

0.622

0.606

0.585

0.570

0.553

0.537

0.522

0.493

0.476

0.454

0.439

0.424

0.412

0.399

0.383

0.366

0.348

0.330

0.310

0.299

0.298

0.292

0.284

0.277

0.269

0.260

0.253

0.245

0.240

0.216

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:07:24.0

0:00:01.0

0:00:12.0

0:00:23.0

0:00:34.0

0:00:45.0

0:00:56.0

0:01:07.0

0:01:18.0

0:01:29.0

0:01:40.0

0:01:51.0

0:02:02.0

0:02:13.0

0:02:24.0

0:02:35.0

0:02:46.0

0:02:57.0

0:03:08.0

0:03:19.0

0:03:30.0

0:03:41.0

0:03:52.0

0:04:03.0

0:04:14.0

0:04:25.0

0:04:36.0

0:04:47.0

0:04:58.0

0:05:09.0

0:05:20.0

0:05:31.0

0:05:42.0

0:05:53.0

0:06:04.0

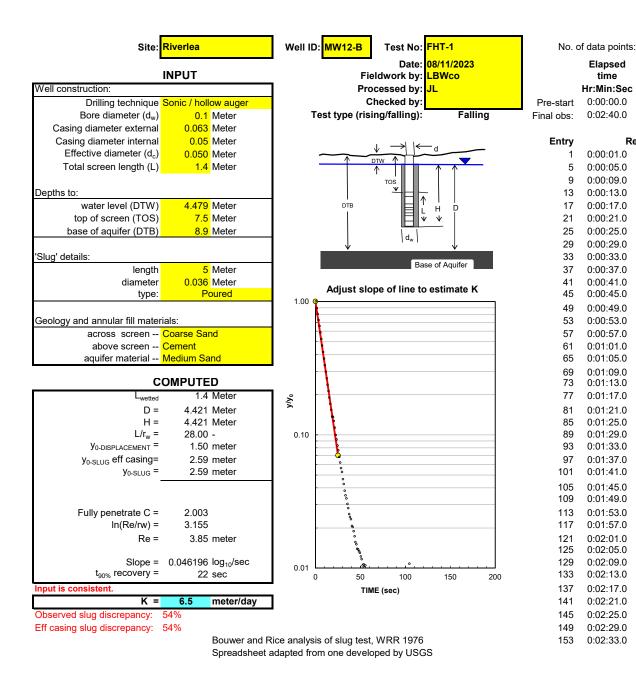
0:06:15.0

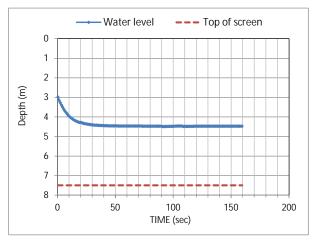
0:06:26.0

0:06:37.0

0:06:48.0

0:06:59.0


Effective casing radius (m)	0.044
Effective casing diameter (m)	0.088


Check significance of varying screen length during test

Was the water level always above top of screen?	No
Displacement (yo) as % of initial saturated screen length	161%

REMARKS:

Screen 2.5 - 4.0m bgl (3.5 - 5.0m btoc) in sandy clay (except 3.2 - 3.5 m bgl clay), so effective screen length adjusted to 1.2 m

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	1.4957
Inferred drawdown for formation (m)	1.4957
Expected displacement based on slug volume (m)	2.5920
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0022 0.0071
Specific yield of filter pack (-)	0.30
Effective casing radius (m)	0.033
Effective casing diameter (m)	0.066

Butler, 1997

160

Water

Level

Meter

4.479

4.4961

Reduced Dataset

2.983

3.500

3.856

4.083

4.224

4.289

4.355

4.395

4.422

4.437

4.448

4.456

4.459

4.463

4.466

4.467

4.469

4.470

4.471

4.472

4.473

4.473

4.474

4.493

4.484

4.477

4.463

4.490

4.482

4.480

4.479

4.478

4.479

4.477

4.477

4.477

4.478

4.477

4.478

Draw-

down

Meter

-0.0171

1.496

0.979

0.623

0.396

0.255

0.190

0.124

0.084

0.057

0.042

0.031

0.023

0.020

0.016

0.013

0.012

0.010

0.009

0.008

0.007

0.006

0.006

0.005

0.014

0.005

0.002

0.016

0.011

0.003

0.001

0.000

0.002

0.000

0.002

0.002

0.002

0.001

0.002

0.001

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:02:40.0

0:00:01.0

0:00:05.0

0:00:09.0

0:00:13.0

0:00:17.0

0:00:21.0

0:00:25.0

0:00:29.0

0:00:33.0

0:00:37.0

0:00:41.0

0:00:45.0

0:00:49.0

0:00:53.0

0:00:57.0

0:01:01.0

0:01:05.0

0:01:09.0

0:01:13.0

0:01:17.0

0:01:21.0

0:01:25.0

0:01:29.0

0:01:33.0

0:01:37.0

0:01:41.0

0:01:45.0

0:01:49.0

0:01:53.0

0:01:57.0

0:02:01.0

0:02:05.0

0:02:09.0

0:02:13.0

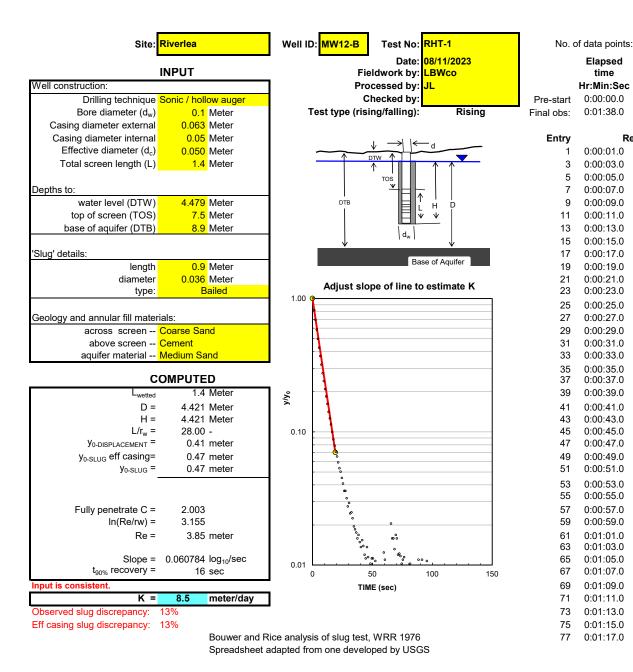
0:02:17.0

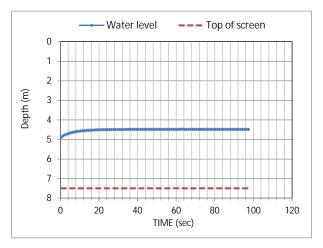
0:02:21.0

0:02:25.0

0:02:29.0

0:02:33.0


Effective casing radius (m)	0.033
Effective casing diameter (m)	0.066


Check significance of varying screen length during test

Was the water level alv	ways above top	of screen?	Ye	S
Displacement (yo) as %	6 of initial satur	ated screen le	ength -	

REMARKS:

Screen 6.5 - 8.0m bgl (7.5 to 9.0m btoc) in sandy clay (5.8 - 6.8m bgl), sand (6.8 - 7.0m bgl, clay (7.0 - 7.3m bgl) and sandy clay (7.3 - 7.9m bgl). Effective screen length taken to be 1.4m from 6.5 to 7.9m bgl (7.5 to 8.9m btoc).

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	0.4114
Inferred drawdown for formation (m)	0.4114
Expected displacement based on slug volume (m)	0.4666
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0001 0.0019
Specific yield of filter pack (-)	0.06
Effective casing radius (m)	0.027
Effective casing diameter (m)	0.053

Butler, 1997

98

Water

Level

Meter

4.479

4.4746

Reduced Dataset

4.890

4.763

4.684

4.631

4.592

4.565

4.546

4.531

4.520

4.511

4.506

4.501

4.498

4.494

4.492

4.491

4.489

4.487

4.486

4.486

4.485

4.485

4.484

4.484

4.483

4.484

4.483

4.483

4.483

4.479

4.484

4.475

4.482

4.486

4.484

4.486

4.484

4.483

4.484

Draw-

down

Meter

0.0044

0.411

0.284

0.205

0.152

0.113

0.086

0.067

0.052

0.041

0.032

0.027

0.022

0.018

0.015

0.013

0.012

0.010

0.008

0.007

0.007

0.006

0.006

0.005

0.005

0.004

0.005

0.004

0.004

0.004

0.000

0.004

0.004

0.003

0.006

0.005

0.006

0.005

0.004

0.005

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:01:38.0

0:00:01.0

0:00:03.0

0:00:05.0

0:00:07.0

0:00:09.0

0:00:11.0

0:00:13.0

0:00:15.0

0:00:17.0

0:00:19.0

0:00:21.0

0:00:23.0

0:00:25.0

0:00:27.0

0:00:29.0

0:00:31.0

0:00:33.0

0:00:35.0

0:00:37.0

0:00:39.0

0:00:41.0

0:00:43.0

0:00:45.0

0:00:47.0

0:00:49.0

0:00:51.0

0:00:53.0

0:00:55.0

0:00:57.0

0:00:59.0

0:01:01.0

0:01:03.0

0:01:05.0

0:01:07.0

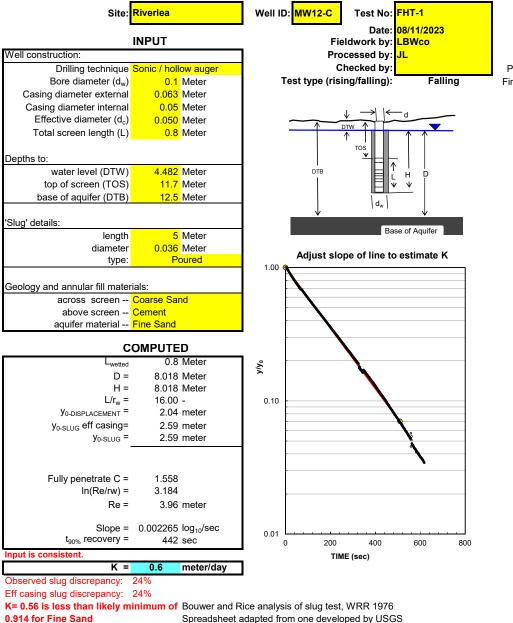
0:01:09.0

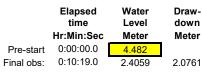
0:01:11.0

0:01:13.0

0:01:15.0

0:01:17.0

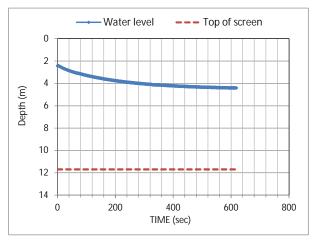

Effective casing radius (m)	0.027
Effective casing diameter (m)	0.053


Check significance of varying screen length during test

Was the water level always above top of screen?	Yes
Displacement (yo) as % of initial saturated screen length	-

REMARKS:

Screen 6.5 - 8.0m bgl (7.5 to 9.0m btoc) in sandy clay (5.8 - 6.8m bgl), sand (6.8 - 7.0m bgl, clay (7.0 - 7.3m bgl) and sandy clay (7.3 - 7.9m bgl). Effective screen length taken to be 1.4m from 6.5 to 7.9m bgl (7.5 to 8.9m btoc).



619

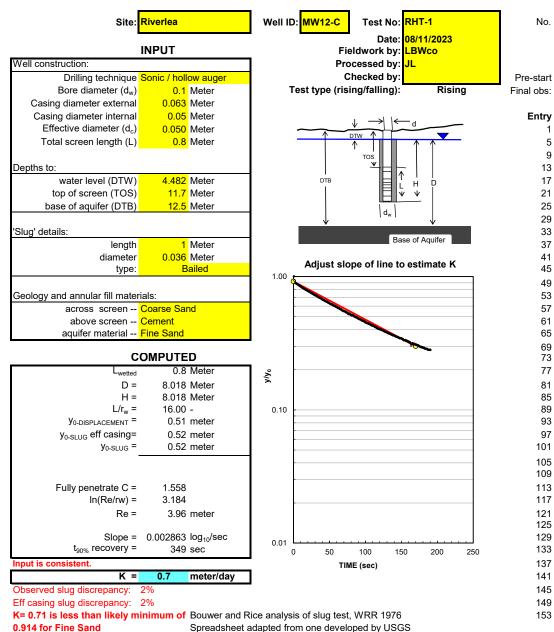
No. of data points:

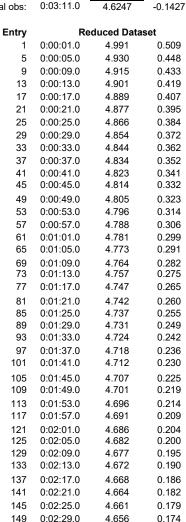
Entry	Reduced Dataset		
1	0:00:01.0	2.441	2.041
16	0:00:16.0	2.588	1.894
31	0:00:31.0	2.760	1.722
46	0:00:46.0	2.903	1.579
61	0:01:01.0	3.029	1.453
76	0:01:16.0	3.116	1.366
91	0:01:31.0	3.218	1.264
106	0:01:46.0	3.312	1.170
121	0:02:01.0	3.398	1.084
136	0:02:16.0	3.476	1.006
151	0:02:31.0	3.548	0.934
166	0:02:46.0	3.616	0.866
181	0:03:01.0	3.679	0.803
196	0:03:16.0	3.738	0.744
211	0:03:31.0	3.793	0.689
226	0:03:46.0	3.842	0.640
241	0:04:01.0	3.889	0.593
256	0:04:16.0	3.933	0.549
271	0:04:31.0	3.973	0.509
286	0:04:46.0	4.009	0.473
301	0:05:01.0	4.045	0.437
316	0:05:16.0	4.076	0.406
331	0:05:31.0	4.123	0.359
346	0:05:46.0	4.148	0.334
361 376	0:06:01.0 0:06:16.0	4.158 4.182	0.324 0.301
391	0:06:31.0	4.205	0.277
406	0:06:46.0	4.227	0.255
421	0:07:01.0	4.247	0.235
436	0:07:16.0	4.265	0.217
451 466	0:07:31.0 0:07:46.0	4.283 4.301	0.199 0.181
481	0:07:40.0	4.316	0.161
496	0:08:16.0	4.329	0.153
511	0:08:31.0	4.342	0.140
526	0:08:46.0	4.342	0.140
541	0:00:40.0	4.366	0.126
556	0:09:01.0	4.300	0.116
571	0:09:16.0	4.376	0.106
37 1	0.03.31.0	4.550	0.032

USEPA EPA/600/R-93/202, 1994

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	2.0406
Inferred drawdown for formation (m)	2.0406
Expected displacement based on slug volume (m)	2.5920
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0011 0.0097
Specific yield of filter pack (-)	0.11
Effective casing radius (m)	0.028
Effective casing diameter (m)	0.056

Butler, 1997


Effective casing radius (m)	0.028
Effective casing diameter (m)	0.056


Check significance of varying screen length during test

Was the v	water level always	ab	oove top of sc	reen?		Yes
Displacer	ment (yo) as % of	init	ial saturated s	creen len	gth	-

REMARKS:

Screen 10.5 - 11.5m bgl (11.5 to 12.5m btoc) mainly in sandy clay (10.7 - 11.5m bgl = 11.7-12.5m btoc) with clay above

Elapsed

time

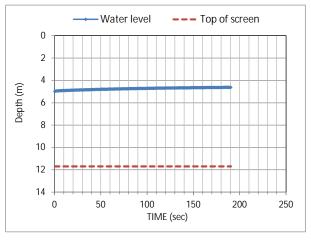
Hr:Min:Sec

0:00:00.0

191

Water

Level


Meter

4.482

Draw-

down

Meter

USEPA EPA/600/R-93/202, 1994

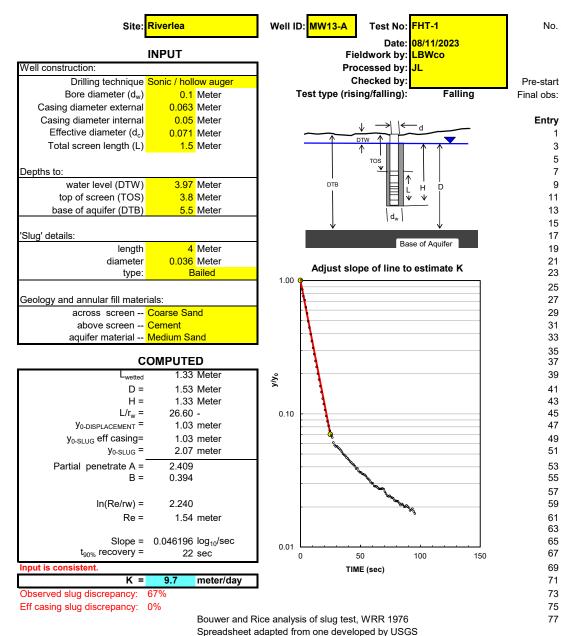
00E1 A E1 A000/1K-30/202, 1334	
Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.92
Observed drawdown (m)	0.5087
Inferred drawdown for formation (m)	0.4680
Expected displacement based on slug volume (m)	0.5184
Vol. water recharged by filter pack (m3)	0.0001
Vol. filter pack that recharged water originated from (m3)	0.0022
Specific yield of filter pack (-)	0.04
Effective casing radius (m)	0.026
Effective casing diameter (m)	0.053

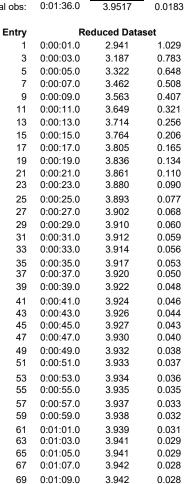
Butler, 1997

Effective casing radius (m)	0.026
Effective casing diameter (m)	0.053

Check significance of varying screen length during test

Was the water level always above top of screen?	Yes
Displacement (yo) as % of initial saturated screen length	-


REMARKS:


Screen 10.5 - 11.5m bgl (11.5 to 12.5m btoc) mainly in sandy clay (10.7 - 11.5m bgl = 11.7-12.5m btoc) with clay above

153

0:02:33.0

4.653

No. of data points:

Elapsed

time

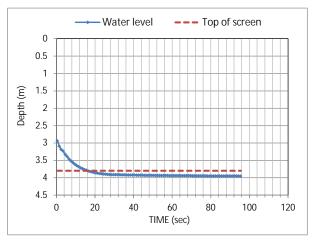
Hr:Min:Sec

0:00:00.0

96

Water

Level


Meter

3.97

Draw-

down

Meter

USEPA EPA/600/R-93/202, 1994

<u> </u>	
Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	1.0290
Inferred drawdown for formation (m)	1.0290
Expected displacement based on slug volume (m)	2.0736
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0021 0.0049
Specific yield of filter pack (-)	0.42
Effective casing radius (m)	0.035
Effective casing diameter (m)	0.071

Butler, 1997

Effective casing radius (m)	0.035
Effective casing diameter (m)	0.071

Check significance of varying screen length during test

Was the water level always above top of screen?	No
Displacement (yo) as % of initial saturated screen length	77%

REMARKS:

Screen 3.0 - 4.5m bgl (3.8 - 5.3m btoc) in sandy clay (3.1 - 4.0m bgl) and sand (4.0 - 4.7m bgl)

71

73

75

0:01:11.0

0:01:13.0

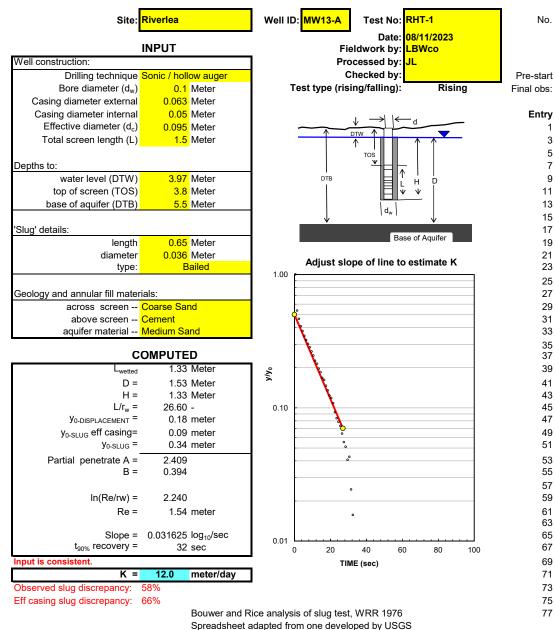
0:01:15.0

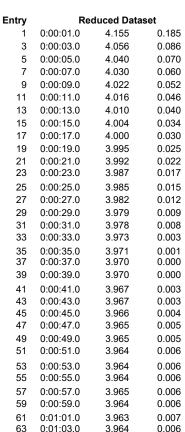
0:01:17.0

3.943

3.945

3.945


3.946


0.027

0.025

0.025

0.024

No. of data points:

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:01:27.0

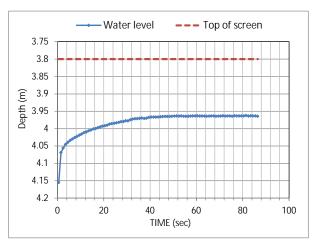
87

Water

Level

Meter

3.97


3.9619

Draw-

down

Meter

0.0081

USEPA EPA/600/R-93/202, 1994

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.50
Observed drawdown (m)	0.1849
Inferred drawdown for formation (m)	0.0925
Expected displacement based on slug volume (m)	0.3370
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0005 0.0004
Specific yield of filter pack (-)	1.10
Effective casing radius (m)	0.048
Effective casing diameter (m)	0.095

Butler, 1997

Effective casing radius (m)	0.048
Effective casing diameter (m)	0.095

Check significance of varying screen length during test

Was the water level always above top of screen?	No
Displacement (yo) as % of initial saturated screen length	14%

REMARKS:

Screen 3.0 - 4.5m bgl (3.8 - 5.3m btoc) in sandy clay (3.1 - 4.0m bgl) and sand (4.0 - 4.7m bgl)

65

67

69

71

73

75

0:01:05.0

0:01:07.0

0:01:09.0

0:01:11.0

0:01:13.0

0:01:15.0

0:01:17.0

3.964

3.963

3.965

3.964

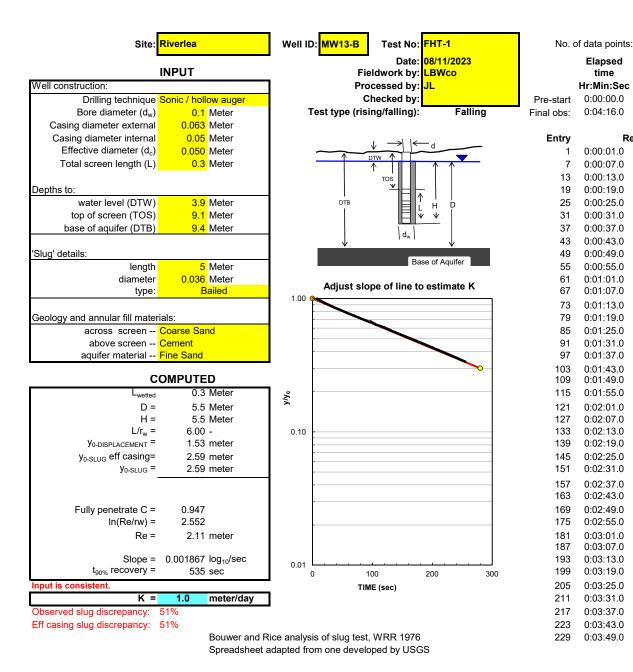
3.964

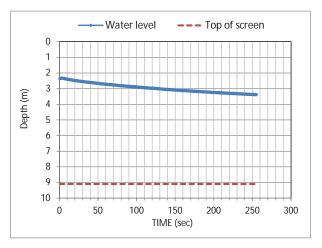
3.964

3.963

0.006

0.007


0.005


0.006

0.006

0.006

0.007

USEPA EPA/600/R-93/202, 1994

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	1.5344
Inferred drawdown for formation (m)	1.5344
Expected displacement based on slug volume (m)	2.5920
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0021 0.0073
Specific yield of filter pack (-)	0.29
Effective casing radius (m)	0.032
Effective casing diameter (m)	0.065

Butler, 1997

256

Water

Level

Meter

3.9

2.3321

Reduced Dataset

2.366

2.363

2.420

2.468

2.510

2.550

2.587

2.622

2.656

2.688

2.719

2.748

2.778

2.805

2.833

2.858

2.868

2.908

2.935

2.954

2.973

2.999

3.026

3.048

3.069

3.090

3.109

3.129

3.149

3.167

3.186

3.204

3.222

3.240

3.257

3.274

3.289

3.305

3.321

Draw-

down

Meter

1.5679

1.534

1.537

1.480

1.432

1.390

1.351

1.313

1.278

1.244

1.212

1.181

1.152

1.122

1.095

1.067

1.042

1.032

0.992

0.965

0.946

0.927

0.901

0.874

0.852

0.831

0.810

0.791

0.771

0.751

0.733

0.714

0.696

0.678

0.660

0.643

0.627

0.611

0.595

0.579

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:04:16.0

0:00:01.0

0:00:07.0

0:00:13.0

0:00:19.0

0:00:25.0

0:00:31.0

0:00:37.0

0:00:43.0

0:00:49.0

0:00:55.0

0:01:01.0

0:01:07.0

0:01:13.0

0:01:19.0

0:01:25.0

0:01:31.0

0:01:37.0

0:01:43.0

0:01:49.0

0:01:55.0

0:02:01.0

0:02:07.0

0:02:13.0

0:02:19.0

0:02:25.0

0:02:31.0

0:02:37.0

0:02:43.0

0:02:49.0

0:02:55.0

0:03:01.0

0:03:07.0

0:03:13.0

0:03:19.0

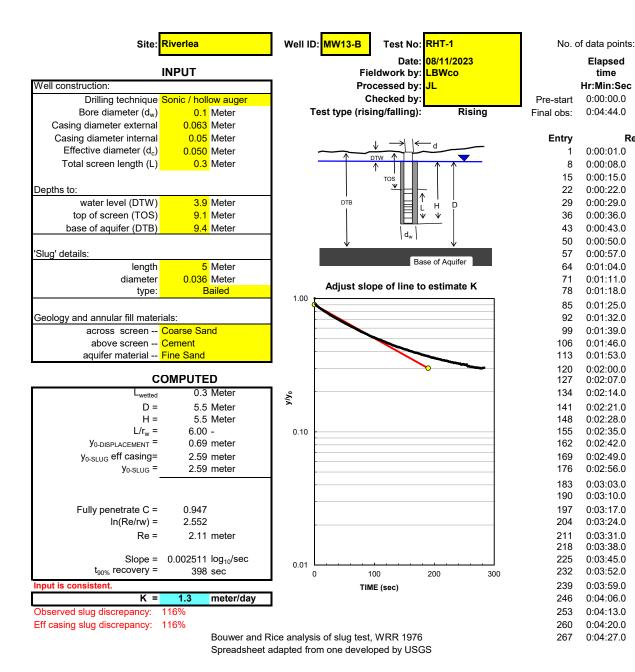
0:03:25.0

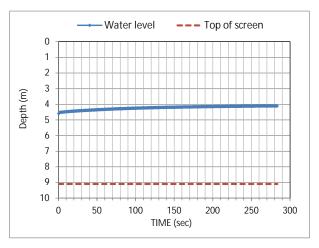
0:03:31.0

0:03:37.0

0:03:43.0

0:03:49.0


Effective casing radius (m)	0.032
Effective casing diameter (m)	0.065


Check significance of varying screen length during test

Was the water level always above top of screen?	Yes
Displacement (yo) as % of initial saturated screen length	-

REMARKS:

Screen 7.1 - 8.6m bgl (7.9 - 9.4m btoc) in mostly clay with thin sandy o gravelly clay horizons (0.3 m total so 0.3m effective screen length)

USEPA EPA/600/R-93/202, 1994

•	
Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.90
Observed drawdown (m)	0.6885
Inferred drawdown for formation (m)	0.6197
Expected displacement based on slug volume (m)	2.5920
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0039 0.0029
Specific yield of filter pack (-)	1.32
Effective casing radius (m)	0.051
Effective casing diameter (m)	0.102

Butler, 1997

284

Water

Level

Meter

3.9

4.1051

Reduced Dataset

4.589

4.490

4.460

4.435

4.411

4.390

4.371

4.353

4.335

4.319

4.304

4.288

4.276

4.263

4.252

4.242

4.232

4.223

4.213

4.204

4.197

4.189

4.183

4.176

4.169

4.164

4.159

4.153

4.148

4.143

4.140

4.135

4.131

4.128

4.124

4.119

4.120

4.112

4.109

Draw-

down

Meter

-0.2051

0.689

0.590

0.560

0.535

0.511

0.490

0.471

0.453

0.435

0.419

0.404

0.388

0.376

0.363

0.352

0.342

0.332

0.323

0.313

0.304

0.297

0.289

0.283

0.276

0.269

0.264

0.259

0.253

0.248

0.243

0.240

0.235

0.231

0.228

0.224

0.219

0.220

0.212

0.209

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:04:44.0

0:00:01.0

0:80:00:0

0:00:15.0

0:00:22.0

0:00:29.0

0:00:36.0

0:00:43.0

0:00:50.0

0:00:57.0

0:01:04.0

0:01:11.0

0:01:18.0

0:01:25.0

0:01:32.0

0:01:39.0

0:01:46.0

0:01:53.0

0:02:00.0

0:02:07.0

0:02:14.0

0:02:21.0

0:02:28.0

0:02:35.0

0:02:42.0

0:02:49.0

0:02:56.0

0:03:03.0

0:03:10.0

0:03:17.0

0:03:24.0

0:03:31.0

0:03:38.0

0:03:45.0

0:03:52.0

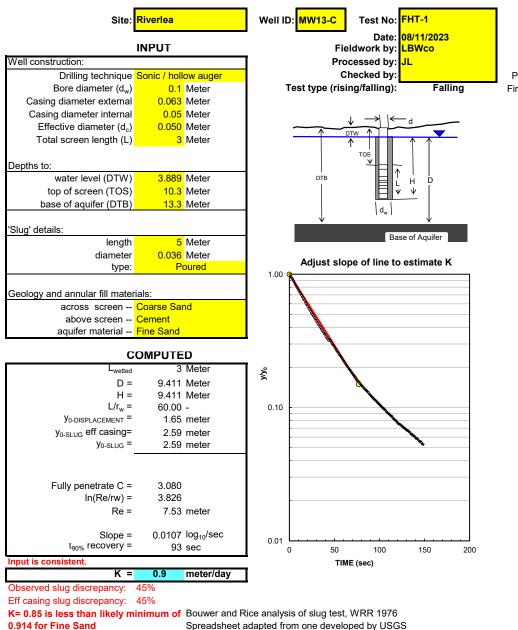
0:03:59.0

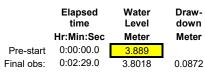
0:04:06.0

0:04:13.0

0:04:20.0

0:04:27.0

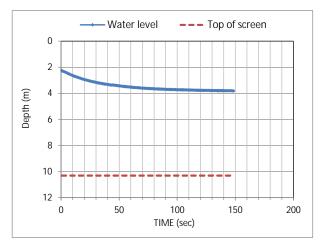

Effective casing radius (m)	0.051
Effective casing diameter (m)	0.102


Check significance of varying screen length during test

Was the water level always above top of screen?	Yes
Displacement (yo) as % of initial saturated screen length	-

REMARKS:

Screen 7.1 - 8.6m bgl (7.9 - 9.4m btoc) in mostly clay with thin sandy o gravelly clay horizons (0.3 m total so 0.3m effective screen length)



149

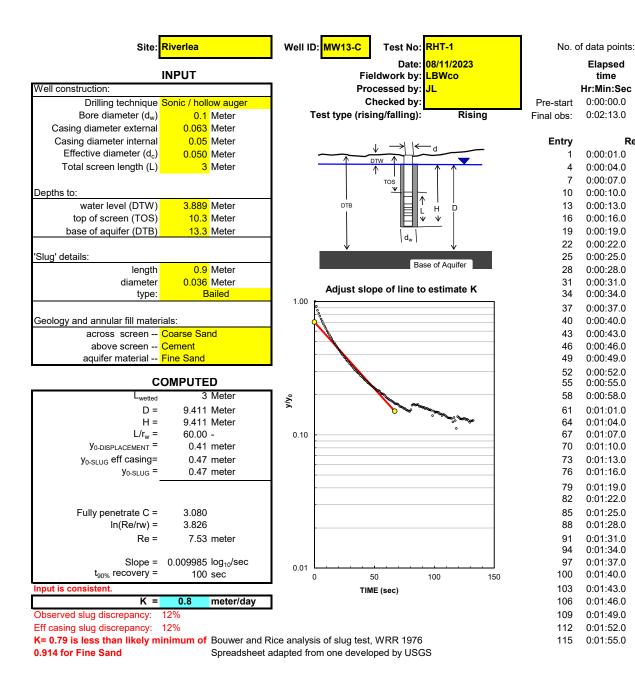
No. of data points:

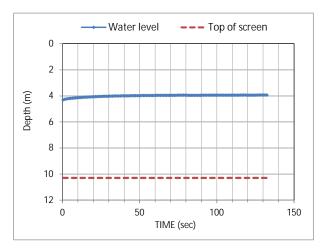
Entry	Reduced Dataset			
1	0:00:01.0	2.243	1.646	
4	0:00:04.0	2.367	1.522	
7	0:00:07.0	2.496	1.393	
10	0:00:10.0	2.610	1.279	
13	0:00:13.0	2.709	1.180	
16	0:00:16.0	2.805	1.084	
19	0:00:19.0	2.892	0.997	
22	0:00:22.0	2.970	0.919	
25	0:00:25.0	3.043	0.846	
28	0:00:28.0	3.106	0.783	
31	0:00:31.0	3.165	0.724	
34	0:00:34.0	3.217	0.672	
37	0:00:37.0	3.265	0.624	
40	0:00:40.0	3.303	0.586	
43	0:00:43.0	3.350	0.539	
46	0:00:46.0	3.366	0.524	
49	0:00:49.0	3.402	0.487	
52	0:00:52.0	3.436	0.453	
55	0:00:55.0	3.468	0.421	
58	0:00:58.0	3.495	0.394	
61	0:01:01.0	3.523	0.367	
64	0:01:04.0	3.547	0.342	
67	0:01:07.0	3.569	0.320	
70	0:01:10.0	3.588	0.301	
73	0:01:13.0	3.606	0.283	
76	0:01:16.0	3.624	0.265	
79	0:01:19.0	3.640	0.249	
82	0:01:22.0	3.652	0.237	
85	0:01:25.0	3.665	0.224	
88	0:01:28.0	3.675	0.214	
91	0:01:31.0	3.687	0.202	
94	0:01:34.0	3.696	0.193	
97	0:01:37.0	3.705	0.184	
100	0:01:40.0	3.714	0.175	
103	0:01:43.0	3.722	0.167	
106	0:01:46.0	3.730	0.160	
109	0:01:49.0	3.737	0.152	
112	0:01:52.0	3.744	0.146	
115	0:01:55.0	3.750	0.139	

USEPA EPA/600/R-93/202, 1994

00E1 A E1 A 000/11-30/202, 1334	
Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	1.00
Observed drawdown (m)	1.6461
Inferred drawdown for formation (m)	1.6461
Expected displacement based on slug volume (m)	2.5920
Vol. water recharged by filter pack (m3)	0.0019
Vol. filter pack that recharged water originated from (m3)	0.0078
Specific yield of filter pack (-)	0.24
Effective casing radius (m)	0.031
Effective casing diameter (m)	0.063

Butler, 1997


Effective casing radius (m)	0.031
Effective casing diameter (m)	0.063


Check significance of varying screen length during test

Was the water level alw	ays above top	of screen?	Yes
Displacement (yo) as %	of initial satur	ated screen len	gth -

REMARKS:

Screen 9.5 - 12.5m bgl (10.3 - 13.3m btoc) in mixed sandy clay, clay and clayey sand, with clay beneath

USEPA EPA/600/R-93/202, 1994

Check that intercept is at 00:00:00	YES
Intercept of straight line on Y/Yo axis	0.70
Observed drawdown (m)	0.4128
Inferred drawdown for formation (m)	0.2890
Expected displacement based on slug volume (m)	0.4666
Vol. water recharged by filter pack (m3) Vol. filter pack that recharged water originated from (m3)	0.0003 0.0014
Specific yield of filter pack (-)	0.25
Effective casing radius (m)	0.032
Effective casing diameter (m)	0.064

Butler, 1997

133

Water

Level

Meter

3.889

3.935

Reduced Dataset

4.302

4.225

4.181

4.148

4.120

4.097

4.079

4.063

4.048

4.037

4.026

4.016

4.009

4.002

3 995

3.989

3.984

3.979

3.976

3.972

3.967

3.964

3.961

3.959

3.956

3.954

3.951

3.958

3.958

3.956

3.955

3.954

3.953

3.951

3.950

3.948

3.947

3.944

3.944

Draw-

down

Meter

-0.046

0.413

0.336

0.292

0.259

0.231

0.208

0.190

0.174

0.159

0.148

0.137

0.127

0.120

0.113

0.106

0.100

0.095

0.090

0.087

0.083

0.078

0.075

0.072

0.070

0.067

0.065

0.062

0.069

0.069

0.067

0.066

0.065

0.064

0.062

0.061

0.059

0.058

0.055

0.055

Elapsed

time

Hr:Min:Sec

0:00:00.0

0:02:13.0

0:00:01.0

0:00:04.0

0:00:07.0

0:00:10.0

0:00:13.0

0:00:16.0

0:00:19.0

0:00:22.0

0:00:25.0

0:00:28.0

0:00:31.0

0:00:34.0

0:00:37.0

0:00:40.0

0:00:43.0

0:00:46.0

0:00:49.0

0:00:52.0

0:00:55.0

0:00:58.0

0:01:01.0

0:01:04.0

0:01:07.0

0:01:10.0

0:01:13.0

0:01:16.0

0:01:19.0

0:01:22.0

0:01:25.0

0:01:28.0

0:01:31.0

0:01:34.0

0:01:37.0

0:01:40.0

0:01:43.0

0:01:46.0

0:01:49.0

0:01:52.0

0:01:55.0

Effective casing radius (m)	0.032
Effective casing diameter (m)	0.064

Check significance of varying screen length during test

Was the water level always above top of screen?	Yes
Displacement (yo) as % of initial saturated screen length	-

REMARKS:

Screen 9.5 - 12.5m bgl (10.3 - 13.3m btoc) in mixed sandy clay, clay and clayey sand, with clay beneath

Appendix G Pump Test Data

Date	5-Dec	Pump Test Location	EVIO
LBWco Personnel	AB & JC	rump lesi Localion	EXIO

Gauging Event Before Test

Well	Easting	Northing	TOC (mAHD)	Ground Level (mAHD)	SWL (mBTOC)	SWL Time
SLMW01-P	272971.881	6163709.803	9.674	8.818	3.51	10:29:00 AM
SLMW01-Q1	272973.019	6163706.174	9.685	8.867	3.499	10:30:00 AM
SLMW02-Q1	272446.646	6163233.766	8.643	7.711	4.362	10:18:00 AM
SLMW03-Q1	272721.032	6163226.168	9.469	8.661	4.973	10:34:00 AM
SLMW04-P	273255.325	6162771.465	8.518	7.688	3.835	9:54:00 AM
SLMW05-P	271804.955	6162843.62	8.086	7.103	5.05	10:13:00 AM
SWLM05-Q1	271806.178	6162845.203	8.138	7.008	5.116	10:12:00 AM
SLMW06-Q1	272522.86	6162784.453	7.27	6.355	3.635	10:06:00 AM
SLMW07-Q1	272105.585	6162180.002	6.51	5.662	3.065	9:39:00 AM
SLMW10-A	272776.768	6163177.594	9.591	8.661	5.097	10:40:00 AM
SLMW10-B	272774.531	6163178.4	9.559	8.681	5.064	10:39:00 AM
SLMW10-C	272772.577	6163179.029	9.588	8.713	5.091	10:38:00 AM
EX10					4.719	10:37:00 AM
SLMW11-B	272799.342	6162987.626	9.294	8.216	5.13	10:23:00 AM
SLMW11-C	272800.36	6162985.507	9.292	8.237	5.132	10:23:00 AM
EX11					4.638	10:22:00 AM
SLMW12-A	272727.468	6162776.055	8.31	7.303	4.445	10:00:00 AM
SLMW12-B	272728.233	6162773.82	8.312	7.313	4.427	10:01:00 AM
SLMW12-C	272729.249	6162771.629	8.272	7.321	4.407	10:02:00 AM
EX12					3.873	9:59:00 AM
SLMW13-A	273247.115	6162805.068	8.643	7.833	3.946	9:52:00 AM
SLMW13-B	273247.281	6162802.55	8.654	7.839	3.947	9:52:00 AM
SLMW13-C	273247.768	6162800.651	8.582	7.767	3.88	9:51:00 AM
EX13					3.759	9:50:00 AM

mments

Pump Testing Data Capture

Date	5/12/2023	Pump Tost Location	EV10
LBWco Personnel	AB & JC	Fump lest Location	EXIO

Logger Details

Well ID	SLMW10-A	SLMW10-B	SLMW10-C	EX10	Baro
SWL	5.097	5.064	5.091	4.719	-
SWL Time	10:40:00 AM	10:39:00 AM	10:38:00 AM	10:37:00 AM	-
Depth of well	7.16	10.045	13.065	9.783	-
Logger Serial Number	004-2181662	004-2181664	004-2181665	004-2185069	001-2182293
Logger measurement frequency	1 per hour	1 per hour	1 per hour	1 per hour	1 per hour
Time loggers start	11:45:00 AM	11:45:00 AM	11:45:00 AM	11:45:00 AM	11:45:00 AM
Depth of logger	7.06	9.945	12.965	9.683	-
SWL after logger deployed (mBTOC)	5.095	5.064	5.093	4.718	-
SWL after logger time	11:37:00 AM	11:38:00 AM	11:38:00 AM	11:39:00 AM	-
Date removed from well	6-Dec	6-Dec	6-Dec	reprogramged - 6/12/2023	6-Dec
Time removed from well	8:29	8:29	8:29	8:29	8:29

Date	6/12/2023	Pump Test	EX10
LBWco Personnel	JC + MF	Location	EXTO

<u>Logger Details</u>

Well ID	SLMW10-A	SLMW10-B	SLMW10-C	EX10	Baro
SWL (mTOC)	5.094	5.063	5.089	4.712	=
SWL Time	6/12/2023 8:25	6/12/2023 8:25	6/12/2023 8:25	6/12/2023 8:25	=
Depth of well (mTOC)	7.16	10.045	13.065	9.783	-
Logger Serial Number	004-2181662	004-2181664	004-2181665	004-2185069	001-2182293
	0.005 m change	0.005 m change	0.005 m change	0.005 m change	
Logger measurement frequency	in pressure,	in pressure,	in pressure,	in pressure,	Every 10
Logger measurement nequency	reading 10	reading 10	reading 10	reading 10	seconds
	seconds	seconds	seconds	seconds	
Time loggers start	9:30:00 AM	9:30:00 AM	9:30:00 AM	9:30:00 AM	9:30:00 AM
Depth of logger (mTOC)	7.06	9.945	12.965	9.683	0
SWL after logger deployed (mTOC)	5.089	5.055	5.073	4.709	-
SWL after logger time	9:11:00 AM	9:12:00 AM	9:12:00 AM	9:13:00 AM	=
Date removed from well	7/12/2023	7/12/2023	7/12/2023	7/12/2023	7/12/2023
Time removed from well	9:45	9:45	9:45	9:45	9:45

Time pump deployed in well	6/12/2023 9:40	Water disposal location	Lake, west of wells
SWL after pump install	4.7 m, 9:48am	Pump depth (mTOC)	Top at 8.4 m

Gauging Data During Pump Test

Time	Flow Rate (L/min)	EX10	SLMW10-A	SLMW10-B	SLMW10-C	SLMW03-Q1	Comments
6/12/2023							
9:53	-	-	-	-	-	-	-
10:03		5.9	=	-	-	-	-
10:07		5.67	=	-	-	-	-
10:09		=	=	-	=	-	-
10:10		=	=	-	-	-	increasing but levelling out
10:12		-	-	-	-	-	<u>l-</u>
10:12		=	=	-	-	-	-
10:13		-	=	-	-	-	<u> </u> -
10:14		=	=	-	-	-	-
10:16	11.8-12	5.65	=	-	-	-	<u> -</u>
10:19		-	5.21	-	-	-	MF untangled hose, discharging more water
10:25		-	-	-	-	-	l-
10:28		-	5.202	5.169	5.127	-	l-
10:31		-	-	-	-	4.97	l-
10:32		-	-	-	-	-	generator started running out of fuel - topped up
10:40		5.63	-	-	-	-	l-
10:52		-	-	-	-	-	generator switched off and restarted again
10:56	11.8	5.53	-	-	-	-	-
11:00		5.53	-	-	-	-	d-
11:06		-	-	-	-	-	Generator restarted again
11:09		5.43	-	-	-	-	-
11:15	11.8	5.45	5.23	5.195	5.14	4.96	-
11:31	-	5.48	-	-	-	-	d-
12:16		5.482	5.253	5.224	5.169	4.965	flow meter error
12:40		-	-	-	-	-	Bucket test: 20 L filled in 1 minute 40 seconds
13:20	11.8?	5.500	5.27	5.238	5.179	4.962	-
14:21	-	5.495	5.287	5.249	5.184	4.967	Bucket test: 20 L filled in 1 minute 40 seconds
15:21	Ś	5.513	5.287	5.254	5.17	4.971	-
16:15	Ś	5.520	5.295	5.265	5.175	4.97	-
16:17	-	-	-	-	-	-	generator switched off
7/12/2023							
9:40	N/A	4.721	5.106	5.080	5.100	4.975	-
Gauging Comments							

Date	11-Dec	Pump Test Location	EV12
LBWco Personnel	JC	rump lesi Localion	EXIZ

Gauging Event Before Test

				5/12/2023			11/12/2023			
Well	Easting	Northing	TOC (mAHD)	Ground Level (mAHD)	SWL (mBTOC)	SWL Time	RWL (mAHD)	SWL (mBTOC)	SWL Time	RWL (mAHD)
SLMW01-P	272971.881	6163709.803	9.674	8.818	3.51	10:29:00 AM	6.164	couldn't access		
SLMW01-Q1	272973.019	6163706.174	9.685	8.867	3.499	10:30:00 AM	6.186	couldn't access		
SLMW02-Q1	272446.646	6163233.766	8.643	7.711	4.362	10:18:00 AM	4.281	4.32	11:45:00 AM	4.323
SLMW03-Q1	272721.032	6163226.168	9.469	8.661	4.973	10:34:00 AM	4.496	4.941	11:30:00 AM	4.528
SLMW04-P	273255.325	6162771.465	8.518	7.688	3.835	9:54:00 AM	4.683	3.816	9:45:00 AM	4.702
SLMW05-P	271804.955	6162843.62	8.086	7.103	5.05	10:13:00 AM	3.036	couldn't access		
SWLM05-Q1	271806.178	6162845.203	8.138	7.008	5.116	10:12:00 AM	3.022	couldn't access		
SLMW06-Q1	272522.86	6162784.453	7.27	6.355	3.635	10:06:00 AM	3.635	3.597	10:54:00 AM	3.673
SLMW07-Q1	272105.585	6162180.002	6.51	5.662	3.065	9:39:00 AM	3.445	couldn't access		
SLMW10-A	272776.768	6163177.594	9.591	8.661	5.097	10:40:00 AM	4.494	5.06	11:14:00 AM	4.531
SLMW10-B	272774.531	6163178.4	9.559	8.681	5.064	10:39:00 AM	4.495	5.031	11:14:00 AM	4.528
SLMW10-C	272772.577	6163179.029	9.588	8.713	5.091	10:38:00 AM	4.497	5.055	11:14:00 AM	4.533
EX10	272773.205	6163174.267	9.247	8.727	4.719	10:37:00 AM	4.528	4.675	11:14:00 AM	4.572
SLMW11-B	272799.342	6162987.626	9.294	8.216	5.13	10:23:00 AM	4.164	5.086	11:06:00 AM	4.208
SLMW11-C	272800.36	6162985.507	9.292	8.237	5.132	10:23:00 AM	4.160	5.091	11:05:00 AM	4.201
EX11	272804.03	6162988.261	8.841	8.404	4.638	10:22:00 AM	4.203	4.589	11:07:00 AM	4.252
SLMW12-A	272727.468	6162776.055	8.31	7.303	4.445	10:00:00 AM	3.865	4.41	10:12:00 AM	3.900
SLMW12-B	272728.233	6162773.82	8.312	7.313	4.427	10:01:00 AM	3.885	4.408	10:10:00 AM	3.904
SLMW12-C	272729.249	6162771.629	8.272	7.321	4.407	10:02:00 AM	3.865	4.388	10:08:00 AM	3.884
EX12	272725.868	6162780.099	7.771	7.396	3.873	9:59:00 AM	3.898	3.84	10:13:00 AM	3.931
SLMW13-A	273247.115	6162805.068	8.643	7.833	3.946	9:52:00 AM	4.697	3.919	9:45:00 AM	4.724
SLMW13-B	273247.281	6162802.55	8.654	7.839	3.947	9:52:00 AM	4.707	3.925	9:45:00 AM	4.729
SLMW13-C	273247.768	6162800.651	8.582	7.767	3.88	9:51:00 AM	4.702	3.851	9:45:00 AM	4.731
EX13	273249.119	6162797.004	8.488	7.769	3.759	9:50:00 AM	4.729	3.732	9:45:00 AM	4.756

Gauging Comments	
------------------	--

Date LBWco Personnel

Gauging Event Before Test

Gauging Eveni belole lesi		13/12/2023			15/12/2023		
Well	SWL (mBTOC)	SWI Time		SWL (mBTOC)	SWL Time	RWL (mAHD)	
SLMW01-P	couldn't access			couldn't access			
SLMW01-Q1	couldn't access			couldn't access			
SLMW02-Q1	couldn't access			4.292	11:49:00 AM	4.351	
SLMW03-Q1	4.922	11:31:00 AM	4.547	4.909	11:41:00 AM	4.560	
SLMW04-P	3.797	1:55:00 AM	4.721	3.751	1:00:00 PM	4.767	
SLMW05-P	couldn't access			couldn't access			
SWLM05-Q1	couldn't access			couldn't access			
SLMW06-Q1	3.58	11:37:00 AM	3.690	3.567	11:25:00 AM	3.703	
SLMW07-Q1	couldn't access			couldn't access			
SLMW10-A	5.023	11:18:00 AM	4.568	5.01	11:35:00 AM	4.581	
SLMW10-B	4.997	11:20:00 AM	4.562	4.979	11:35:00 AM	4.580	
SLMW10-C	5.023	11:21:00 AM	4.565	5	11:35:00 AM	4.588	
EX10	4.647	11:23:00 AM	4.600	4.634	11:34:00 AM	4.613	
SLMW11-B	5.055	11:13:00 AM	4.239	5.042	11:30:00 AM	4.252	
SLMW11-C	5.054	11:14:00 AM	4.238	5.044	11:31:00 AM	4.248	
EX11	4.553	11:15:00 AM	4.288	4.551	11:29:00 AM	4.290	
SLMW12-A	4.377	10:28:00 AM	3.933	4.39	12:06:00 PM	3.920	
SLMW12-B	4.381	10:27:00 AM	3.931	4.378	12:06:00 PM	3.934	
SLMW12-C	4.36	10:26:00 AM	3.912	4.356	12:07:00 PM	3.916	
EX12	3.823	10:30:00 AM	3.948	3.82	12:08:00 PM	3.951	
SLMW13-A	3.875	11:55:00 AM	4.768	3.868	12:54:00 PM	4.775	
SLMW13-B	3.88	11:55:00 AM	4.774	3.87	12:55:00 PM	4.784	
SLMW13-C	3.811	11:55:00 AM	4.771	3.802	12:56:00 PM	4.780	
EX13	3.688	11:55:00 AM	4.800	3.686	12:58:00 PM	4.802	

Gauging Comments

Pump Testing Data Capture

Date	11/12/2023	Pump Tost Location	EVIO
LBWco Personnel	JC	Pump Test Location	EXTZ

Logger Details

Well ID	SLMW12-A	SLMW12-B	SLMW12-C	EX12	Baro
SWL	4.41	4.408	4.388	3.84	-
SWL Time	10:12:00 AM	10:10:00 AM	10:08:00 AM	10:13:00 AM	-
Depth of well	4.99	9	12.39	7.44	-
ogger Serial Number	662	664	665	69	293
ogger measurement frequency	30 min	30 min	30 min	30 min	10 min
ime loggers start	10:40:00 AM				
Depth of logger	4.89	8.9	12.29	7.34	=
WL after logger deployed mBTOC)	4.383	4.383	4.39	3.85	-
WL after logger time	10:49:00 AM	10:48:00 AM	10:47:00 AM	10:46:00 AM	-
WL	4.377	4.381	4.36	3.823	-
WL Time 13/12/23	10:28:00 AM	10:27:00 AM	10:26:00 AM	10:30:00 AM	-
Date removed from well	15-Dec	15-Dec	15-Dec	15-Dec	15-Dec
lime removed from well	12:30ish	12:30ish	12:30ish	12:30ish	12:30ish

Pump Testing Data Capture

Date	14/12/2023	Pump Test	EV10
LBWco Personnel	JC + JB	Location	LATZ

Logger Details

Well ID	SLMW12-A	SLMW12-B	SLMW12-C	EX12	Baro
SWL (mTOC)	4.387	4.36	4.358	3.82	-
SWL Time	9:25	9:26	9:27	9:24	-
Depth of well (mTOC)	4.99	9	12.39	7.44	-
Logger Serial Number	662	664	665	69	293
Logger measurement frequency	0.005 m change in pressure, reading 10 seconds	Every 10 seconds			
Time loggers start	10:00:00 AM	10:00:00 AM	10:00:00 AM	10:00:00 AM	10:00:00 AM
Depth of logger (mTOC)	4.89	8.9	12.29	7.34	-
SWL after logger deployed (mTOC)	4.387	4.376	4.353	3.82	-
SWL after logger time	9:55:00 AM	9:57:00 AM	9:58:00 AM	9:54:00 AM	-
Date removed from well	15-Dec	15-Dec	15-Dec	15-Dec	15-Dec
Time removed from well	12:30ish	12:30ish	12:30ish	12:30ish	12:30ish

well	RL	
EX12		108.5
12-A		52.4
12-B		53.2
12-C		56.3

Time pump deployed in well	10:40ish	Water disposal location	approx 20 m away in lake	
SWL after pump install	Х	Pump depth (mTOC)	6.1	

Gauging Data During Pump Test

Time		Flow Rate (L/min)	EX12	SLMW12-A	SLMW12-B	SLMW12-C	SLMW06	EX11	SLMW11-B	SLMW11-C	Comments
	9:15	X	X	Х	Х	Х	3.573	Х	Х	Х	
	10:25	X	X	Х	Х	Х	Х	4.554	5.049	5.051	
	10:43	X	Х	Х	Х	Х	Х	Х	X	X	test restarted, stop again, fittings tightened
	10:48	X	Х	Х	Х	X	X	X	Х	X	test restarted again, went dry, stopped
	10:54	5.2	5.37	Х	X	X	Х	Х	Х	X	test restarted
	10:59	5.9-6.1	Х	X	X	X	Х	X	X	X	level dropping
	11:00	5.4-5.7	Х	X	X	X	Х	X	X	X	
	11:04	5.2-5.4	5.45	4.428	4.426	4.363	Х	Х	Х	Х	
	11:12	5.2-5.4	Х	Х	Х	Х	Х	Х	Х	Х	
	11:35	7.2	Х	Х	Х	Х	Х	Х	Х	Х	
	11:46	6.6	6.05	4.484	4.464	4.368	Х	х	Х	Х	
	11:58	Х	Х	Х	Х	Х	3.573	х	Х	Х	
	12:03	7	Х	Х	Х	Х	Х	4.554	5.049	5.051	bucket test: 7.0 L/min
	12:25	Х	Х	Х	Х	Х	Х	Х	Х	Х	started recharging, adjusted flow
	12:51	Х	5.615	Х	Х	Х	Х	Х	Х	Х	
	12:58	Х	Х	Х	Х	Х	Х	Х	Х	Х	bucket test: 7.5 I/min
	13:05	Х	5.574	4.525	4.496	Х	Х	Х	Х	Х	bucket test: 7.5 I/min
	13:23	Х	5.574	Х	Х	Х	Х	Х	Х	Х	bucket test: a little slower than 7.5 L/min
	14:00	Х	5.71	Х	Х	Х	3.573	4.554	5.049	5.051	bucket test: a little slower than 7.5 L/min
	14:50	Х	5.77	5.453	4.51	4.383	Х	Х	Х	Х	bucket test: 7.5 I/min
	15:50	X	5.78	Х	X	X	X	X	Х	Х	bucket test: 7.5 I/min
1:30-5:00		X	5.775	4.573	4.504	4.387	3.572	4.55	5.05	5.051	SLMW04: 3.755 / EX13: 3.684 / 13-C: 3.801 / 13-B: 3.873 / 13-A: 3.870
	17:05	X	5.83	X	X	X	X	X	X	X	bucket test: 7.5 I/min
	17:10	X	X	X	X	X	X	X	X	X	generator switched off
		X	X	X	X	X	X	X	X	X	
		X	X	X	X	X	X	X	X	X	
		X	X	X	X	X	X	X	X	X	
		X	×	X	X	×	X	X	X	X	
		X	×	X	X	X	X	X	X	X	
		X	X	X	X	X	X	X	X	×	1
		^	^	^	^	^	^	^	^	^	
		X	Y	X	Y	Y	X	X	Y	X	
<u> </u>		^	^	^	^	^	^	_ ^	_ ^	^	

Date	18-Dec	Pump Test Location	EV12	
LBWco Personnel	JC	rump lesi Locullon	EX13	

Gauging Event Before Test

					5/12/2023		11/12/2023		13/12/2023	
Well	Easting	Northing	TOC (mAHD)	Ground Level (mAHD)	SWL (mBTOC)	SWL Time	SWL (mBTOC)	SWL Time	SWL (mBTOC)	SWL Time
SLMW01-P	272971.881	6163709.803	9.674	8.818	3.51	10:29:00 AM	couldn't access		couldn't access	
SLMW01-Q1	272973.019	6163706.174	9.685	8.867	3.499	10:30:00 AM	couldn't access		couldn't access	
SLMW02-Q1	272446.646	6163233.766	8.643	7.711	4.362	10:18:00 AM	4.32	11:45:00 AM	couldn't access	
SLMW03-Q1	272721.032	6163226.168	9.469	8.661	4.973	10:34:00 AM	4.941	11:30:00 AM	4.922	11:31:00 AM
SLMW04-P	273255.325	6162771.465	8.518	7.688	3.835	9:54:00 AM	3.816	9:45:00 AM	3.797	1:55:00 AM
SLMW05-P	271804.955	6162843.62	8.086	7.103	5.05	10:13:00 AM	couldn't access		couldn't access	
SWLM05-Q1	271806.178	6162845.203	8.138	7.008	5.116	10:12:00 AM	couldn't access		couldn't access	
SLMW06-Q1	272522.86	6162784.453	7.27	6.355	3.635	10:06:00 AM	3.597	10:54:00 AM	3.58	11:37:00 AM
SLMW07-Q1	272105.585	6162180.002	6.51	5.662	3.065	9:39:00 AM	couldn't access		couldn't access	
SLMW10-A	272776.768	6163177.594	9.591	8.661	5.097	10:40:00 AM	5.06	11:14:00 AM	5.023	11:18:00 AM
SLMW10-B	272774.531	6163178.4	9.559	8.681	5.064	10:39:00 AM	5.031	11:14:00 AM	4.997	11:20:00 AM
SLMW10-C	272772.577	6163179.029	9.588	8.713	5.091	10:38:00 AM	5.055	11:14:00 AM	5.023	11:21:00 AM
EX10					4.719	10:37:00 AM	4.675	11:14:00 AM	4.647	11:23:00 AM
SLMW11-B	272799.342	6162987.626	9.294	8.216	5.13	10:23:00 AM	5.086	11:06:00 AM	5.055	11:13:00 AM
SLMW11-C	272800.36	6162985.507	9.292	8.237	5.132	10:23:00 AM	5.091	11:05:00 AM	5.054	11:14:00 AM
EX11					4.638	10:22:00 AM	4.589	11:07:00 AM	4.553	11:15:00 AM
SLMW12-A	272727.468	6162776.055	8.31	7.303	4.445	10:00:00 AM	4.41	10:12:00 AM	4.377	10:28:00 AM
SLMW12-B	272728.233	6162773.82	8.312	7.313	4.427	10:01:00 AM	4.408	10:10:00 AM	4.381	10:27:00 AM
SLMW12-C	272729.249	6162771.629	8.272	7.321	4.407	10:02:00 AM	4.388	10:08:00 AM	4.36	10:26:00 AM
EX12					3.873	9:59:00 AM	3.84	10:13:00 AM	3.823	10:30:00 AM
SLMW13-A	273247.115	6162805.068	8.643	7.833	3.946	9:52:00 AM	3.919	9:45:00 AM	3.875	11:55:00 AM
SLMW13-B	273247.281	6162802.55	8.654	7.839	3.947	9:52:00 AM	3.925	9:45:00 AM	3.88	11:55:00 AM
SLMW13-C	273247.768	6162800.651	8.582	7.767	3.88	9:51:00 AM	3.851	9:45:00 AM	3.811	11:55:00 AM
EX13					3.759	9:50:00 AM	3.732	9:45:00 AM	3.688	11:55:00 AM

Gauging Comments

15/12,	/2023	18/12	2/2023	19/12	2/2023
SWL (mBTOC)	SWL Time	SWL (mBTOC)	SWL Time	SWL (mBTOC)	SWL Time
couldn't access		couldn't access		couldn't access	
couldn't access		couldn't access		couldn't access	
4.292	11:49:00 AM	4.28	9:03:00 AM	4.289	11:32:00 AM
4.909	11:41:00 AM	4.883	9:19:00 AM	4.876	11:47:00 AM
3.751	1:00:00 PM	3.746	9:30:00 AM	3.573	11:58:00 AM
couldn't access		4.976	9:07:00 AM	4.976	11:27:00 AM
couldn't access		5.04	9:08	5.042	
3.567	11:25:00 AM	3.547	8:56:00 AM	3.558	11:13:00 AM
couldn't access		couldn't access		couldn't access	
5.01	11:35:00 AM	4.984	9:15:00 AM	4.986	11:43:00 AM
4.979	11:35:00 AM	4.948	9:15:00 AM	4.947	11:44:00 AM
5	11:35:00 AM	4.973	9:15:00 AM	4.983	11:45:00 AM
4.634	11:34:00 AM	4.605	9:16:00 AM	4.6	11:42:00 AM
5.042	11:30:00 AM	5.026	9:22:00 AM	5.032	11:37:00 AM
5.044	11:31:00 AM	5.032	9:22:00 AM	5.034	11:37:00 AM
4.551	11:29:00 AM	4.527	9:23:00 AM	4.534	11:36:00 AM
4.39	12:06:00 PM	4.377	9:00:00 AM	4.382	11:20:00 AM
4.378	12:06:00 PM	4.366	9:00:00 AM	4.37	11:22:00 AM
4.356	12:07:00 PM	4.345	9:01:00 AM	4.346	11:21:00 AM
3.82	12:08:00 PM	3.802	9:01:00 AM	3.811	11:17:00 AM
3.868	12:54:00 PM	3.872	9:29:00 AM	3.876	11:59:00 AM
3.87	12:55:00 PM	3.864	9:29:00 AM	3.857	12:00:00 PM
3.802	12:56:00 PM	3.798	9:28:00 AM	3.787	12:01:00 PM
3.686	12:58:00 PM	3.666	9:27:00 AM	3.635	12:01:00 PM

Date	15/12/2023	Pump Test	EV13
LBWco Personnel	JC	Location	LATS

Logger Details

Well ID	SLMW13-A	SLMW13-B	SLMW13-C	EX13	Baro
SWL	3.868	3.87	3.802	3.686	-
SWL Time	12:54:00 PM	12:55:00 PM	12:56:00 PM	12:58:00 PM	-
Depth of well	5.305	9.429	13.345	6.742	-
Logger Serial Number	662	664	665	69	293
Logger measurement frequency	1 hour	1 hour	1 hour	1 hour	30 minutes
Time loggers start	1:20:00 PM	1:20:00 PM	1:20:00 PM	1:20:00 PM	1:20:00 PM
Depth of logger	5.205	9.329	13.245	6.642	-
SWL after logger deployed					
(mBTOC)	=	-	-	-	-
SWL after logger time	-	-	-	-	-
SWL	3.872	3.864	3.798	3.666	-
SWL Time	9:29:00 AM	9:29:00 AM	9:28:00 AM	9:27:00 AM	-
Date removed from well	18-Dec	18-Dec	18-Dec	18-Dec	
Time removed from well	9:45	9:45	9:45	9:45	

Date	18/12/2023	Pump Test	EV12
LBWco Personnel	JC + KJ	Location	EX13

Logger Details

Well ID	SLMW12-A	SLMW12-B	SLMW12-C	EX12	Baro
SWL (mTOC)	3.872	3.864	3.798	3.666	-
SWL Time	9:29:00 AM	9:29:00 AM	9:28:00 AM	9:27:00 AM	-
Depth of well (mTOC)	5.305	9.429	13.345	6.742	-
Logger Serial Number	662	664	665	69	293
Logger measurement freque	0.005 m change in pressure, reading 10 seconds	Every 10 seconds			
Time loggers start	10:00:00 AM	10:00:00 AM	10:00:00 AM	10:00:00 AM	10:00:00 AM
Depth of logger (mTOC)	5.205	9.329	13.245	6.642	-
SWL after logger deployed (1	3.849	3.839	3.78	3.676	-
SWL after logger time	10:06:00 AM	10:07:00 AM	10:07:00 AM	10:08:00 AM	-
Date removed from well	19-Dec	19-Dec	19-Dec	19-Dec	19-Dec
Time removed from well	12:05	12:05	12:05	12:05	12:05

Time pump deployed in well	10:35	Water disposal location	15 m north-west into drain, into lake
SWL after pump install	4.655 10:36am	Pump depth (mTOC)	5.4 (top)

Gauging Data During Pump Test

Time	Flow Rate (L/min)	EX13	SLMW13-A	SLMW13-B	SLMW13-C	SLMW04-P	Comments
11:08	13.7	4.4	X	X	X	X	Started 11:03
11:10	13.7	4.42	3.888	3.905	3.856	X	Statied 11.05
11:13	12.8	X	X	3.703 X	3.836 X	X	noticed water level rising, flow had slowed
11:15	12.0 X	X	X	X	X	X	flow meter error
11:19	X	X	×	X	X	X	water level dropping slowly, slowing flow rate slightly
11:19-11:35	X	X	×	X	X	X	playing with flow rate with mm adjustments
11:30	~13.7	X	3.926	3.962	3.906	X	pidying with now rate with min adjosiments
11:36	~13.7	3.565	X X	X	3.766 X	X	
11:50	~12	X	X	X	X	X	doing flow test
12:10	X	X	X	X	X	X	Generator stopped working
12:15	X	X	X	X	X	X	Started again, haven't changed settings
12:18	~12	4.3	X	X	X	X	Bucket flow test for flow rate
12:30	X	X	X	X	X	X	water level dropping, haven't touched valve
12:37	~12	4.608	3.951	3.994	3.939	3.766	bucket test: flow rate 12 l/min
13:06	~12	4.4	X	X	X	X	bucket test: flow rate 12 l/min, water rising
13:13	~11.53	X	X	X	X	X	bucket flow test
13:42	X	X	X	X	X	X	
13:45	X	4.31	3.964	4.015	3.948	3.766	bucket test: flow rate dropped to 8.1
13:54	X	X	X	X	X	X	bucket flow test: increased to 10.3 I/min
14:02	Х	Х	Х	Х	Х	Х	flow consistent
14:15	Х	Х	Х	Х	Х	Х	flow rate dropped to 9 I/min, opened valve more
14:38	10.50	Х	Х	Х	Х	Х	
14:40	8	4.235	Х	Х	Х	Х	started increasing water level, opened valve more, valve hasn't been tightened at all since 11:35
14:47	7	Х	Х	Х	Х	Х	opened valve slightly
14:50	6	4.2	Х	Х	Х	Х	opened valve more
14:55	6	X	3.961	3.896	3.945	Х	opened valve more
14:58	10.5	4.27	Х	Х	Х	Х	-
15:04	10.5	4.32	Х	Х	Х	Х	
15:07	10.5	4.337	Х	Х	Х	Х	
15:12	10.5	Х	Х	Х	Х	Х	tightened valve, water siltier
15:16	10.3	Х	Х	Х	Х	Х	tightened valve
15:24	10.7	4.618	Х	Х	Х	Х	
15:25	Х	X	Х	Х	Х	Х	tightened valve SLIGHTLY
15:28	10.3	Х	Х	Х	Х	Х	-
15:35	10.3	4.473	х	X	Х	Х	becoming less silty
15:43	Х	4.485	Х	Х	Х	Х	

Pump Testing Data Capture

Date		18/12	2/2023	Pump Test		/12		
BWco Personnel		JC	+ KJ	Location	E/	(13		
	45	0.0				Ī	T	
	:45	8.3	X	Х	X	X	X	
	:49	7.5	X	Х	X	X	X	
	:51	7	X	Х	X	X	X	opened valve slightly
	:54	6.6	X	X	X	X	X	opened valve slightly
	:00	6.7	4.18	3.958	3.99	3.95	X	
	:10	X	X	Х	X	Х	X	
	:11	4	X	Х	X	Х	X	opened slightly
	:25	4	X	Х	X	X	X	
	:50	3.4	3.995	Х	X	X	X	
	:55	X	X	Х	X	X	Х	opened slightly
	:58	5	4.068	Х	X	X	X	
7:11:00 PM		X	X	Х	X	X	X	generator switched off
		X	X	Х	X	X	Х	
		X	X	X	X	X	X	
		Χ	X	X	Χ	X	X	
		X	X	X	X	X	X	
		X	X	X	X	X	X	
		X	X	Х	X	Х	Х	
		X	X	Х	X	Х	Х	
		X	X	Х	X	Х	Х	
		Х	Х	Х	Х	Х	Х	
		Х	Х	Х	Х	Х	Х	
		Х	Х	Х	Х	Х	Х	
		Х	Х	Х	Х	Х	Х	
		Х	Х	Х	Х	Х	Х	
		Х	Х	Х	Х	Х	Х	
auging Comments								

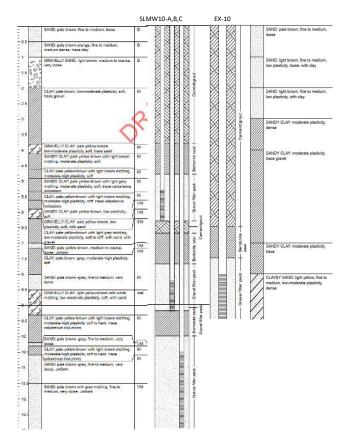
W	Calculated			
Bore	Easting	Northing	Top of casing (mAHD)	distance from EX10 (m)
SLMW10-A	272777	6163178	9.591	4.87
SLMW10-B	272775	6163178	9.559	4.34
SLMW10-C	272773	6163179	9.588	4.80
EX10	272773	6163174	9.247	0.00

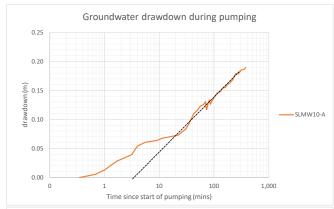
	Te	est information	on		Screened	Screened Hydraulic Assumed Estimated transmissivity (m2/d)							
Extraction	Monitoring	Pumpi	ng rate	Distance	permeable	conductivity	aquifer	Slug tes	t (B&R)	Cont	fined	Unco	nfined
well	well	L/min	m3/d	(m)	thickness (m)	from slug test (m/d)	thickness (m)	By unit	Total	Jacob	Theis recovery	Jacob	Theis recovery
	EX-10	11.9	17.1	0.05	1.3	-	4		,		31.4	-	31.4
EX-10	SLMW10-A	-	-	4.87	0.6	16		9.6		33.0	36.9	33.0	36.9
EX-10	SLMW10-B	-	-	4.34	1.3	7.6		9.9	27.0	33.0	34.8	33.0	37.3
	SLMW10-C		-	4.80	2.5	3.0		7.5		n/a	n/a	n/a	n/a

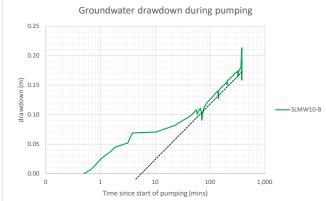
Notes

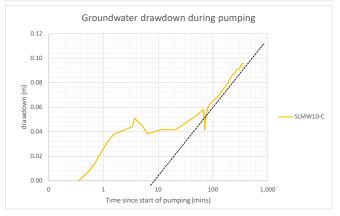
Response in -A is almost identical to response in -B and they are at about the same distance, therefore treat them as a single hydrogeological unit

Well -C responds quickly so is hydraulically connected


The response in -C is smaller magnitude (about half)


As -C is in a different (but connected) unit, the assumptions of the analysis methods do not apply


Based on the slug testing, -C has similar transmissivity (but lower k and larger thickness)


As some of the water comes from -C, the transmissivity estimated based on responses at A and B are likely over-estimated

The slug test T estimates therefore appear reasonably representative

Jacob's method (Cooper & Jacob, 1946)

Assumes

Aquifer has infinite extent

Aquifer is homoegneous, isotropic and uniform thickness in the area influenced

Prior to pumping, piezometric surface was (nearly) horizontal in the area influenced

Aquifer is pumped at a constant rate

Pumped well penetrates the full thickness of the aquifer

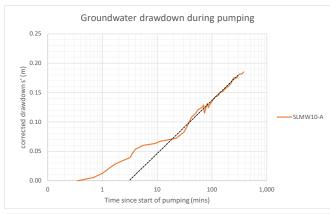
Diameter of pumped well is small (storage in well can be neglected)

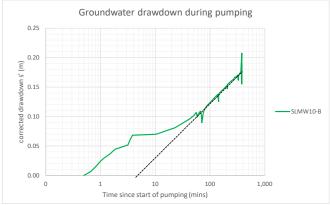
Water removed from storage is discharged instantaneously with decline of head

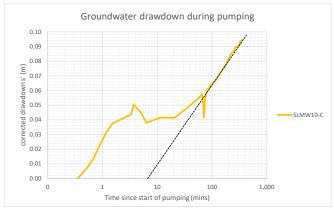
Aquifer is confined

Flow to well is in unsteady state

Values of u (= r²S/4kDt) are small, less than 0.01


units		Parameters
m	r	distance to monitoring well
-	S	coefficient of storage
m/d	k	hydraulic conductivity
m	D	thickness of aquifer
d	t	time since pumping started
m3/c	Q	pumping rate


Equation


 $kD = (2.3 Q) / (4 \pi delta_s)$ $S = (2.25 kD t_0) / (r^2)$

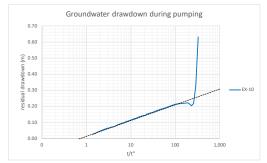
	Parameters	units	SLMW10-A	SLMW10-B	SLMW10-C	Comment
distance to monitoring well	r	m	4.87482287	4.34050285	4.803231	From summary sheet
drawdown per log cycle	delta_s	m	0.095	0.095	0.058	Read from semi-log charts to left
time when line crosses zero drawdown axis	t _o	mins	3	4	7	
	t _o	days	0.0021	0.0028	0.0049	
transmissivity	kD	m2/d	33.0	33.0		Calculated from equation
coefficient of storage	S	-	6.5 E-03	1.1 E-02		Calculated from equation
value of u for t = 0.25 days	u	-	4.7 E-03	6.3 E-03		Calculated to check that u is less than 0.01

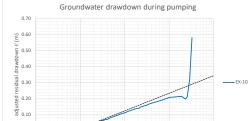
Not appropriate

Jacob's method (Cooper & Jacob, 1946)

Assumes

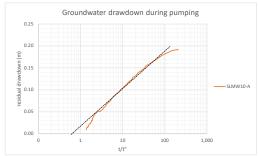
Same as Jacob's method for confined aquifers with drawdown s replaced by $s - s^2/2D$

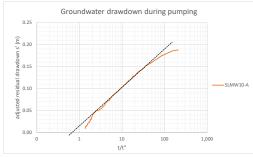

units		Parameters
m	r	distance to monitoring well
-	S	coefficient of storage
m/d	k	hydraulic conductivity
m	D	thickness of aquifer
d	t	time since pumping started
m3/c	Ω	numning rate

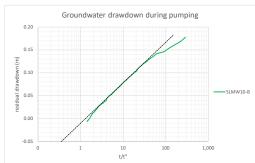

Equation

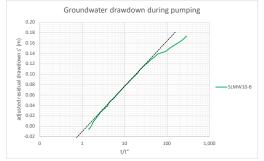
 $kD = (2.3 Q) / (4 \pi delta_s)$ $S = (2.25 kD t_0) / (r^2)$

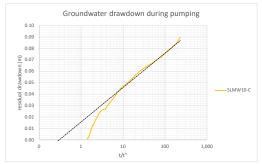
	Parameters	units	SLMW10-A	SLMW10-B	SLMW10-C	Comment
distance to monitoring wel	l r	m	4.87482287	4.34050285	4.803231	From summary sheet
drawdown per log cycle	delta_s	m	0.095	0.095	0.054	Read from semi-log charts to left
time when line crosses zero drawdown axis	t ₀	mins	3	4	6.5	
	t ₀	days	0.0021	0.0028	0.0045	
transmissivity	/ kD	m2/d	33.0	33.0		Calculated from equation
coefficient of storage	s S	-	6.5 E-03	1.1 E-02		Calculated from equation
value of u for t = 0.25 days	u	-	4.7 E-03	6.3 E-03		Calculated to check that u is less than 0.01
				N	Not appropriat	te

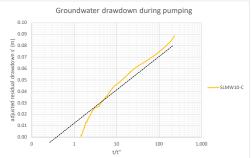

Charts for confined aquifer






10


Charts for unconfined aquifer



Theis's recovery method (Theis, 1935)

Assumes

Same assumptions as Jocob method

Confined aquifer assessed based on residual drawdown, s

Unconfined aquifer assessed based on adjusted residual drawdown, s' = s - s²/2D

Parameters		units
hydraulic conductivity	k	m/d
thickness of aquifer	D	m
numning rate	Ω	m3/d

1,000

100

Equation kD = (2.3 Q)/(4 π delta_s)

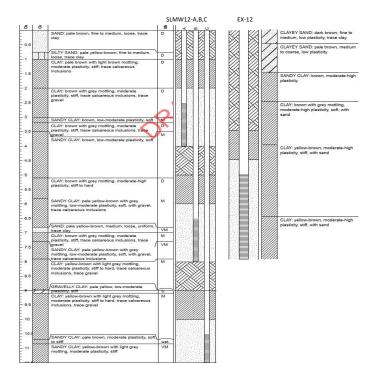
			С	onfined aquif	er		
P	arameters	units	EX-10	10-A	10-B	10-C	Comment
drawdown per log cycle	delta_s	m	0.1	0.085	0.09	0.029	Read from semi-log charts to left
transmissivity	kD	m2/d	31.4	36.9	34.8		Calculated from equation
						N/A	
			Un	confined aqui	fer		
P	arameters	units	EX-10	10-A	10-B	10-C	Comment
drawdown per log cycle	delta_s	m	0.1	0.085	0.084	0.03	Read from semi-log charts to left
transmissivity	kD	m2/d	31.4	36.9	37.3		Calculated from equation
						N/A	

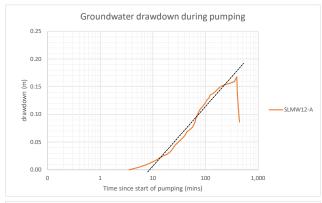
V	Calculated				
Bore	Easting	Northing	Top of casing (mAHD)	distance from EX12 (m)	
SLMW12-A	272727	6162776	8.31	4.35	
SLMW12-B	272728	6162774	8.312	6.71	
SLMW12-C	272729	6162772	8.272	9.12	
EX-12	272726	6162780	7.771	0.00	

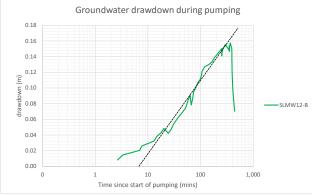
	Test information			Screened	Hydraulic	Assumed	Estimated transmissivity (m2/d)						
Extraction	Monitoring	Pumpi	ng rate	Distance	permeable	conductivit	aquifer	Slug tes	t (B&R)	Confined		Unconfined	
well	well	L/min	m3/d	(m)	thickness	y from slug		By unit	Total	Jacob	Theis	Jacob	Theis
		2,	5, u	(m)	test (m/d)	(m)	Dy unit	10101	30000	recovery	3000	recovery	
	EX-12	7.5	10.8	0.05	0.8	-		-	-	-	19.8	-	19.8
EX-12	SLMW12-A	-	-	4.35	1.2	0.7	4	0.84		18.0	20.8	19.8	22.0
EX-12	SLMW12-B	-	-	6.71	0.8	7.5	4	6.0	7.4	21.5	28.2	23.5	30.9
	SLMW12-C	1	-	9.12	0.8	0.7		0.52		n/a	n/a	n/a	n/a
	1		1	1	1	1							

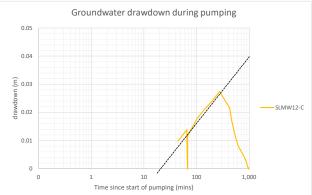
Notes

Response in -A is similar to response in -B, but a bit larger. A is closer. Treat them as a single hydrogeological unit


Well -C responds quickly so is hydraulically connected


The response in -C is smaller magnitude (about 20%) but it is also further away


As -C is in a different (but connected) unit, the assumptions of the analysis methods do not apply


Based on the slug testing, -C has lower transmissivity

As some of the water comes from -C, the transmissivity may be a bit lower than calculated based on responses in A and B

Jacob's method (Cooper & Jacob, 1946)

Assumes

Aquifer has infinite extent

Aquifer is homoegneous, isotropic and uniform thickness in the area influenced Prior to pumping, piezometric surface was (nearly) horizontal in the area influenced

Aquifer is pumped at a constant rate

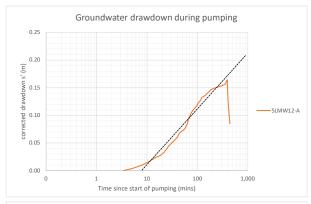
Pumped well penetrates the full thickness of the aquifer

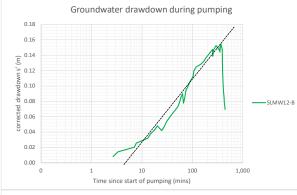
Diameter of pumped well is small (storage in well can be neglected)

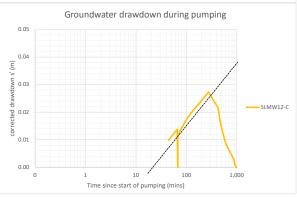
Water removed from storage is discharged instantaneously with decline of head

Aquifer is confined

Flow to well is in unsteady state


Values of u (= $r^2S/4kDt$) are small, less than 0.01


units		Parameters
m	r	distance to monitoring well
-	S	coefficient of storage
m/d	k	hydraulic conductivity
m	D	thickness of aquifer
d	t	time since pumping started
m3/c	Q	pumping rate


Equation

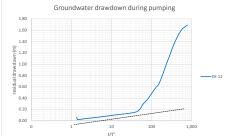
 $kD = (2.3 \text{ Q}) / (4 \text{ m delta_s})$ $S = (2.25 \text{ kD t}_0) / (r^2)$

P	arameters	units	SLMW12-A	SLMW12-B	SLMW12-C	Comment
distance to monitoring well	r	m	4.34901552	6.70962488	9.11987177	From summary sheet
drawdown per log cycle	delta_s	m	0.11	0.092	0.024	Read from semi-log charts to left
time when line crosses zero drawdown axis	t ₀	mins	8	7	17	
	t _o	days	0.0056	0.0049	0.0118	
transmissivity	kD	m2/d	18.0	21.5		Calculated from equation
coefficient of storage	S	-	1.2 E-02	5.2 E-03		Calculated from equation
value of u for $t = 0.25$ days	u	-	1.3 E-02	1.1 E-02		Calculated to check that u is less than 0.01
			1	Not appropriat	te	

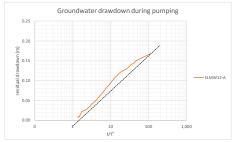
Jacob's method (Cooper & Jacob, 1946)

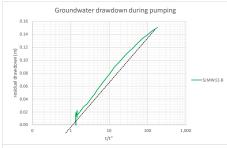
Assumes

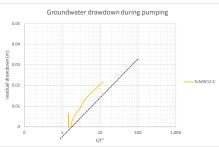
Same as Jacob's method for confined aquifers with drawdown s replaced by s - $s^2/2D$

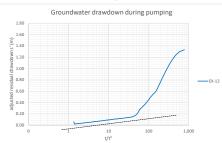

Parameters		units
distance to monitoring well	r	m
coefficient of storage	S	-
hydraulic conductivity	k	m/d
thickness of aquifer	D	m
time since pumping started	t	d
numning rate	Ο	m3/d

Equation

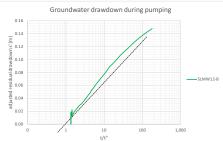

 $kD = (2.3 \text{ Q}) / (4 \text{ m delta_s})$ $S = (2.25 \text{ kD t}_0) / (r^2)$

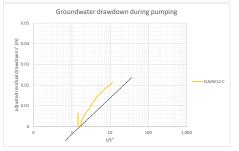

	Parameters	units	SLMW12-A	SLMW12-B	SLMW12-C	Comment
distance to monitoring we	ll r	m	4.34901552	6.70962488	9.11987177	From summary sheet
drawdown per log cycle	e delta_s	m	0.1	0.084	0.054	Read from semi-log charts to left
time when line crosses zero drawdown axi	s t ₀	mins	8	4	6.5	
	t _o	days	0.0056	0.0028	0.0045	
transmissivit	y kD	m2/d	19.8	23.5		Calculated from equation
coefficient of storage	e S	-	1.3 E-02	3.3 E-03		Calculated from equation
value of u for t = 0.25 day	s u	-	1.3 E-02	6.3 E-03		Calculated to check that u is less than 0.01
				N	Not appropriat	te


Charts for confined aquifer









Charts for unconfined aquifer

Theis's recovery method (Theis, 1935)

Same assumptions as Jocob method
Confined aquifer assessed based on residual drawdown, s

Unconfined aquifer assessed based on adjusted residual drawdown, s' = s - s²/2D

hydraulic conductivity m/d thickness of aquifer m3/d pumping rate

Equation kD = (2.3 Q)/(4 π delta_s)

			Confined aquife	er		
Parameters	units	EX-12	SLMW12-A	SLMW12-B	SLMW12-C	Comment
drawdown per log cycle delta_s	m	0.1	0.095	0.07	0.029	Read from semi-log charts to left
transmissivity kD	m2/d	19.8	20.8	28.2		Calculated from equation
					N/A	
		U	nconfined aqui	fer		
Parameters	units	EX-12	SLMW12-A	SLMW12-B	SLMW12-C	Comment
drawdown per log cycle delta_s	m	0.1	0.09	0.064	0.03	Read from semi-log charts to left
transmissivity kD	m2/d	19.8	22.0	30.9		Calculated from equation
					N/A	

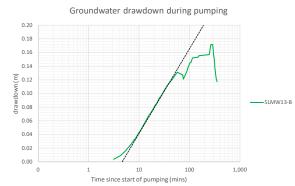
V	Calculated			
Bore	Easting	Northing	Top of casing (mAHD)	distance from Ext. well (m)
SLMW13-A	273247	6162805	8.643	8.31
SLMW13-B	273247	6162803	8.654	5.84
SLMW13-C	273248	6162801	8.582	3.89
EX-13	273249	6162797	8.488	0.00

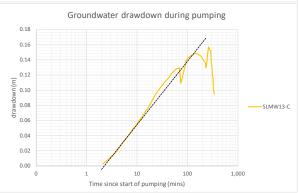
Test information				Screened	Screened Hydraulic Assumed Estimated transmissivity (m2/d)						m2/d)			
Extraction	Monitoring	Pumpi	ng rate		permeable	conductivity	aquifer	Slug tes	t (B&R)	Cont	fined	Unco	nfined	
well	well	L/min	m3/d	Distance (m)	thickness	from slug	thickness	By unit	Total	Jacob	Theis	Jacob	Theis	
weii	weii	Lynnin	(m) test (m/d) (m)	by unit	10101	Jacob	recovery	Jacob	recovery					
	EX-13	10.0	14.4	0.05	1.3	-		,	1		35.1	•	35.1	
EX-13	SLMW13-A	-	-	8.31	1.6	11	8	17.6		47.9	49.7	49.7	52.7	
EV-12	SLMW13-B	-	-	5.84	0.3	1.2	8	8	0.4	20.0	N/A	N/A	N/A	N/A
	SLMW13-C	-	-	3.89	3	0.9		2.55		N/A	N/A	N/A	N/A	

Notes

Response in -B is almost identical to response in -C, therefore treat them as a single hydrogeological unit

All wells respond quickly so are hydraulically connected


The response in -A is smaller magnitude (about half) but it is further from the pumped well


Due to variability of the pumping rate, the recovery test information is likely to give the best estimates of transmissivity

Only -A is screened in the same layer as the pumped well, so the interpretation method applies only to -A

SLMW13-A,B,C EX-13 SANDY CLAY: dark brown, medium to coarse, low plasticity SILTY SAND: dark brown, fine to medium, dense SANDY CLAY: brown-orange, low-moderate plasticity, stiff CLAY: yellow-brown with light brown mottling moderate-high plasticity, stiff, trace sand SANDY CLAY: pale yellow-brown, medium to coarse, low plasticity, medium dense CLAY: pale brown, moderate plasticity, medium dense CLAY: pale brown, moderate SAND: yellow-brown, fine to medium, loose SANDY CLAY: yellow-brown, low plasticity, soft CLAY: grey with light brown mottling, moderate-high plasticity, stiff to hard, trace sand GRAVELLY CLAY: pale yellow with light brown mottling, low plasticity, very soft CLAY: grey with light brown mottling, moderate-high plasticity, stiff to hard, trace calcareous inclusions, with sand, trace suspects SANDY CLAY: yellow-brown, low plasticity, soft GRAVELLY CLAY: pale yellow with light brown montling; low plasticity, very soft CLAY: grey with light brown mottling, moderate-high plasticity, effit to hard, frace pal Assistance inclusions, with sear trace GRAPLELT CAT hey seleow with light brown modifies, bor plasticity, very soft CALY grey with light brown modifies, CALY grey with light brown modifies, moderate high plasticity, set if next it soe advanced inclusions, with sear to see SAMPC CALY higher-borns with grey modifies, fine to medium, moderate plasticity, locus SAMPC CALY home-sonage with grey modifies, moderate high plasticity, set LALY Examples with grey modifies, LALY brown-reading with grey modifies, CLAY: brown-crange with grey mottling, moderate-high plasticity, stiff, with sand, with gravel, with calcareous inclusions gravet, with calcaleous inclusions CLAY: from-orange with gray mottling, moderate-high plasticity, stiff, with sand CLAYEY SAND: frown-orange with gray mottling, free, moderate-high plasticity, medium dense. CLAY: frown-orange with gray mottling, moderate-high plasticity, stiff, with sand CLAY: yellow-brown with light grey mottling. low-moderate plasticity, soft to stiff, with sand, with gravel, with calcareous inclusions SANDY CLAY: brown-orange with light grey mottling, moderate plasticity, stiff, trace calcar inclusions CLAYEY SAIO: brown-orange with grey motiling, fine, moderate-high plasticity, medium dense SANDY CLAY: brown-orange with light grey motiling, moderate plasticity, stiff CLAY: brown-orange with light brown motiling, moderate-high plasticity, stiff, with sand CLAY: dark brown, moderate-high plasticity, stiff, with sand (CLAY: dark brown, moderate-high plasticity, stiff, with sand CLAY: dark grey with brown motiting, moderate-high plasticity, hard. with sand CLAY: yellow-brown with light grey motiting, low-moderate plasticity, soft to stiff, with sand, with graved, with calacrecus inclusions. Termination Depth at: 14.50 m

Jacob's method (Cooper & Jacob, 1946)

Assumes

Aquifer has infinite extent

Aquifer is homoegneous, isotropic and uniform thickness in the area influenced Prior to pumping, piezometric surface was (nearly) horizontal in the area influenced Aquifer is pumped at a constant rate

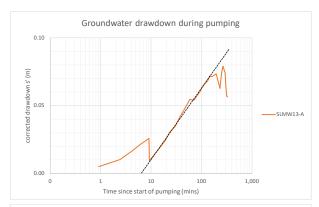
Pumped well penetrates the full thickness of the aquifer

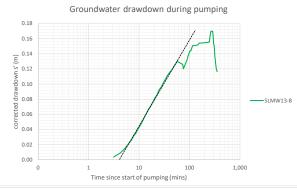
Diameter of pumped well is small (storage in well can be neglected)

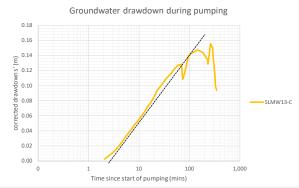
Water removed from storage is discharged instantaneously with decline of head

Aquifer is confined

Flow to well is in unsteady state


Values of u (= r²S/4kDt) are small, less than 0.01


Parameters		units
distance to monitoring well	r	m
coefficient of storage	S	-
hydraulic conductivity	k	m/d
thickness of aquifer	D	m
time since pumping started	t	d
pumping rate	Q	m3/c


Equation

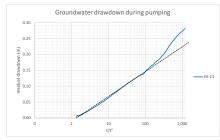
 $kD = (2.3 \text{ Q}) / (4 \text{ m delta_s})$ S = $(2.25 \text{ kD t}_0) / (r^2)$

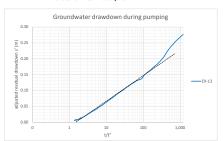
Parameters	units	SLMW13-A	SLMW13-B	SLMW13-C	Comment
ell r	m	8.31	5.84	3.89	From summary sheet
le delta_s	m	0.055	0.126	0.083	Read from semi-log charts to left
ris t _o	mins	6	5	2	
t ₀	days	0.0042	0.0035	0.0014	
ty kD	m2/d	47.9	N/A	N/A	Calculated from equation
ge S	-	6.5 E-03	N/A	N/A	Calculated from equation
ys u	-	9.4 E-03	N/A	N/A	Calculated to check that u is less than 0.01
	ell r cle delta_s kis t ₀ t ₀ tty kD ge S	$\begin{array}{cccc} \text{ell} & r & m \\ \text{cle} & \text{delta_s} & m \\ \text{dis} & t_0 & \text{mins} \\ & t_0 & \text{days} \\ \text{ity} & \text{kD} & \text{m2/d} \\ \text{ge} & S & - \end{array}$	ell r m 8.31 cle delta_s m 0.055 dis t ₀ mins 6 t ₀ days 0.0042 dity kD m2/d 47.9 ge S - 6.5 E-03	ell r m 8.31 5.84 lle delta_s m 0.055 0.126 dis t ₀ mins 6 5 t ₀ days 0.0042 0.0035 dty kD m2/d 47.9 N/A ge S - 6.5 E-03 N/A	ell r m 8.31 5.84 3.89 le delta_s m 0.055 0.126 0.083 dis t ₀ mins 6 5 2 t ₀ days 0.0042 0.0035 0.0014 dity kD m2/d 47.9 N/A N/A ge S - 6.5 E-03 N/A N/A

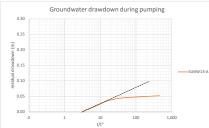
Jacob's method (Cooper & Jacob, 1946)

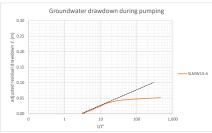
Assumes

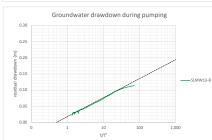
Same as Jacob's method for confined aquifers with drawdown s replaced by s - s 2 /2D

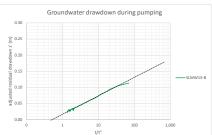

Parameters		units
distance to monitoring well	r	m
coefficient of storage	S	-
hydraulic conductivity	k	m/d
thickness of aquifer	D	m
time since pumping started	t	d
numping rate	Ο	m3/d

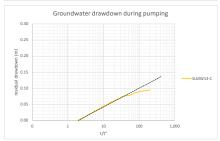

Equation kD = (2.3 Q) / (4 π delta_s) $S = (2.25 \text{ kD t}_0) / (r^2)$

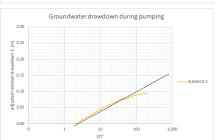

	Parameters	units	SLMW13-A	SLMW13-B	SLMW13-C	Comment
distance to monitoring well	r	m	8.30927867	5.84263297	3.88919143	From summary sheet
drawdown per log cycle	delta_s	m	0.053	0.115	0.09	Read from semi-log charts to left
time when line crosses zero drawdown axis	t _o	mins	7	4	2.2	
	t _o	days	0.0049	0.0028	0.0015	
transmissivity	, kD	m2/d	49.7	N/A	N/A	Calculated from equation
coefficient of storage	s S	-	7.9 E-03	N/A	N/A	Calculated from equation
value of u for t = 0.25 days	u	-	1.1 E-02	N/A	N/A	Calculated to check that u is less than 0.01


Charts for confined aquifer


Charts for unconfined aquifer







Theis's recovery method (Theis, 1935)

Same assumptions as Jocob method

Confined aquifer assessed based on residual drawdown, s

Unconfined aquifer assessed based on adjusted residual drawdown, $s' = s - s^2/2D$

Parameters		units
hydraulic conductivity	k	m/d
thickness of aquifer	D	m
pumping rate	Q	m3/d

Equation kD = (2.3 Q)/(4 π delta_s)

Confined aquifer							
Pa	rameters	units	EX-13	13-A	13-B	13-C	Comment
drawdown per log cycle	delta_s	m	0.075	0.053	0.058	0.059	Read from semi-log charts to left
transmissivity	kD	m2/d	35.1	49.7	N/A	N/A	Calculated from equation
Unconfined aquifer							
Pa	rameters	units	EX-13	13-A	13-B	13-C	Comment
drawdown per log cycle	delta_s	m	0.075	0.05	0.057	0.06	Read from semi-log charts to left
transmissivity	kD	m2/d	35.1	52.7	N/A	N/A	Calculated from equation

Appendix H Dewatering Modelling Report

GROUNDWATER DEWATERING MODEL, RIVERLEA SALTWATER LAKE 1

REPORT STATUS: FINAL

REPORT PREPARED FOR:

LBW co Pty Ltd 184 MAGILL RD NORWOOD SA 5067 AUSTRALIA

Date issued: 30 September 2024

Table of Contents

1. In	troduction	5
1.1.	Objective	5
1.2.	Scope of Work	
2.	Background Information	6
2.1.	Previous Reports	6
2.2.	Saltwater Lake Design	
2.3.	Geology	
2.4.	Hydrogeology	8
2.5.	Conceptual Hydrogeological Model	13
3.	Groundwater Baseline Model	14
3.1.	Model Selection	12
3.2.	Checks of Anaqsim	15
3.3.	Approach to Modelling	17
3.4.	Model Domain, Layering and Boundary Conditions	17
3.5.	Hydraulic Conductivity	20
3.6.	Porosity and Storage Coefficients	2
3.7.	Vertical Inflows and Outflows	
3.8.	Steady-State Model	22
3.9.	Baseline Model Sensitivity	24
4.	Groundwater Dewatering Model (SWL1, Bay 1)	28
4.1.	Model Scenarios	28
4.2.	Dewatering using Extraction Wells	28
4.3.	Dewatering using Wellpoints outside Bay the Lake Footprint	30
4.4.	Dewatering using Wellpoints around and beneath the Lake Footprint	32
4.5.	Model Water Balance	34
4.6.	Addition of Infiltration from Storage of Pumped Water	35
4.7.	Transient Model Sensitivity	36
5.	Groundwater Dewatering Model (SWL1, Bays 1 to 6)	40
5.1.	Approach	40
5.2.	Results	4 ⁻
5.3.	Delay Contingency Simulation	44
6.	Conclusions	46
7.	Limitations	48

List of Figures

Figure 1. Locations of SWL1 to SWL3	6
Figure 2. Planned layout of SWL 1	7
Figure 3. Borehole logs around SWL1	9
Figure 4. Groundwater elevation contours for Riverlea	10
Figure 5. Interpolated average regional groundwater elevation contours	11
Figure 6. Groundwater level hydrographs	12
Figure 7. Locations of wells used for hydrographs	12
Figure 8. Groundwater model domain and external boundaries	17
Figure 9. Groundwater model internal boundaries	18
Figure 10. Average vertical profile of hydraulic conductivity from slug teststests	19
Figure 11. Modelled hydraulic conductivity distribution	2
Figure 12. Modelled and observed groundwater level contours (mAHD)(make)	22
Figure 13. Plot of modelled vs observed groundwater levels at 106 wells	23
Figure 14. Differences between modelled and recorded groundwater levels	23
Figure 15. Steady-state groundwater levels (1 m intervals) for sensitivity test runs	26
Figure 16. Plot of modelled vs observed groundwater levels for simulation S5 (uniform k)k)	27
Figure 17. Simulated groundwater levels after 30 days, Scenario AA	29
Figure 18. Simulated drawdown after 30 days, Scenario A	29
Figure 19. Cross sections of groundwater levels at different times, Scenario AA	30
Figure 20. Groundwater levels after 30 days, Scenario B	3
Figure 21. Simulated drawdown after 30 days, Scenario B	3
Figure 22. Cross sections of groundwater levels at different times, Scenario B B	32
Figure 23. Bay 1 wellpoint configuration including within bay (Scenario C)	33
Figure 24. Groundwater levels after 30 days, Scenario C	33
Figure 25. Simulated drawdown after 30 days, Scenario C	34
Figure 26. Cross sections of groundwater levels at different times, Scenario C	
Figure 27. Groundwater levels after 30 days, Scenario D	
Figure 28. NW-SE cross section of groundwater levels at different times, Scenario D	36
Figure 29. Preliminary wellpoint configuration for SWL1	40
Figure 30. Modelled pumping rate over time for SLW1	4
Figure 31. Modelled groundwater levels at end of pumping	4
Figure 32. Modelled groundwater drawdown (m) at various times, SWL1SWL1	42
Figure 33. Cross sections of groundwater levels at SWL1 over time	44
Figure 34. Modelled pumping rate over time for SLW1 (including 90 day delay)	
Figure 35. Modelled groundwater drawdown (m) at various times. SWL1 (includina 90-day delay)	45

List of Tables

able 1. List of previous reports	6
able 2. Summary of transmissivity estimates	10
able 3. Averaged vertical profile of slug test hydraulic conductivity estimates (m/d)	19
able 4. Baseline steady-state model water balance	24
able 5. Summary of model sensitivity testing for steady-state simulations	24
able 6. Model water balance summary for steady-state sensitivity tests	25
able 7. Summary of model scenarios for dewatering Bay 1	28
able 8. Model water balance summary after 30 days pumping	35
able 9. Summary of model sensitivity testing for transient simulations	36
able 10. Model water balance summary after 30 days pumping for transient sensitivity te	sts38
able 11. Preliminary dewatering schedule for SWL1	40

1. Introduction

1.1. Objective

This report has been prepared by Hydrogeology Consulting Ltd, commissioned by LBWco. It relates to the Riverlea Development north of Adelaide, South Australia. Three Saltwater Lakes are planned as part of the development. The work presented here relates to Saltwater Lake 1 (SWL1).

The objective of this work is to estimate the rate and timescale of dewatering that will be needed to lower the groundwater table temporarily to facilitate the construction of SWL1, which will be developed progressively using six 'bays' (stages), and to estimate by how much the dewatering may draw down the groundwater level in the surrounding area.

This report relates only to matters relating to groundwater level and groundwater flow. It does not consider groundwater quality, geotechnical issues or engineering design. This report and the modelling it presents have been prepared with reference to the following guideline documents:

- Murray-Darling Basin Commission (MDBC), *Groundwater flow modelling guideline*, Aquaterra Consulting Pty Ltd, November 2000.
- National Water Commission (NWC), *Australian groundwater modelling guidelines*, Sinclair Knight Merz and National Centre for Groundwater Research and Training, Waterlines Report Series No. 82, June 2012.

1.2. Scope of Work

The following scope of work was conducted:

- Collation of relevant hydrogeological information.
- Development of conceptual hydrogeological model.
- Development of computer groundwater model (steady-state), calibrated against available groundwater level information.
- Transient model simulations to assess potential dewatering requirements to allow SWL1 to be constructed.
- Assessment of the sensitivity of steady-state and transient modelling results to changes in input parameters and assumptions.
- Preparation of this report.

2. Background Information

2.1. Previous Reports

The reports listed in *Table 1* were reviewed during this work.

Table 1. List of previous reports

Date	Company	Report title
Oct 2008	REM	Aquifer Storage and Recovery Potential for Buckland Park
Dec 2008	REM (a business of SKM)	Buckland Park EIS Groundwater Investigations
March 2009	SKM	Further Groundwater Monitoring, Buckland Park Proposal
May 2011	AGT	Buckland Parks Drain Model

In addition, Hydrogeology Consulting Ltd worked with LBWco in planning and interpretating groundwater investigations conducted by LBWco at Riverlea between October and December 2023. That work is reported separately by LBWco. The investigations included:

- Installation of groundwater monitoring wells
- Borehole permeability ('slug') testing
- Installation of four test wells for groundwater extraction
- Test pumping of three of the groundwater extraction wells.

2.2. Saltwater Lake Design

The planned locations of the three saltwater lakes are shown in yellow in *Figure 1,* which also shows the locations of some of the groundwater monitoring wells installed by LBWco and others. The red outline indicates the boundary of Precinct 2 of the Riverlea development.

Figure 1. Locations of SWL1 to SWL3

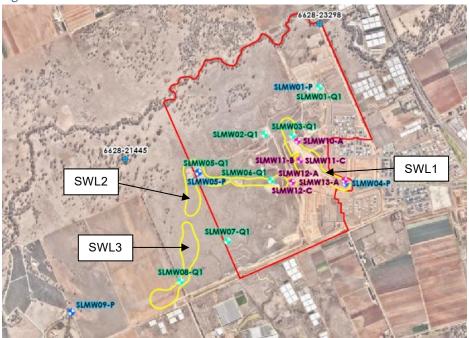
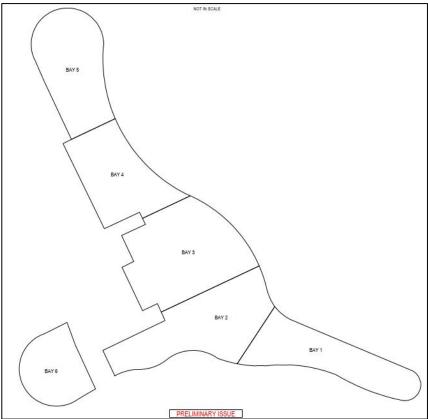



Figure 2 shows the planned layout of SWL1, which will be constructed as six bays with a total area of approximately 170,000 m². Bays 1 to 5 will be separated by temporary coffer dams to facilitate construction.

Figure 2. Planned layout of SWL 1

Source: Geotest Pty Ltd 'Construction Methodology SLWI', undated

A preliminary and simplified summary of the potential stages of excavation and liner construction for the first four bays of SWL1 is as follows. Similar stages of work will continue until construction of Bays 5 and 6 has also been completed.

- Remove overburden from Bay 1
- Commence dewatering Bay 1, pumping to location of partially excavated SWL2
- Remove overburden from Bay 2
- Commence dewatering Bay 2, pumping to location of SWL2
- Cut Bay 1 to invert level and prepare subgrade, commence liner construction (subject to final design)
- Cut Bay 2 to invert level and prepare subgrade
- Remove overburden from Bay 3
- Continue liner construction from Bay 1 into Bay 2 (subject to final design)
- Install coffer dam between Bays 1 and 2
- Start dewatering Bay 3, pumping into Bay 1
- Stop dewatering Bay 1
- Cut Bay 3 to invert level and prepare subgrade
- Remove overburden from Bay 4
- Continue liner construction from Bay 2 into Bay 3 (subject to final design)
- Install coffer dam between Bays 2 and 3
- Start dewatering Bay 4, pumping into Bay 2
- Stop dewatering Bay 2

The original ground surface at SWL1 was at an elevation of approximately 8 mAHD. This has already been excavated down to a level of 5.5 m AHD, which is about 1 m above the groundwater table. It is understood that the bottom of the lake (invert level) will be at 1.5 mAHD, with dewatering required to be to 0.5 mAHD to facilitate the civil construction works.

2.3. Geology

The ground surface is relatively flat in the vicinity of the site, with a gentle slope down towards the coast about 3 km west of SWL1.

The near surface stratigraphy of the area is comprised of Quaternary sediments of the Pooraka Formation, with the St Kilda and Glanville Formations towards the coast. The Pooraka Formation is described as mottled clay and silt inter-bedded with sand, gravel and thin sandstone layers. The St Kilda formation is characterised by estuarine muds, sands, peats and shelly beds and often contains permeable sand lenses.

These Quaternary sediments overlie the older sediments of the Hindmarsh Clay, which is described as a layered sequence of mottled red-brown sandy clay with sand and gravel lenses.

The soils and sediments encountered by LBWco during installation of monitoring wells around the site are consistent with the above descriptions, with a range of clay, silt, sand and gravel that varies both laterally and vertically. In general, the borehole logs for the deeper monitoring wells around SWL 1 (monitoring wells SLMW10 to SLMW13) indicate increased dominance of clay or sandy clay with depth, although SLMW10 encountered sand from 10.6 m to its base at 13 m below ground level.

The REM (2008) assessment indicated that there is a relatively consistent clay layer at around 20 metres depth across the area.

2.4. Hydrogeology

The REM (Oct 2008) report indicates that four Quaternary aquifers (Q1 to Q4) are generally present in the Northern Adelaide Plains region. The top three (Q1 to Q3) have thicknesses ranging from 3 to 15 m, and can be quite discontinuous with lateral extents often less than 2 km. The Hindmarch Clay unit encloses these aquifers. Clay generally underlies the Q3 aquifer and forms a confining bed above the Q4 aquifer, which is a sandy, confined aquifer within the Carisbrooke Sand, with an average thickness of about 20 m. The Q4 near Buckland Park (and Riverlea) is interpreted directly to overlie the top Tertiary aquifer (T1), although the Q4 itself thins out towards the coast.

The results of groundwater pressure monitoring, borehole permeability ('slug') testing and groundwater test pumping conducted by LBWco in late 2023 indicate that although each bore intersects a different vertical sequence of more-permeable materials (sand and gravel) and less-permeable materials (silts and clays), the investigated units appear to be hydraulically connected. They are therefore interpreted to represent a single 'aquifer', even though there is significant heterogeneity and local discontinuity, both laterally and vertically. This shallow 'aquifer' is interpreted to represent a combination of the top Quaternary aquifer (Q1) as well as locally perched units within the Pooraka, St Kilda and Hindmarsh Clay Formations. This is consistent with the interpretation by AGT referenced in REM/SKM (2008) that pumping test results for two sites close to Buckland Park showed 'perched' zones to be connected to the Q1 aquifer, while the Q1 aquifer and the underlying Q2 aquifer had almost no hydraulic connection.

Figure 3 below shows the borehole logs for LBWco monitoring wells that are located close to SWL1 with their elevations aligned to AHD. It shows the approximate groundwater level in blue. The horizons that

are interpreted from the slug tests to be relatively more permeable are highlighted in orange (most permeable), yellow, blue and purple. The horizons that are not highlighted with a colour are more clayrich and are interpreted to be less permeable, with hydraulic conductivity below approximately 0.1 m/d.

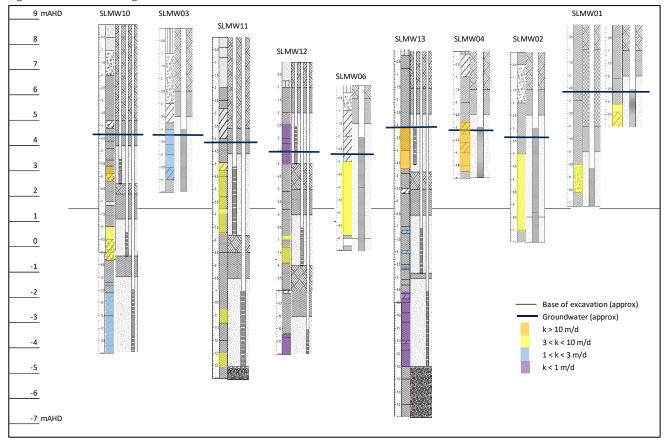


Figure 3. Borehole logs around SWL1

Based on the borehole logs and slug testing results as summarised in Figure 3, the geological sequence appears to be generally more permeable towards the top, as evidenced by the higher proportions of orange and yellow shading, and generally less permeable with increased depth.

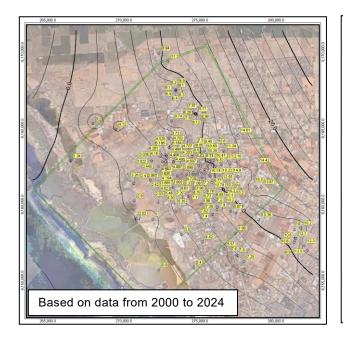
The best data for assessing the transmissivity of the shallow aquifer overall are the results from the three pumping tests conducted on wells EX10, EX12 and EX13, which are all located close to SWL1. The transmissivity estimates from the pumping tests and for the slug tests in the nearby multi-level monitoring wells are summarised in *Table 2*.

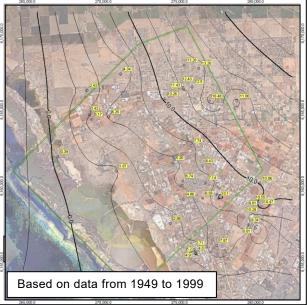
The transmissivity estimates for each location derived using various methods produce similar results, with averages of $34 \text{ m}^2/\text{d}$ at EX10, $22 \text{ m}^2/\text{d}$ at EX12 and $45 \text{ m}^2/\text{d}$ at EX13. The overall geometric mean transmissivity estimate is $33 \text{ m}^2/\text{d}$. The transmissivity estimates are up to a factor of 3 higher than those obtained from the slug tests conducted in the same monitoring wells. The estimates from the pumping tests are likely to be more representative of the formation, as they investigate a much larger volume of the formation, whereas slug tests only influence a relatively small radius of aquifer material around each test well.

Table 2. Summary of transmissivity estimates

		Screen	Slug	test	Estimate	ed transmis	sivity from t	est pumpin	g (m2/d)
Test well	Monitored well	interval	transmissivity (m2/d)		Assuming confined conditions		Assuming unconfined conditions		Average
	weii	m BGL	By unit	Total	Jacob	Theis recovery	Jacob	Theis recovery	from test pumping
	EX-10	8 - 9.5	-	-	-	31	-	31	
EX-10	SLMW10-A	5.3 - 6.3	9.6		33	37	33	37	24
EX-10	SLMW10-B	8.2 - 9.2	9.9	27	33	35	33	37	34
	SLMW10-C	10 - 13	7.5		-	-	-	-	
	EX-12	5 - 8	-	-	-	20	-	20	
EX-12	SLMW12-A	2.5 - 4	0.84	7	18	21	20	22	22
EX-12	SLMW12-B	6.5 - 8	6.0		21	28	24	31	
	SLMW12-C	10.5 - 13	0.52		-	-	-	-	
	EX-13	3 - 6	-	-	-	35	-	35	
EX-13	SLMW13-A	3 - 4.5	17.6		48	50	50	53	45
	SLMW13-B	7 - 8.8	0.4	21	-	-	-	-	45
	SLMW13-C	9.5 - 12.5	2.55		1	-	-	-	
Geometric mean transmissivity (m2/d)								33	

The groundwater elevation beneath SWL1 in October 2023 was in the approximate range 4 to 5 mAHD, with an inferred flow direction southwest towards the coast, as indicated in *Figure 4*. This is consistent with what was reported by REM (2008). The hydraulic gradient at SWL1 in October 2023 was about 0.0025 (1 in 400) and was lower further downgradient.


SLMW01-P_45
SLMW01-Q1


Figure 4. Groundwater elevation contours for Riverlea

Groundwater level contours for a wider area around Riverlea have been interpolated based on groundwater elevation data obtained from www.waterconnect.sa.gov.au in September 2024. Review of the data indicates that although the dates of individual measurements vary, the dataset produces groundwater level contours that show a consistent overall picture of flow towards the coast, with a gradient that is steeper inland and flatter towards the coast. The lefthand image in *Figure 5* shows contours based on data collected since the year 2000, the righthand image shows contours based on

measurements recorded between 1949 and 1999. Whilst there are differences between the two, the differences are considered to be due more to the different locations and spread of data points than to the timing of the dates of the measurements.

Figure 5. Interpolated average regional groundwater elevation contours

Time-series water level data are available for several wells and have been used to plot hydrographs (*Figure 6*) of groundwater level against time. The Figure also shows the monthly rainfall record for the Edinburgh weather station (source: www.bom.gov.au). The locations of the hydrograph wells are shown on *Figure 7*. Overall, the hydrographs indicate that short-term and seasonal fluctuations are generally less than 1 m. Some wells show a slow, longer-term trend of increasing groundwater levels, particularly well 6628-2515 where the groundwater level has risen by approximately 4.2 m in the last 24 years (less than 0.2 m/year). This well is about 6 km southeast (upgradient) of the planned location of SWL1. Such trends could be associated with changing abstraction patterns or changes in land use, irrigation or drainage. However, in the context of potential pumping for a relatively short period (a number of months) to facilitate lake construction, the potential background water level changes are expected to be small.

Figure 6. Groundwater level hydrographs

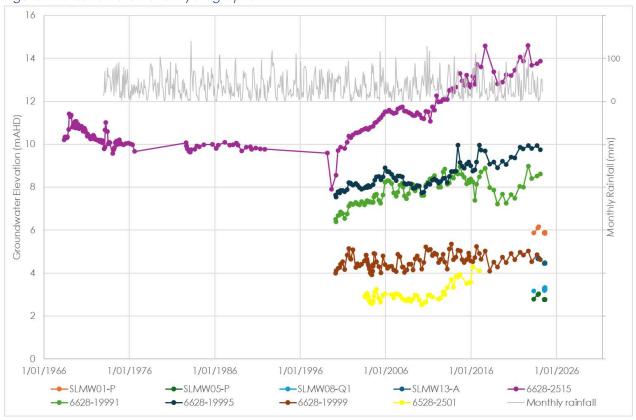


Figure 7. Locations of wells used for hydrographs

2.5. Conceptual Hydrogeological Model

In order to develop a method of estimating the amount of groundwater pumping that will be needed to draw the groundwater level beneath SWL1 down to the required level, it is first necessary to have a conceptual understanding of groundwater conditions beneath SWL1 and its surrounding area. The conceptual understanding is described below.

Based on the results of the groundwater investigations it is considered that from an overview perspective, groundwater within the investigated depth range behaves as a single, hydraulically connected aquifer, even though it has considerable local variability both laterally and vertically. The variability is interpreted to be the result of deposition in an alluvial environment in which channels meandered over time, depositing granular materials (sands and gravels). Between the channels were floodplain areas in which fine-grained sediments (silts and clays) were laid down.

In general, the permeability of the formation is interpreted to decrease with depth. From the results of the LBWco groundwater investigations the effective base of the shallow (Q1 and perched) aquifer may be at or below -5 mAHD. Other aquifers (Q2 and below) are also present at depth but based on the presence of the Hindmarsh Clay and a regional understanding of geological conditions, deeper aquifers are assumed to be hydraulically separate from the shallow aquifer, and so are not relevant to this assessment. The same assumption was made by REM/SKM in their 2008 groundwater model of the area.

The general groundwater flow direction beneath SWL1 is inferred to be southwest towards the coast. Flow is driven by recharge upgradient to the east and northeast, including recharge from ephemeral creeks including the Gawler River. It is also influenced by discharge to low-lying creeks. Some of this discharge will be within creek bed gravels, some may emerge as surface water discharge, and some water will be lost by evaporation from low-lying ground and salt pans to the west and southwest, and by evapotranspiration from deep-rooted vegetation.

There will be variations in groundwater levels and flows over time, in response to seasonal fluctuations and variability in rates of precipitation, groundwater recharge and evapotranspiration. However, for the purposes of modelling the relatively short timescale required for construction dewatering, and as future climate events cannot be predicted, it is assumed that regional groundwater levels (away from the influence of dewatering) will be steady over time.

3. Groundwater Baseline Model

3.1. Model Selection

The MDBC (2000) modelling guideline discusses three classifications of groundwater model:

- Basic a simple model suitable for preliminary assessment (rough calculations), not requiring substantial resources to develop, but not suitable for complex conditions or detailed resource assessment.
- Impact Assessment model a moderate complexity model, requiring more data and a better understanding of the groundwater system dynamics, and suitable for predicting the impacts of proposed developments or management policies.
- Aquifer Simulator a high complexity model, suitable for predicting responses to arbitrary changes in hydrological conditions, and for developing sustainable resource management policies for aquifer systems under stress.

The guideline recommends adopting a level of complexity that is high enough to meet modelling objectives, but low enough to allow conservatism where needed, recognizing uncertainty where data or understanding are lacking. Given that the objectives for Riverlea are to simulate dewatering rates and to estimate the drawdown of groundwater levels in the local area, the appropriate level of complexity is that of an Impact Assessment model.

Similarly, the 2012 Australian groundwater modelling guidelines describe a 3-level classification system relating to model confidence (Class 1, Class 2 or Class 3 in order of increasing confidence), with the level of confidence depending on the available data, model calibration, the consistency between calibration and predictive analysis, and the level of stresses applied in predictive models. Class 1 models have relatively low confidence associated with any predictions and are best-suited for managing low-value resources (i.e. few groundwater users with few or low-value groundwater-dependent ecosystems) or for assessing impacts of low-risk developments. Class 2 and 3 models are suitable for assessing higher risk developments in higher-value aquifers. According to the guidelines, it is not expected that any individual model will have all the defining characteristics of Class 1, 2 or 3 models, but that a model can fall into different classes for various characteristics and criteria.

The 2012 guidelines indicate that the target confidence level for an example mine-dewatering model would be Class 1-2. It would not be Class 3 due to a lack of useful time-series data that could be used for calibration. The same is true for the Riverlea model, for which the target confidence level is also Class 1-2, based on the following factors:

- Groundwater head observations and bore logs are available but may not provide adequate coverage throughout the model domain (Class 2).
- Calibration is only possible for steady state conditions, not transient (Class 1)
- The aquifer value might be considered medium (not high) due to the groundwater salinity being typically over 5,000 mg/L total dissolved solids in the vicinity of SWL1 (Class 2).
- Model is being used to provide estimates of dewatering requirements for excavations and the associated impacts (Class 2).

The modelling software used for this assessment is Anaqsim, analytical element software for simulating groundwater flow. Anaqsim is a product of Yellow Sub Hydro and was developed by Dr Charlie Fitts in the USA. It is coded in C#. Anaqsim is used and trusted by industry and governments globally (https://anaqsim.com).

Anaqsim is discussed at length in the 2nd and 3rd editions of Charles Fitts' textbook 'Groundwater Science' published by Elsevier. Anaqsim is used in the text to teach the topic of groundwater modelling. The 3rd edition was published in 2024 with new links for professors and students to Anaqsim modelling files. It is understood that the book is being used for instruction at a number of universities in USA, Canada, Australia, and the UK. In Australia it is understood to have been used by mining companies and water resource companies (for example, in a submission¹ by Rio Tinto to the EPA in Western Australia).

The analytic element method (AEM) superposes analytic solutions to yield a composite solution consisting of equations for head and discharge as functions of location and time. The AEM is described in detail in books by Strack (1989)² and Haitjema (1995)³. A shorter summary of the method may be found in Fitts (2023)⁴. The AEM is fundamentally different than numerical methods like finite elements and finite differences, where the domain is broken into small blocks or elements and simple head distributions (e.g. linear) are assumed within these blocks or elements. In the AEM, boundaries of the domain are discretized, but the domain itself is not.

Anaqsim uses a variation of the AEM that divides the modelled region into subdomains, each with its own definition of aquifer parameters and its own separate AEM model. The model for a given subdomain includes contributions from elements inside and on the external boundary of the subdomain. Each subdomain model is written in terms of two-dimensional functions, but three-dimensional flow may be simulated using multiple levels in a model. In multi-level models, the resistance to vertical flow is accounted for in the vertical leakage between levels.

This subdomain approach allows for a high degree of flexibility with respect to a model's heterogeneity, anisotropy, and layering. For example, it is possible for a subdomain that is anisotropic to be adjacent to another subdomain that is isotropic or anisotropic with a different direction and ratio. The subdomain approach allows mixed layering schemes. For example, an area with multiple levels (subdomains stacked vertically and leaking vertically to each other) can abut an area with subdomains in just a single level. This allows the model to focus layering and computational effort in the area of interest, with a simpler single-level model for distant areas.

Another key aspect of Anaqsim is that it allows complete transient simulation capabilities by using finite difference time steps. The transient term in the flow equations is handled in essentially the same manner as it is in finite difference programs like MODFLOW.

3.2. Checks of Anagsim

The Anaqsim website details the following 19 checks of Anaqsim against either empirical relations or other software:

- 1. Uniform flow in a confined aquifer
- 2. Uniform flow in a confined aquifer with uniform recharge
- 3. Uniform flow in a confined aquifer with uniform leakage from below
- 4. Uniform flow in an unconfined aquifer with uniform recharge
- 5. Uniform flow in a confined interface aquifer with uniform recharge

¹ https://www.epa.wa.gov.au/sites/default/files/PER_documentation2/A8_2 Hydrogeological Assessment Western Range (Rio Tinto 2018c).pdf

² Strack, O. (1989), Groundwater Mechanics, Prentice Hall, Engle-wood Cliffs, NJ.

³ Haitjema, H. (1995), Analytic Element Modeling of Groundwater Flow, Academic Press, San Diego.

⁴ Fitts, C. R. (2023), Groundwater Science 3rd edition, Academic Press, San Diego.

- 6. Uniform flow in an unconfined interface aguifer with uniform recharge
- 7. Uniform flow in an unconfined aquifer with uniform recharge and two levels
- 8. Uniform flow in a two-level confined aquifer system with circular opening connecting the two levels
- 9. Transient simulation of the Theis (1935) solution
- 10. Transient simulation of the Hantush (1967) analytic solution for mounding under a rectangular recharge area
- 11. Comparison of complex multi-level Anagsim model and equivalent MODFLOW 2005 model
- 12. Check of Anagsim drain line boundary
- 13. Check of Anagsim leaky barrier line boundary
- 14. Uniform flow in a confined/unconfined aguifer with uniform recharge
- 15. Uniform flow in a two-layer confined/unconfined aquifer with uniform recharge
- 16. Head-dependent normal flux (3rd type) boundary
- 17. Check of vertical leakage over polygon tool
- 18. Multi-layer pumping test comparison with MLU
- 19. 3D pathline tracing comparison with MODFLOW

The checks that are the most relevant to modelling of dewatering at Riverlea are Checks 9, 11 and 18:

- Check 9 (transient simulation of the Theis solution) simulates transient extraction along a line through the well and indicates good approximation of the governing equation by the model.
- Check II (comparison of complex multi-level Anaqsim model and equivalent MODFLOW model) has confined and unconfined domains under transient and steady flow, with spatially-variable area sinks for simulating vertical leakage and storage changes. It includes anisotropy, wells, constant head line boundaries, normal flux line boundaries, and inter-domain line boundaries. This check demonstrates that Anaqsim and MODFLOW produce similar results for a complex model that implements most of Anaqsim's capabilities. The comparisons are similar for both steady state and transient simulations.
- Check 18 (multi-layer pumping test) is a model of a pumping test in a thick, stratified aquifer, adapted to give a direct comparison between Anaqsim and MLU, which is an analytic multi-level model that uses Laplace transforms and analytic elements (LT-AEM) to get exact distributions of vertical leakage and storage fluxes, without finite time steps. The models have 9 layers that are all confined and isotropic in the plane of the layering, but with lower vertical hydraulic conductivity. The pumping well spans three of the levels. The model-simulated drawdowns in the pumping well and in the three observation wells are essentially identical.

Checks of Anaqsim have also been conducted by McLane Environmental.⁵ Charles McLane has authored some peer reviewed papers on the AEM method, as referenced on his blog.⁶

In addition, Stephen Kraemer of the USEPA has published in the journal Groundwater a case study involving the use of Anaqsim and its comparison to MODFLOW.^{7,8} The case study was for the Los Angeles basin. It demonstrated the use of analytic element groundwater modelling for testing stress dependent boundaries during site pump-treat-inject design.

⁵ McLane Environmental independently sells 'FlexAEM', which is a tutorial package for Anaqsim

⁶ flexAEM Blog: So...How Does AnAgSim Compare to MODFLOW?

⁷ https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=358906&Lab=CEMM

⁸ https://ngwa.onlinelibrary.wiley.com/doi/10.1111/gwat.13322

The results of these checks and reviews give confidence that Anaqsim is an appropriate model to use for simulation of groundwater flow and pumping at Riverlea, given the objectives of the modelling and the limited amount of hydrogeological data available on the groundwater system, which has considerable 3-dimensional complexity on a small scale but appears to behave in a relatively uniform way on a large scale.

3.3. Approach to Modelling

First, a baseline model was developed to provide a reasonable steady-state approximation of average groundwater levels in the area, with model boundaries sufficiently distant from the site that they do not significantly influence modelling outcomes. The baseline model incorporates river elements for the Gawler River and Thompson's Creek and involves 3,152 equations that it solves iteratively.

The baseline model was then used to assess the response of the aquifer to various potential dewatering scenarios to achieve the groundwater lowering required for construction of Bay 1 of SWL1 (Section 0). The most promising approach was then taken forward to simulate the dewatering needed for construction of the full sequence of bays (Section 0). The sensitivity of the model to various input parameters and assumptions was assessed both at the steady-state calibration stage and for the transient simulations.

3.4. Model Domain, Layering and Boundary Conditions

The lateral extent of the model is similar to that used by REM/SKM in their 2008 model and by AGT in their 2011 model. It is oriented approximately NE-SW in line with the inferred general groundwater gradient, and measures approximately 13.2 km by 11.3 km, as shown by the green boundary in *Figure 8*. This extent of domain was designed to be large enough that the effects of modelled dewatering for the saltwater lakes would not be significant at the model boundaries.

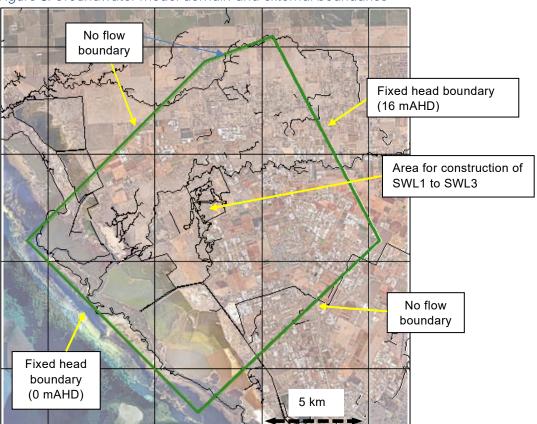


Figure 8. Groundwater model domain and external boundaries

As in the previous models developed by REM/SKM and AGT, the southeast and northwest boundaries of the model area were set as 'no flow' boundaries on the basis that they are approximately parallel to the inferred groundwater flow direction, meaning that groundwater moves parallel to the boundaries and does not cross them.

The southwest boundary of the model was defined as a fixed head boundary at zero mAHD close to the coast, and the northeast boundary was set at a fixed head of 16 mAHD. Care was taken throughout the modelling process to check the simulated boundary flows and to make sure that the simulation of dewatering at Riverlea did not induce a higher inflow through the fixed head boundary (if it had, this would have indicated that the boundary was too close to the pumping area and that the model domain should be expanded).

The top of the model was set at 20 mAHD, thus allowing the aquifer to be unconfined across the domain. The base of the model was set at -6 mAHD based on review of the site investigation findings close to SWL1, as shown in Figure 3. This means the saturated thickness of the central part of the model is approximately 11 m (from +5 mAHD to -6 mAHD). This is smaller than the 20 m that was adopted in the previous models but is based on the more recent site investigation data. The sensitivity of modelling results to this assumption is assessed in *Section 4.7*.

Across the more distant parts of the domain, away from the proposed lakes, the model was set up as a single layer. This simplifies the model and is consistent with the findings of the site assessment, which suggest that the shallow formation acts as a single, hydraulically-connected aquifer unit even though it is laterally and vertically heterogenous. It is also appropriate in the absence of site-specific data with which to define aquifer properties across most of the area.

In and around the area where the saltwater lakes will be constructed the model has three layers. This allows the layers to be set with different hydraulic properties and it allows vertical flows between layers to be assessed, as well as lateral flows within layers. At the internal model boundary between the inner three-layer zone and the outer single layer zone, the groundwater pressures in each layer are vertically uniform, which maintains continuity of groundwater flows across the internal boundary. The boundary of the 3-layer zone is a circle with a diameter of approximately 4.5 km as indicated in *Figure 9*.

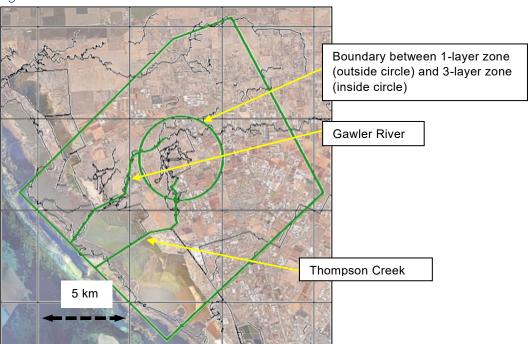


Figure 9. Groundwater model internal boundaries

Layer 1 in the central part of the model was set vertically from 5 m AHD to -1 mAHD. The bottom elevation of this layer was selected based on review of the hydraulic conductivity (k) values estimated from slug tests in the multi-level wells SLMW10 to SLMW13 installed around SWL1. The k estimates were attributed to the relevant 1 m vertical interval, after factoring where needed to take into account the thickness of the zone investigated (in some cases this is the screened thickness, in others it is the thickness of a specific permeable layer within the screen). The resulting k estimates for the vertical intervals were then averaged between the four wells as shown in *Table 3* and these were plotted in a vertical profile as shown in *Figure 10*. The vertical profile suggests that k is generally higher in the shallower zone (above -1 mAHD) than below, so -1 mAHD was adopted as the base for Layer 1. The bottom elevation of Layer 1 is therefore 1.5 m below the +0.5 mAHD dewatering elevation needed for construction of SWL1.

Layer 2 was set from -1 mAHD to -2 mAHD, as a thin layer to allow potential vertical flows to be simulated below the required dewatering level. Layer 3 was set from -2 mAHD to the base of the model at -6 mAHD.

Table 3. Averaged vertical profile of slug test hydraulic conductivity estimates (m/d)

Elevation		Estimate	ed average k (m/d) from slu	ıg testing		Implied
(mAHD)	EX10	EX11	EX12	EX13	Average	Vertical average	transmissivity (m2/d)
4 to 5 m	0.5	0.5	0.5	6.6	2.03		
3 to 4 m	0.5	1.11	0.5	11	3.28	2.6	
2 to 3 m	9.6	3.7	0.5	0.5	3.58		15.4
1 to 2 m	0.5	3.7	0.5	0.5	1.30		
0 to 1 m	5.32	1.48	0.5	0.5	1.95		
-1 to 0 m	4.56	0.5	7.5	0.5	3.27		
-2 to -1 m	0.5	0.5	0.5	0.5	0.50		
-3 to -2 m	3	0.5	0.5	0.85	1.21		
-4 to -3 m	3	3.15	0.5	0.85	1.88	1.3	6.5
-5 to -4 m	3	3.15	0.65	0.85	1.91		
-6 to -5 m	3	0.5	0.5	0.5	1.13		
					•	Total	21.9

Figure 10. Average vertical profile of hydraulic conductivity from slug tests

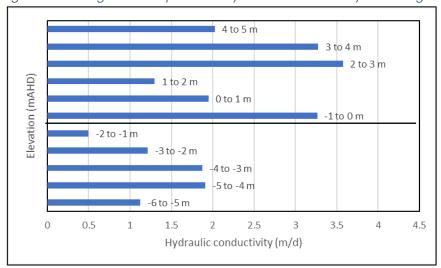


Figure 9 also shows shows the locations of the internal model boundaries for the Gawler River and Thompson Creek. During model calibration it was found to be necessary to include these to allow discharge from the model and therefore bring down the groundwater levels and gradient in the western part of the model. Without them (or a zone of higher hydraulic conductivity which could

potentially have the same overall effect), it would not have been possible to obtain an acceptable match of groundwater levels in the vicinity of the saltwater lakes while also giving a reasonable representation of groundwater levels both at the coast and at the upgradient boundary of the model. The creeks are represented in the model as series of line segments with prescribed heads applied at their downstream (zero mAHD) and upstream ends (4.5 mAHD⁹ for the Gawler River, 3.5 mAHD for Thompson Creek).

3.5. Hydraulic Conductivity

Based on the pumping tests conducted in wells EX10, EX12 and EX13 in December 2023, the overall geometric mean transmissivity estimate is $33 \text{ m}^2/\text{d}$. For the modelled aquifer thickness of approximately 11 m at SWL1, this implies an average hydraulic conductivity of 3 m/d. However, based on the vertical profile of k estimates from slug testing, as discussed above, k in the shallow zone down to -1 mAHD appears to be approximately double k in the deeper zone. Given that the transmissivity estimates from pumping tests are likely to give the most representative information and that slug tests often underestimate k due to their limited zone of influence, the transmissivity and k estimates derived from the slug tests (Table 3) have been factored up so that the overall aquifer transmissivity is $33 \text{ m}^2/\text{d}$. To do this the vertically averaged k estimates for the two zones were increased from 2.6 m/d and 1.3 m/d to 4 m/d and 2 m/d respectively, maintaining their ratio to each other. The k value of 4 m/d was then applied to Layer 1 and the k value of 2 m/d was applied to Layers 2 and 3. In the far-field of the model, where there is only a single layer, its k value was set to 3 m/d to maintain the same transmissivity of $33 \text{ m}^2/\text{d}$ (based on 11 m saturated thickness).

The starting point for model calibration in the absence of other site data, was to set k to be uniform across the single-layer portion of the model domain, away from Riverlea. However, this did not provide an acceptable match against observed groundwater levels (see Section 3.9), so some variability of k was incorporated into the model during the calibration process. During this process the aim was to keep the model as simple as possible, while retaining sufficient complexity to represent the system adequately and to reproduce groundwater behaviour. This approach follows the MDBC (2000) and Australian Groundwater Modelling guidance.

The results of model simulations during the calibration process were assessed by visual comparison of modelled groundwater level contours against those interpolated from recorded measurements obtained since the year 2000 (*Figure 5*), and by seeing how the modelled heads at specific monitoring well locations compared with recorded data. The root mean squared error (RMSE) was used to assess goodness of fit between observed and modelled heads.

The resulting final modelled distribution of k is indicated in *Figure 11*. The hydraulic conductivity values in the vicinity of the proposed lakes were kept at those derived from the field pumping tests. To simulate the steeper gradient towards the east it was necessary to decrease the hydraulic conductivity compared to both the Riverlea area and the coastal zone, where the gradient is flatter. The zone with the lowest k values in the north was needed to decrease inflows from the upgradient boundary, thereby allowing modelled groundwater levels northwest of the SWL area to be lower than they otherwise would have been.

⁹ The elevation used in the model is 0.9 m below the approximate general river bed elevation at the upgradient location. It is inferred that coarse permeable materials beneath the river may provide a preferential permeable pathway for groundwater to discharge from the main aquifer and be conveyed towards the coast.

It should be noted that the modelled distribution of hydraulic conductivity values represents a non-unique solution to the question of which distribution to use. The aim in this was to achieve an acceptable calibration against the recorded groundwater levels, remembering that the more important aim of the model is to simulate the pumping needed to achieve the required drawdown.

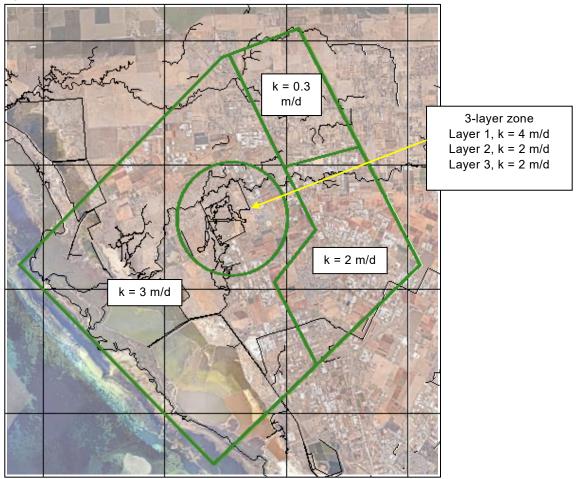


Figure 11. Modelled hydraulic conductivity distribution

3.6. Porosity and Storage Coefficients

Porosity and storage parameters were set uniformly across the model as follows:

- Porosity: 30%
- Specific yield (for unconfined conditions in Layer 1): 20%
- Confined zone storativity: 0.001

These parameters are not used in the steady-state model calibration but are used in the transient model simulations.

3.7. Vertical Inflows and Outflows

The baseline model does not simulate vertical inflows or outflows to the model, such as recharge, evapotranspiration, groundwater abstraction (other than for dewatering), or vertical flows between the base of the model and underlying strata. This approach is considered appropriate in the context of the objective of the modelling, which is to simulate relatively short-term effects of pumping, and is conservative in relation to simulating the influence of dewatering pumping on groundwater levels in the surrounding area.

3.8. Steady-State Model

Anaqsim checked the following factors after the end of each iterative calculation to assess model convergence:

- Prescribed head conditions: deviations of modelled values are no more than 0.001 m
- Prescribed flow conditions: deviations of discharge per length are no more than 0.001 m³/d

The simulated groundwater levels from the calibrated steady-state (average over time) model (blue contour lines) are shown in *Figure 12*, together with the interpolated contours for the period 2000 – 2024 (black contour lines) from *Figure 5*, which are based on recorded monitoring data.

Figure 12. Modelled and observed groundwater level contours (mAHD)

The differences between modelled and recorded groundwater levels at 106 wells within the model domain were checked during model calibration. *Figure 13* shows how the modelled and recorded groundwater levels compare and *Figure 14* is a map showing the differences for a selection of wells spread across the model domain. The average difference between modelled and observed water levels is 0.013 m and the root mean square error (RMSE) is 0.998 m.

Figure 13. Plot of modelled vs observed groundwater levels at 106 wells

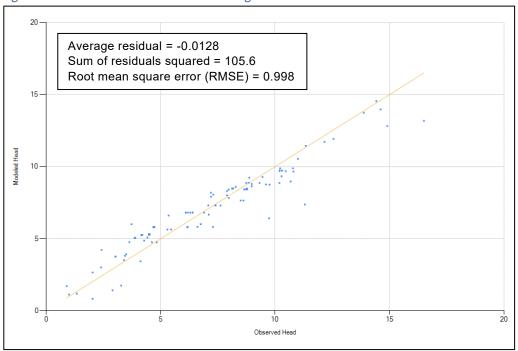
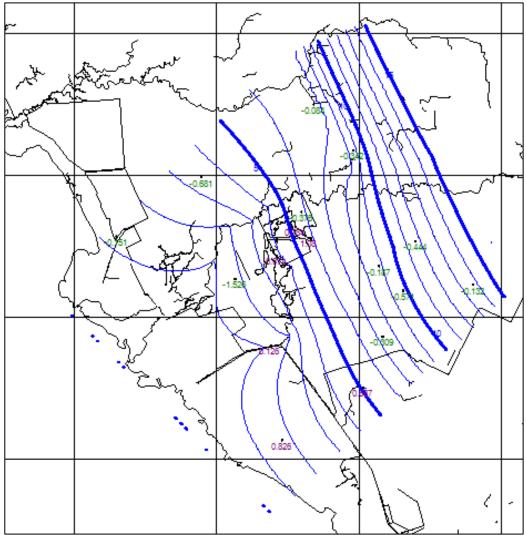



Figure 14. Differences between modelled and recorded groundwater levels

The water balance for the calibrated baseline model is shown in Table 4.

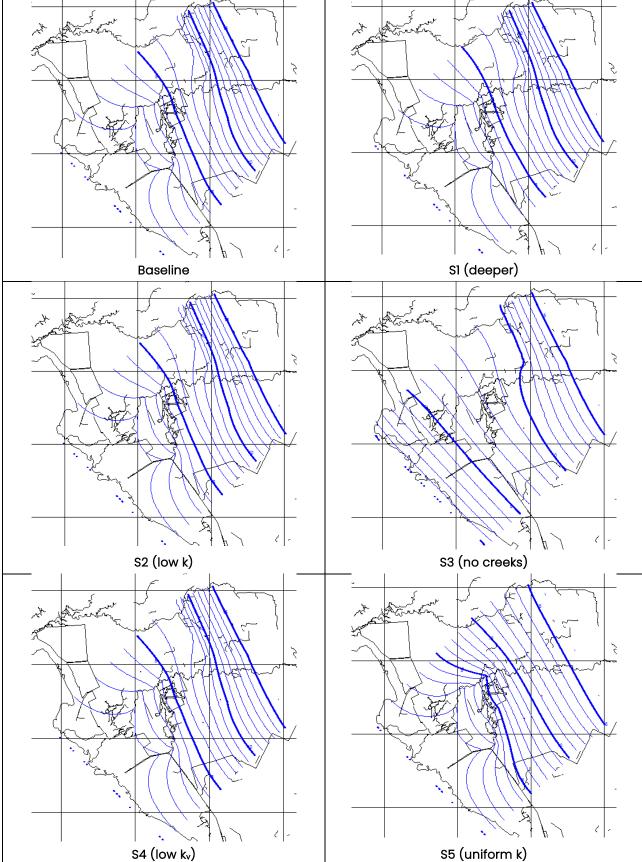
Table 4. Baseline steady-state model water balance

Flow location	Flow rate (m³/d)				
Flow location	Inflow to model	Outflow from model			
Inflow from northeast (upgradient)	522.9	-			
Southwest (coast) flow to fixed head	-	91.3			
Flow to or associated with Gawler River	-	215.7			
Flow to or associated with Thompson Creek	-	215.8			
Discharge across NW (no flow) boundary	<0.1	-			
Discharge across SE (no flow) boundary	<0.1	-			
TOTAL	522.9	522.8			

3.9. Baseline Model Sensitivity

This section assesses the sensitivity of the baseline steady-state model to changes in some key assumptions and parameter values. *Table 5* lists the simulations conducted for sensitivity testing and comments on the effects of each one. *Table 6* provides a summary water balance for the baseline model and for the steady-state sensitivity test runs, and *Figure 15* shows groundwater level contours across the model domain.

Table 5. Summary of model sensitivity testing for steady-state simulations


Run	Outline and comment
SI (deeper)	As baseline but with base of model changed from -6 mAHD to -15m AHD. This gives an approximate 20 m saturated thickness, which is what was adopted previously by REM/SKM and AGT in their modelling. The increased saturated thickness in the model increases the aquifer transmissivity, from the baseline typical value of 33 m ² /d in the vicinity of SWL1 up to 50 to 60 m ² /d.
	The simulated groundwater level contours are almost unchanged because they are controlled by the fixed head boundaries of the model (<i>Figure 15</i>). The simulated steady-state inflows and outflows are proportionately higher (<i>Table 6</i>) due to the higher transmissivity.
	For the same reasons, a simulation based on a thinner aquifer would have smaller inflows and outflows but would not change the steady-state groundwater levels.
S2 (Iow k)	As baseline but with all hydraulic conductivity values halved. The reduced hydraulic conductivity halves the aquifer transmissivity. The simulated groundwater level contours are almost unchanged because they are controlled by the fixed head boundaries of the model. The simulated steady-state inflows and outflows are halved due to the lower transmissivity. Similarly, a simulation based on higher hydraulic conductivities would have larger
	inflows and outflows but would not change the steady-state groundwater levels.
s3 (no creeks)	As baseline but without including the Gawler River and Thompson's Creek. The simulated groundwater levels are higher in most of the domain because the water has to flow all the way to the coast to discharge from the aquifer. The groundwater levels simulated in the central part of the model domain are too high (around 8.5 mAHD at SWL1). Because of the higher groundwater levels in the central part of the

Run	Outline and comment
	Similarly, an intermediate change involving raising the modelled elevations of the creek beds would decrease the modelled creek flows and decrease the influence the creeks have on groundwater levels. Lowering the modelled elevations of the creek beds would increase their flows and their influence on groundwater levels.
\$4	As baseline but with vertical hydraulic conductivity reduced by a factor of 10.
(lower vertical k)	Because this is a steady-state simulation and the model boundaries are controlled by fixed heads and no-flow conditions, the simulated groundwater level contours are unchanged, as are the model inflows and outflows (which are horizontal).
S5 (uniform k	As baseline but with the k value set to be uniform (3 m/d) across the entire domain. This was the starting point for the calibration process.
in single layer zone)	The simulated groundwater levels near SWL1 are too high (around 7 mAHD) as are the groundwater levels across much of the domain, as can be seen in <i>Figure 16</i> . The average difference between modelled and observed water levels in this simulation was 1.7 m and the RMSE was 2.33 m.
S6 (recharge)	As baseline but with groundwater recharge applied uniformly at a rate of 2.7 x 10 ⁻⁵ m/d (10 mm/year), which is equivalent to approximately 2% of annual rainfall. The actual effective recharge rate is not known and may be very small due to the climate, the clayey soil and the interception and evapotranspiration of infiltrating water by vegetation.
	The resulting simulated groundwater levels near SWL1 are too high (around 9 mAHD) as are the groundwater levels across much of the domain (<i>Figure 16</i>). Due to the high groundwater levels the model has a net outflow of water across the northeast fixed head boundary. The average difference between modelled and observed water levels in this simulation was 4.7 m and the RMSE was 5.1 m.
	The results of this simulation therefore suggest that either the aquifer transmissivity must be quite a lot higher (which would not be consistent with the results of the pumping tests conducted on site and would also not be consistent with the observed geology, which is generally clayey) or the net rate of recharge to the shallow aquifer must be much smaller, for example due to low permeability soils and high evapotranspiration. Another factor that could cause net recharge to be low is if there is vertical leakage down from the base of the aquifer into deeper zones.

Table 6. Model water balance summary for steady-state sensitivity tests

	Inflows (m³/d)			Flow			
Scenario	from up- gradient	recharge	SW (coast)	Gawler River	Thompson Creek	leakage to deeper aquifers	balance (inflows – outflows) (m³/d)
Baseline	522.9	-	91.3	215.7	215.8	-	<0.1
S1 (deeper)	813.5	-	184.7	329.9	298.7	-	<0.2
S2 (lower k)	261.4	-	45.7	107.8	107.8	-	<0.1
S3 (no creeks)	411.1	-	412.1	-	-	-	1.0
S4 (low k _v)	522.9	-	91.3	215.7	215.8	-	<0.1
S5 (uniform k)	905.2	-	116.0	442.0	350.3	-	3.1
S6 (recharge)	-315	3,991	710	1,593	1,391	-	18

Figure 15. Steady-state groundwater levels (1 m intervals) for sensitivity test runs S1 (deeper) Baseline 7 S2 (low k) S3 (no creeks)

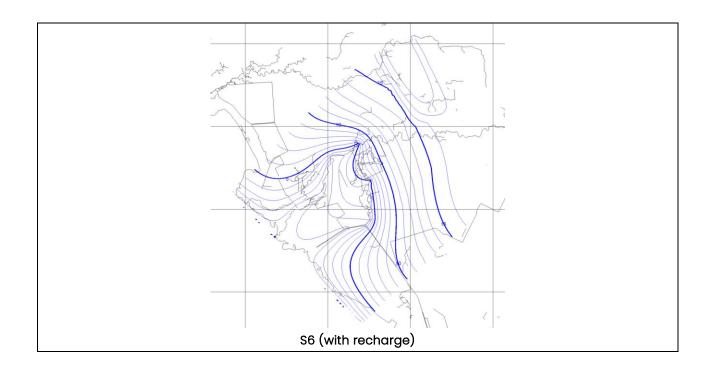
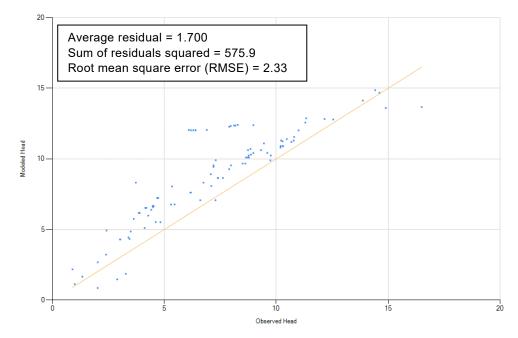



Figure 16. Plot of modelled vs observed groundwater levels for simulation S5 (uniform k)

The results of the steady-state sensitivity testing are consistent with expectations based on how the model domain has been set up. The simulated groundwater contours are controlled primarily by the prescribed heads at the NE and SW boundaries of the model and along the Gawler River and Thompson's Creek. Modelled flows depend not only on the groundwater elevations and gradient but also on the transmissivity (hydraulic conductivity multiplied by saturated thickness). Because of the importance of transmissivity in determining flows, the model has been constructed so that the main area of interest near SWL1 uses the best available estimate of aquifer transmissivity, as obtained from the test pumping. Model sensitivity under transient conditions including pumping is discussed further in Section 4.7.

4. Groundwater Dewatering Model (SWL1, Bay 1)

4.1. Model Scenarios

Several model scenarios were run using the baseline model to assess and compare the potential effects of different dewatering configurations, using either wells or wellpoints (which could be installed either as lines of closely-spaced vertical wellpoints or as long horizontal wellpoints). The potential effects of re-infiltration of pumped groundwater after storage at the location of SWL2 was also assessed. The scenarios presented in this report are outlined in *Table 7*.

For all the initial dewatering simulations the model was set to run 20 timesteps covering a period of 30 days, with a timestep multiplier of 1.2 between each timestep and the next. The modelled steady-state groundwater levels were used as the initial heads for the transient simulations.

Table 7. Summary of model scenarios for dewatering Bay 1
--

Scenario	Outline
А	Dewatering using 9 wells around Bay 1
В	Dewatering using wellpoints (either closely spaced vertical or horizontal wellpoints) located outside the north, east and south sides of Bay 1. Extraction to a fixed head of zero mAHD.
С	Similar to Scenario B but with additional wellpoint lines extending across Bay 1
D	As Scenario C but including re-infiltration at 80% of the average pumping rate, at the location of SWL2.

4.2. Dewatering using Extraction Wells

One potential way to achieve the required dewatering could be to use extraction wells. Because they need to contain pumps and to be pumped before and during construction, the wells would need to be positioned outside the planned excavation area. Various model simulations were therefore run to explore the potential number and spacing of wells that may be needed around SWL1 Bay 1, and to assess the potential required pumping rates.

An example simulation (Scenario A) involved nine extraction wells (each of 0.15 m diameter) positioned around the edges of Bay 1 as indicated in green on *Figure 17*, which also shows the simulated groundwater level contours around Bay 1 at 0.2 m intervals after 30 days of pumping. The nine wells were each set to draw the groundwater level from model Layer 3 down to a fixed head of -2.5 mAHD. The simulated average initial pumping rate was approximately 80 m³/d per well (combined rate 720 m³/d), which decreased to 67 m³/d per well by the end of 30 days (combined rate 600 m³/d).

The modelled drawdown in groundwater level after 30 days is shown in *Figure 18* and the changes in groundwater level over time along the two purple section lines of *Figure 17* are shown in *Figure 19*. The results show gradually increasing drawdown of groundwater levels. However, after 30 days the groundwater level beneath the middle part of Bay 1 (along the section line) is still around 4 mAHD. Drawdown to the required level of 0.5 mAHD would therefore take considerably longer and may not be practically achievable with this number of wells. Because the model used fixed heads at the wells, planning simply to increase the pumping rates would likely not be achievable, as pumping rates would be limited by the transmissivity of the surrounding formation.

Figure 17. Simulated groundwater levels after 30 days, Scenario A

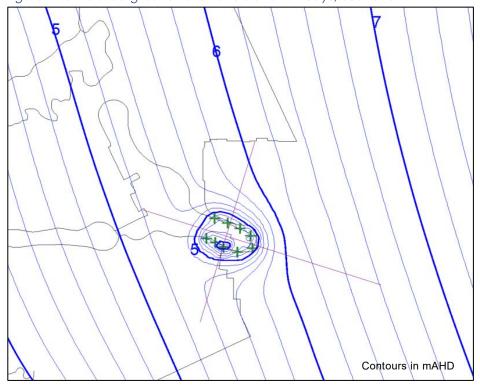


Figure 18. Simulated drawdown after 30 days, Scenario A

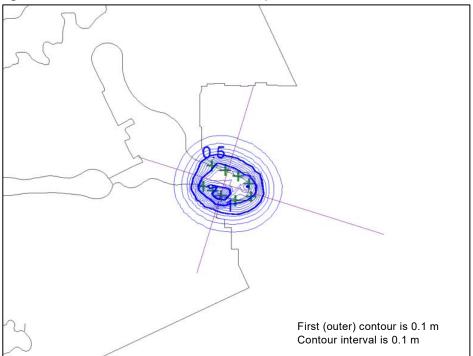
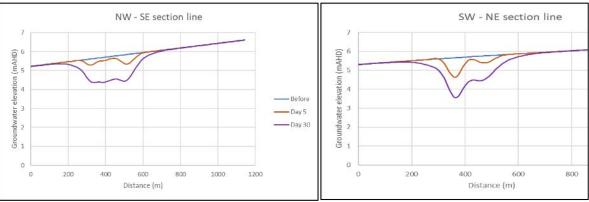



Figure 19. Cross sections of groundwater levels at different times, Scenario A

These results therefore suggest that to achieve the required drawdown using wells would require a much larger number of wells. Also, given the width of SWL1, wells around the edges may not be able to achieve sufficient drawdown in the central part due to the potential for upward flow (depending on the permeability profile and hydraulic connectivity of permeable layers).

Based on the above and on the results of other similar model simulations, it was concluded that dewatering using wells that are relatively widely spaced may not be practicable and that dewatering using wellpoints should be investigated as a potentially better approach.

4.3. Dewatering using Wellpoints outside Bay the Lake Footprint

Dewatering using wellpoints can be a practicable and cost-effective approach at sites where the ground conditions and hydrogeology are suitable. This can include sites with layered soils of variable permeability, such as Riverlea. Wellpoints can either be vertical, in which case they typically need to be closely spaced (e.g. 1 to 2 m spacing in clean sand or 1.5 to 3 m spacing in silty sand), or horizontal, in which case they can be installed either by trenching or by directional drilling. Water can be extracted from multiple wellpoints connected by a header pipe to a specialist vacuum pump mounted on the ground surface or in a sump. The maximum drawdown of groundwater level below the pump can be 5 to 6 m in sandy gravels and fine sands but less (e.g. 4 m) in silty sands. For larger depths, two or more stages of dewatering are required. The depth of dewatering required at Riverlea SWL1 is approximately 4 m, therefore a single stage of wellpoints may be able to achieve the required dewatering.

An advantage of wellpoints compared to dewatering using a small number of deeper extraction wells is that wellpoints spread the extraction more widely, rather than requiring water to flow further towards a small number of extraction points. Wellpoints also intersect much more of the natural geology and so can deal better with variable ground conditions.

Various model simulations were run to explore the potential configuration of wellpoints that may be needed around Bay 1 and to assess potential extraction rates. In each case the wellpoints were simulated as horizontal linear features, rather than as large numbers of point extractions. This simplification makes the modelling practicable and is appropriate given that the intention of the wellpoints would be to create approximately constant drawdown along each line of wellpoints, whether the wellpoints are vertical or horizontal.

A separate engineering assessment is recommended to check the feasibility and practicability of dewatering the site using wellpoints, taking into account geotechnical and engineering considerations as well as cost and the availability of appropriate equipment and contractors.

Initial simulations were based on having wellpoints only around the edges of the excavation. *Figure 20* shows simulated groundwater level contours at 0.5 m intervals at 30 days after the start of pumping from wellpoints positioned around the north, east and south sides of Bay 1 (Scenario B). No wellpoints were positioned along the western side of Bay 1 because this area will need to be excavated for Bay 2. The modelled wellpoint lines are shown in green on the Figure. The wellpoints were set to extract water down to zero mAHD. The overall pumping rate in this simulation started at approximately 10,000 m³/d then decreased to 3,000 m³/d after 1 week and by 30 days was around 1,400 m³/d. In reality, because the water level cannot be instantaneously drawn down within the wellpoints themselves, the overall extraction rate would likely be lower than simulated at the start and may decrease more gradually as dewatering proceeds.

The modelled drawdown in groundwater level after 30 days is shown in *Figure 21*. Groundwater levels towards the centre of Bay 1 are simulated to drop to approximately 1.5 mAHD after 30 days of pumping, as shown in *Figure 22* for the cross-section lines shown in purple on Figure 20. Due to its distance from the wellpoint lines, the slowest drawdown occurs in the centre of the bay.

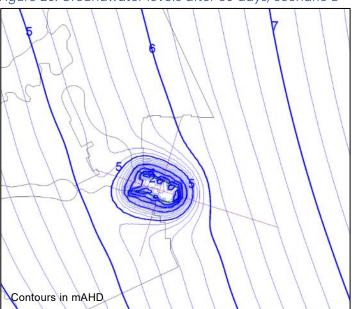


Figure 20. Groundwater levels after 30 days, Scenario B

Figure 21. Simulated drawdown after 30 days, Scenario B

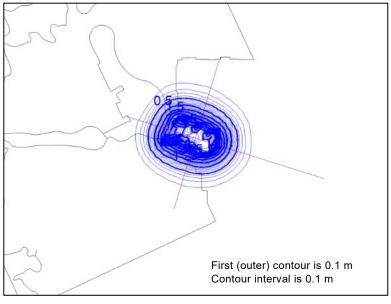
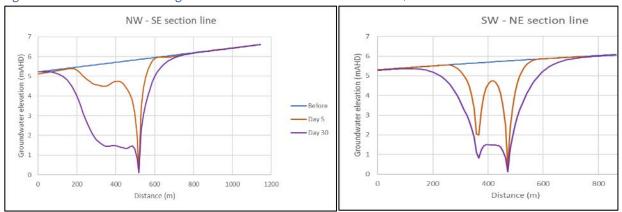



Figure 22. Cross sections of groundwater levels at different times, Scenario B

4.4. Dewatering using Wellpoints around and beneath the Lake Footprint

Based on the above, additional model simulations were undertaken to assess the benefit of installing additional wellpoints within the footprint of Bay 1. If this approach is taken, it is assumed that the wellpoints and associated pipework would remain in place beneath the basal liner of SWL1 and that the extraction pumps would be located outside the footprint of Bay 1. This would allow dewatering to continue while the lining system is constructed and while the coffer dam is installed between Bays 1 and 2. Depending on engineering and other factors, it may also be possible for the wellpoints and associated connections to remain in place in the longer term beneath the lake, which may be helpful if they are needed again for contingency pumping for some reason.

Because further excavation, and potentially liner construction, will need to take place near to and above any wellpoints that are installed within the footprint of Bay 1, it is provisionally considered that horizontal wellpoints may be best in this area, even if closely spaced vertical wellpoints are used around the edges of the excavation area. The length of Bay 1 (approximately 280 m from northwest to southeast) is likely too long for a central line of wellpoints along its entire length to be pumped using a single pump. The conceptual design adopted for model simulations therefore involves a combination of wellpoints positioned outside the edges of Bay 1 together with shorter wellpoints lines crossing the width of Bay 1. These wellpoint lines are assumed to extract only from beneath the central area of the bay, where the bed of the lake will be flat, and not from beneath the sloped edges of the lake. This will help simplify the installation. It is assumed the pumps would be located outside the lake footprint and that buried pipes would be installed to connect the pumps to the wellpoint lines. It is recommended that an engineering assessment is undertaken to make sure the wellpoints and connecting pipes are designed and protected in a way that allows all the lake construction works to proceed as planned without reducing the operability of the wellpoints.

The configuration illustrated in *Figure* 23 (Scenario C) was able to approximately simulate the required drawdown in groundwater levels after 30 days of pumping. This configuration includes wellpoint lines along the north, east and south edges of Bay 1 together with four wellpoint lines crossing the bay at intervals of around 70-80 m. The modelled wellpoint lines are shown in orange on the Figure. The wellpoints were assumed to extract only from Layer 1 of the model (i.e. down to -1 mAHD) with the groundwater level in the wellpoints set to zero mAHD.

Figure 23. Bay 1 wellpoint configuration including within bay (Scenario C)

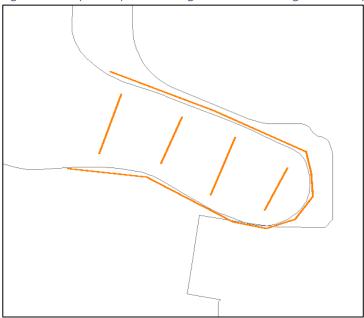


Figure 24 shows the simulated groundwater levels in Layer 1 after 30 days, while Figure 25 shows the drawdown at 30 days and Figure 26 show the changes in groundwater level along the two crosssection lines shown on Figure 24. The overall pumping rate in this simulation started at over 15,000 m³/d then decreased to around 3,200 m³/d after 1 week and by 30 days was around 1,300 m³/d. The simulated total volume pumped during the 30 days was close to 91,000 m³.

Figure 24. Groundwater levels after 30 days, Scenario C

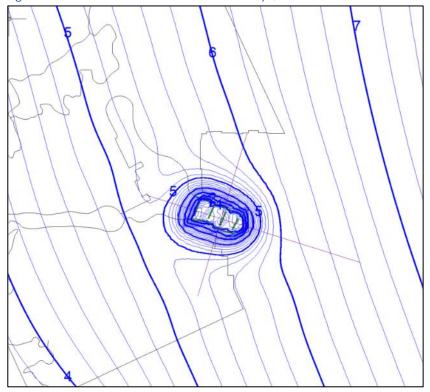


Figure 25. Simulated drawdown after 30 days, Scenario C

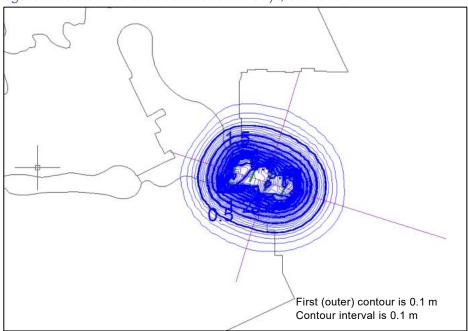
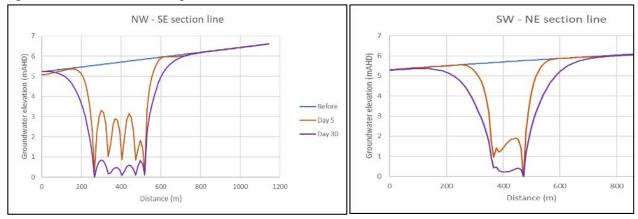



Figure 26. Cross sections of groundwater levels at different times, Scenario C

4.5. Model Water Balance

Table 8 provides a summary water balance for the baseline model (steady state) and for scenarios A, B and C, each after 30 days. The data in the table illustrate:

- For the steady state baseline, the inflows match the outflows (as expected for steady state).
- The inflows and outflows from the model boundaries are the same for the three transient simulations as they are for the steady state baseline model. This gives confidence that the model boundaries are not too close to SWL 1.
- The simulated outflows to the river and the creek are unchanged by the dewatering (note that these simulated outflows should be considered to include water lost by evaporation from low-lying ground in the vicinity of the creeks and by evapotranspiration, as well as water that discharges towards the coast via the creek lines (whether as surface water or as groundwater within granular deposits within the creek bed).
- The water removed by the wells and wellpoints is being derived entirely from local dewatering in the vicinity of SWL1 (i.e. it is water that has come out of storage).

Table 8. Model water balance summary after 30 days pumping

	Inflow Outflows (m³/d)						Change in	
Scenario	from NE (m³/d)	Coast	Gawler River	Thompson Creek	Wells	Wellpoints	storage (m³/d)	
Baseline (steady state)	523	91	216	216	0	0	0	
A (30 days)	523	91	216	216	599	0	-599	
B (30 days)	523	91	216	216	0	1374	-1374	
C (30 days)	523	91	216	216	0	1279	-1279	

4.6. Addition of Infiltration from Storage of Pumped Water

As noted in Section 2.2, water pumped for dewatering purposes during construction of Bay 1 will be transferred to the location of SWL2 for storage. Some of the water may be used for dust suppression. Some of the stored water will infiltrate back into the shallow groundwater. It is therefore important to assess whether the re-infiltration might create a groundwater mound that adversely affects the dewatering.

A model simulation (Scenario D) was therefore run based on Scenario C, but including re-infiltration at SWL2 at a rate of 2,420 m³/d, which is 80% of the average pumping rate of approximately 3,000 m³/d determined from Scenario C. The re-infiltration in the model is applied uniformly along the centreline of the footprint of SWL2 (see *Figure 2*). Groundwater contours at 0.2 m intervals after 30 days are shown in *Figure 27* and the change in groundwater levels over time for the NW-SE cross-section through Bay 1 is shown in *Figure 28*.

A Solution of the control of the con

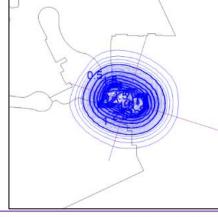
Figure 27. Groundwater levels after 30 days, Scenario D

NW - SE section line Groundwater elevation (mAHD) 4 Before 3 Day 5 Day 30 2 1 0 0 200 400 600 800 1000 1200 Distance (m)

Figure 28. NW-SE cross section of groundwater levels at different times, Scenario D

As in Scenario C, the simulated total volume pumped during the 30 days was close to 91,000 m³. The total had not increased due to the re-infiltration, indicating that it was occurring far enough from Bay 1 not to influence conditions there over the 30-day timescale. However, if dewatering of the western part of Bay 2 is to be undertaken at the same time as storage of pumped water in the footprint of SWL2, it may be advisable to create a temporary coffer dam within the SWL2 footprint in order to keep the stored water further away in the western part of the SWL2 footprint, so that it is not too close to the zone being dewatered.

4.7. Transient Model Sensitivity


This section assesses the sensitivity of the transient model to changes in key assumptions and parameter values that are relevant to transient simulations. This builds from the steady-state sensitivity testing in *Section 3.9*.

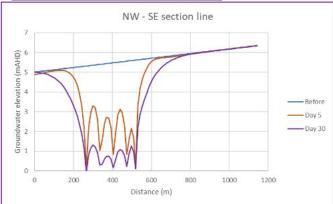
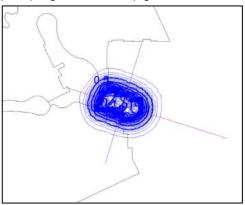

Table 9 lists the transient simulations conducted for sensitivity testing and comments on the effects of each one. The effects of the transient sensitivity tests were considered by reference to Scenario C and for a modelled time of 30 days after the start of dewatering. *Table 10* provides a summary water balance for the Scenario C and for the transient sensitivity test runs.

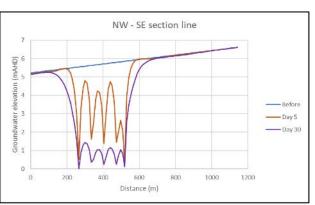
Table 9. Summary of model sensitivity testing for transient simulations

Run	Outline and comment
TI	As Scenario C but with base of model changed from -6 mAHD to -15m AHD. This gives an approximate 20 m saturated thickness at the location of SWL1, which is what was adopted previously by REM/SKM and AGT in their modelling. This tests the same change as in steady-state sensitivity run S1.
	Drawdown contours at 0.1 m intervals for this run are provided below for comparison with <i>Figure 25</i> for Scenario C. Also below is the groundwater level plot vs time for the NW-SE section line, for comparison to the left part of <i>Figure 26</i> .
	As in Scenario C, the required drawdown is close to being met after 30 days, although the simulated pumping rate is approximately 25% higher due to the increased transmissivity. As in Scenario C, the pumped water is drawn entirely from storage (not from the model boundaries).

Run | Outline and comment



As Scenario C but with but with all hydraulic conductivity values halved, thus halving the aquifer transmissivity. This tests the same change that was tested using steady-state sensitivity run S2. Graphical output for this run is provided below.


As in Scenario C, the required drawdown is close to being met after 30 days. The pumping rate is 26% lower due to the lower transmissivity and as in Scenario C, the pumped water is drawn almost entirely from storage.

Because of the lower transmissivity, the radius of influence of pumping is lower for any given drawdown or time. This results in steeper hydraulic gradients near the pumping locations.

Conversely, if the transmissivity is higher than modelled, this would result in higher pumping rates for any given drawdown and a wider zone of influence.

Т3

As Scenario C but with vertical hydraulic conductivity reduced by a factor of 10. This tests the same change that was tested using steady-state sensitivity run S4. As with the steady-state test, this does not change the overall inflows and outflows to the model domain, however it reduced slightly the pumping rate required for dewatering.

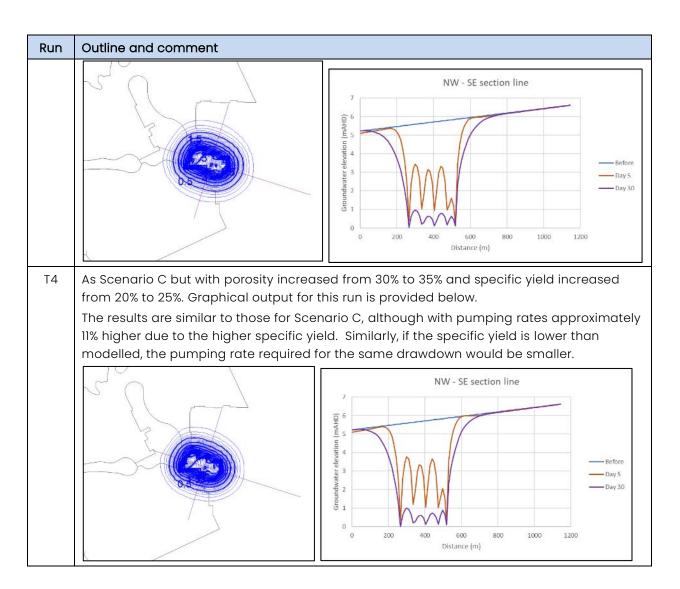


Table 10. Model water balance summary after 30 days pumping for transient sensitivity tests

, , , , , , , , , , , , , , , , , , , ,								
	Inflow		Change in					
Scenario	from NE (m³/d)	Coast	Gawler River	Thompson Creek	Wellpoints	storage (m³/d)		
С	523	91	216	216	1279	-1279		
Tl (deeper)	814	185	330	299	1601	-1601		
T2 (low k)	261	46	108	108	945	-946		
T3 (low k _v)	523	91	216	216	1243	-1243		
T4 (higher S _y)	523	91	216	216	1432	-1432		

Overall, the sensitivity testing indicates that transmissivity (combination of hydraulic conductivity and saturated thickness) is the most important parameter affecting the pumping rate for dewatering and the extent of influence of dewatering on the surrounding area. In the absence of site data across the modelled area, the baseline model incorporates a simplified geology and permeability distribution that has an overall transmissivity at SWL1 equivalent to the average transmissivity interpreted form the pumping tests. The adopted approach is conservative in that it assumes hydraulic conductivity is the same vertically as horizontally. In reality, the average vertical hydraulic conductivity within the formation is likely to be much lower than the horizontal conductivity, meaning that dewatering may be more rapid and involve lower flow rates and smaller lateral influence than the model results suggest.

Heterogeneity in hydraulic conductivity and transmissivity may mean that dewatering will be easier and more rapid in some parts of the site than in others. Similarly, preferential flowpaths such as individual sand or gravel horizons may provide locally high flow rates that are balanced on a larger scale by lower flows from less permeable zones.

The model simulations do not take account of seasonal variability or of potential short-term fluctuations in groundwater level and dewatering flows that may occur during or following large storm events.

5. Groundwater Dewatering Model (SWL1, Bays 1 to 6)

5.1. Approach

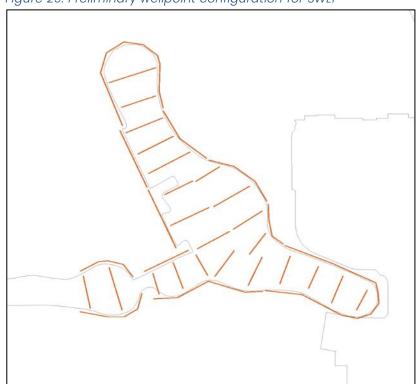

This section presents a model simulation of the dewatering required for construction of all six bays of SWL1, based on a preliminary construction timescale of 147 days as presented in *Table 11*, plus modelling of a further 750 days to simulate recovery of groundwater levels after cessation of pumping. The modelled steady-state groundwater levels were used as the initial heads for the transient simulation.

	Table 11.	Preliminar	y dewatering	schedule	for SWL1
--	-----------	------------	--------------	----------	----------

Bay	Day number to start dewatering	Day number to stop dewatering
1	0	65
2	10	84
3	21	109
4	51	123
5	81	139
6	101	147

The approach to dewatering is assumed to be based on wellpoint lines (whether horizontal or vertical) installed both around the edges of the lake footprint and at intervals crossing beneath the floor of the lake, in the same way as discussed in the previous Section. The modelled layout of wellpoint lines is shown by the orange lines in *Figure 29*. The wellpoints are set in the model to draw the groundwater level down to zero mAHD.

Figure 29. Preliminary wellpoint configuration for SWL1

5.2. Results

The overall pumping rate in this simulation started at approximately 17,000 m³/d across the first day and had additional peaks when pumping started for each new bay, but for most of the dewatering period was below 5,000 m³/d as shown in *Figure 30*. The total pumping volume for the 147 days of dewatering was simulated to be approximately 436,000 m³.

For comparison, the volume of water contained within 30% porosity across the lake area of 170,000 m² is approximately 51,000 m³ per vertical metre. Dewatering of approximately 4.5 m thickness would therefore involve removal of a water volume of approximately 230,000 m³, which is approximately 53% of the simulated volume pumped. The other 47% is from lowering of groundwater levels within the zone of influence of the pumping. The simulated boundary inflow and outflows and groundwater discharge associated with the creeks in this simulation were essentially unchanged from the modelled steady-state flows in the absence of dewatering.

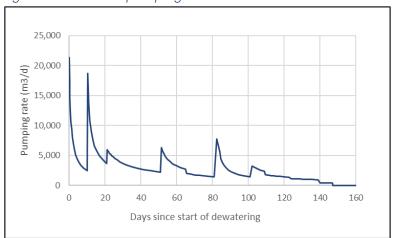


Figure 30. Modelled pumping rate over time for SLW1

Figure 32 shows the simulated groundwater levels (1 m intervals) across the model domain at the end of the pumping period (147 days).

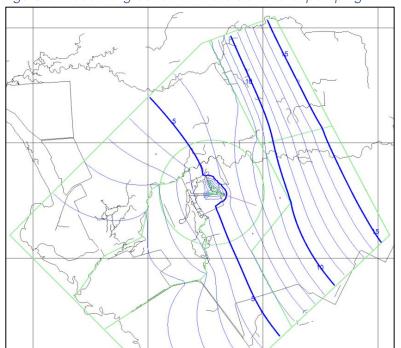
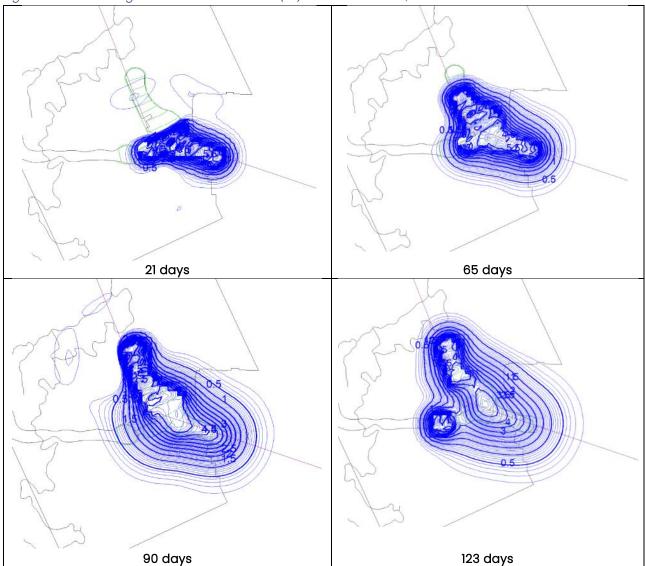
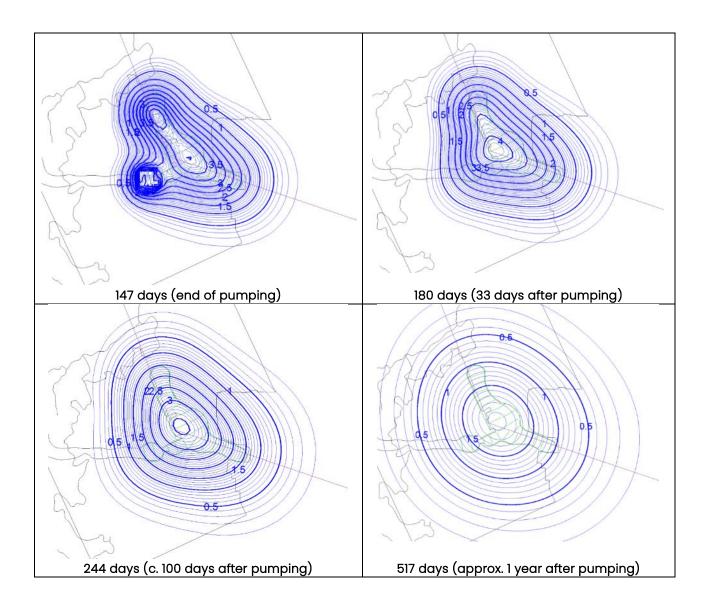




Figure 31. Modelled groundwater levels at end of pumping

Figure 32 shows the simulated drawdown in groundwater level (0.2 m contour intervals) around SWL1 at various times during and after pumping. The areal influence of pumping is simulated to continue to increase for some time after cessation of pumping. This is because the local groundwater flow conditions at each location respond to the local hydraulic gradient, as pressures approach equilibrium and because it takes time for water to flow downgradient, as well as vertically up from deeper in the aquifer, to refill the pore space that became unsaturated during pumping. The timescale for recovery of groundwater levels will be less if there is significant groundwater recharge (by whatever means) or if there are preferential flowpaths for groundwater from below or from upgradient.

Figure 32. Modelled groundwater drawdown (m) at various times, SWL1

Based on the above, the contour for 0.1 m drawdown is simulated to be within 500 m of SWL1 at the end of pumping and about 850 m from SWL1 at 1 year after cessation of pumping.

Changes in groundwater level over time for the cross-section line passing through SWL1 are shown in *Figure 33*. The cross-section also shows the modelled recovery of groundwater levels approximately 1 month and 1 year after cessation of pumping.

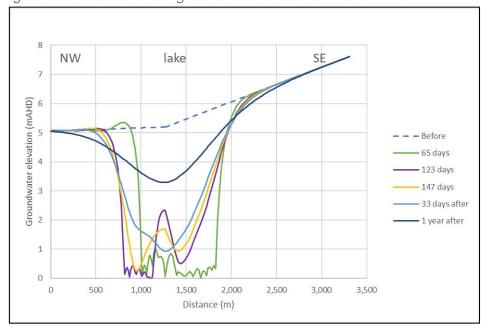


Figure 33. Cross sections of groundwater levels at SWL1 over time

The model was used to calculate the simulated drawdown in groundwater level at locations of the following three registered bores:

- 6528-141
- 6628-2275
- 6628-27168

The modelled drawdown at all three locations due to dewatering was less than 1 mm.

5.3. Delay Contingency Simulation

An additional simulation was run to assess the ptential effects of having to continue pumping for longer, such as could happen if construction works are delayed for some reason during dewatering. The simulation models a 3-month delay and assumes the delay will occur at possibly the 'worst' time, when Bays 1 to 4 are all being actively dewatered. The delay was implemented in the model by extending the period that according to *Table 11* would be planned to run from Day 51 (when pumping starts at Bay 4) to Day 65 (when pumping stops at Bay 1). The simulation assumes that instead of lasting 14 days, this period will last 104 days.

A chart of simulated pumping rate against time for this simulation is shown in *Figure 34* for comparison with *Figure 30* (no delay). The pumping rate gradually reduces during the period of the delay and the total additional volume of water pumped is approximately 126,000 m³, which increases the pumped total to 554,000 m³.

The simulated drawdown at the end of pumping (237 days) and 1 year later are shown in *Figure 35* with contours at 0.1 m intervals. The area of influence is larger than in the un-delayed scenario, due to the additional volume of water that has been pumped. However, the modelled drawdown at the three registered bores listed in the previous section (6528-141, 6628-2275, 6628-27168) again remained less than 1 mm in this simulation.

Figure 34. Modelled pumping rate over time for SLW1 (including 90 day delay)

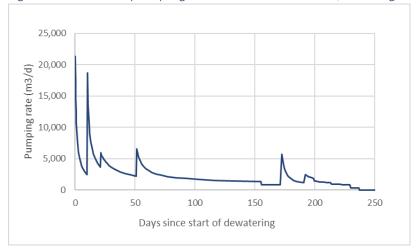
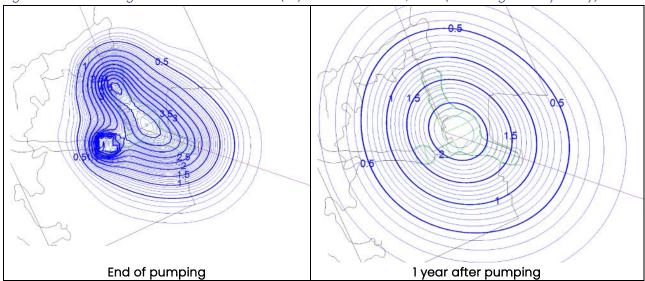



Figure 35. Modelled groundwater drawdown (m) at various times, SWL1 (including 90-day delay)

6. Conclusions

When considering the groundwater modelling results, it must be noted that all groundwater model predictions are uncertain. The model presented in this report is based on a simplified representation of the geological and hydrogeological system and is calibrated against a limited set of data. The model calibration is for steady-state (average) conditions, so the results of transient simulations must be used with caution, noting that this is a Class 1-2 model as defined in the Australian Groundwater Modelling guidelines (2012).

The main conclusions from this work are:

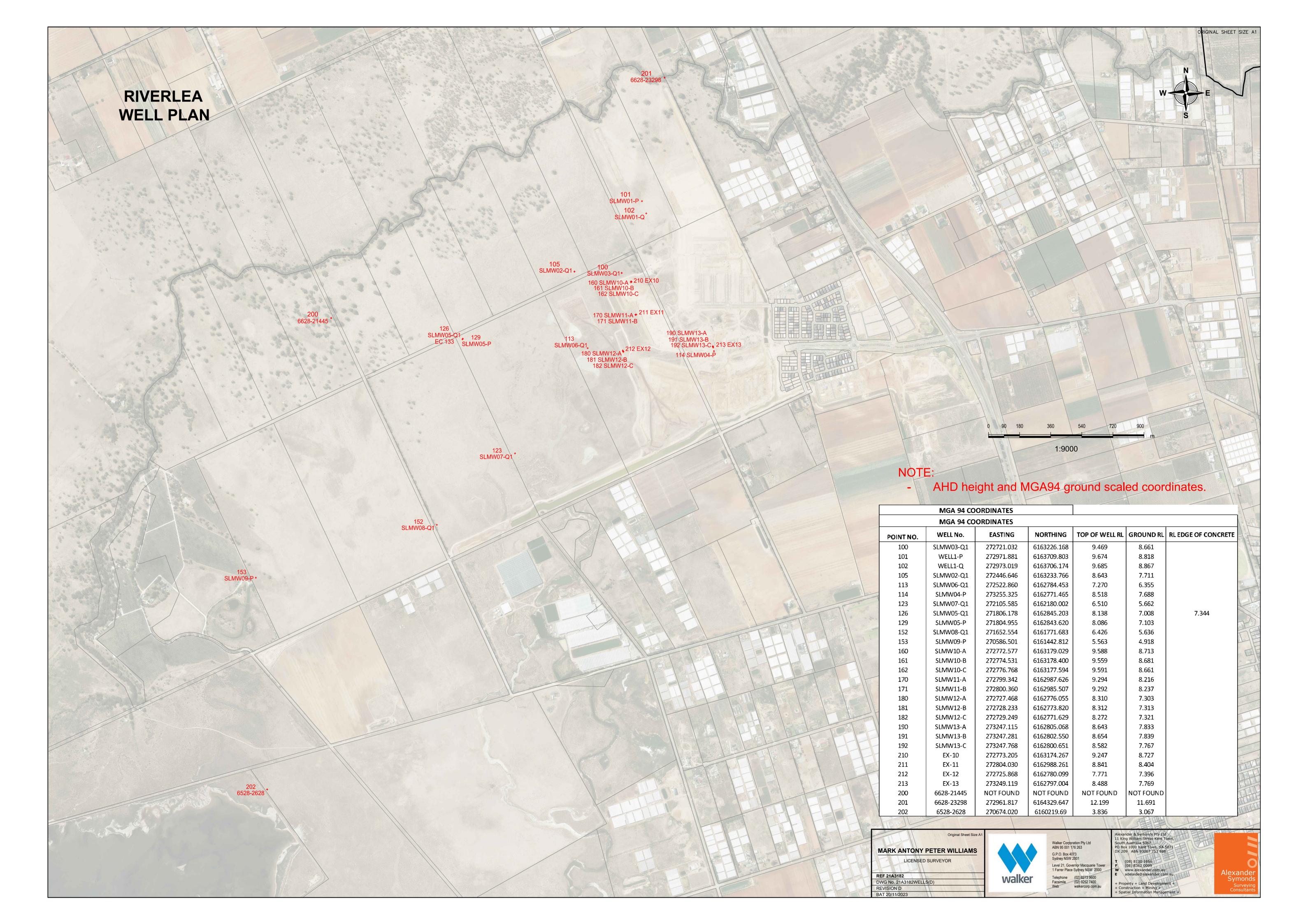
- 1. Dewatering using wells that are relatively widely spaced appears unlikely to achieve the required drawdown of groundwater levels.
- 2. Dewatering using wellpoints (whether installed horizontally or vertically), appears more likely to be able to achieve the required dewatering. An engineering assessment is recommended to check the feasibility and practicability of dewatering the site using wellpoints, taking into account geotechnical and engineering considerations as well as cost and the availability of appropriate equipment and experienced contractors.
- 3. If wellpoints are used, the modelling indicates that wellpoints will be needed within the footprint area of the lake, as well as around its edges. It is assumed that the pumps used to extract water from the wellpoints would be located outside the edges of the lake footprint. This may allow wellpoints to remain in place during and after the lake has been constructed. Given the dimensions of the bays, multiple pumps will likely be needed, each connected to a wellpoint line. The appropriate spacing and design of wellpoint lines will need to be the subject of detailed design, based on ground conditions at different locations and on achieving an appropriate balance between installation cost and dewatering time (if wellpoint lines are placed further apart, dewatering will take longer).
- 4. The modelling suggests that the required dewatering for Bay 1 may be achieved after approximately one month of pumping. A similar pumping time is likely to be needed for each subsequent bay to achieve the required drawdown before construction.
- 5. Leakage of pumped water from the location of SWL2 back into the groundwater appears unlikely to interfere significantly with SWL1 dewatering. However, if dewatering of the western part of the SWL1 is to be undertaken at the same time as storage of pumped water in the footprint of SWL2, it may be advisable to create a temporary coffer dam within the SWL2 footprint in order to keep the stored water further away from SWL1.
- 6. The simulated total pumping volume for the provisionally estimated 147 days of dewatering for construction of SWL1 is approximately 436,000 m³. More than half of this is simply the water to be removed from pore spaces within the soil beneath the lake footprint.
- 7. The contour for 0.1 m drawdown is simulated to be within 500 m of SWL1 at the end of pumping and about 850 m from SWL1 at 1 year after cessation of pumping. The modelled recovery of groundwater levels after cessation of pumping is quite slow (more than 1 year) but may be faster if there is significant groundwater recharge.

- 8. A simulation that incorporated 90 days of additional pumping, such as could occur due to a delay in construction, increased the volume pumped by approximately 126,000 m³ (an average increase of 1,400 m³/d) bringing the total to 554,000 m³.
- 9. The results of the modelling depend on various factors, particularly the hydraulic conductivity distribution. The model was constructed so that the transmissivity in the vicinity of SWL1 matches the average determined from the pumping tests conducted in December 2023.
- 10. In some respects, the modelling is conservative (for example, the assumption that the vertical hydraulic conductivity is the same as horizontal). Actual pumping requirements may therefore be below those simulated (although higher pumping rates are also possible).
- 11. When dewatering starts, it is recommended that good records be kept of pumping times, rates and volumes and of groundwater levels in the vicinity of the lake, so that expectations and plans for later stages can be adapted if needed.

7. Limitations

Hydrogeology Consulting Ltd has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of LBWco Pty Ltd. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice and assessment included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in the proposal.

Where this report indicates that information has been provided by third parties, Hydrogeology Consulting Ltd has made no independent verification of this information except as expressly stated in the report. Hydrogeology Consulting Ltd assumes no liability for any inaccuracies in or omissions to that information.


This report was prepared between December 2023 and September 2024 and is based on the information reviewed at the time of preparation, as detailed herein. Hydrogeology Consulting Ltd disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. Except as required by law, no third party may use or rely on this report unless otherwise agreed by Hydrogeology Consulting Ltd in writing. To the extent permitted by law, Hydrogeology Consulting Ltd expressly disclaims and excludes liability for any loss, damage, cost or expenses suffered by any third party relating to or resulting from the use of, or reliance on, any information contained in this Report.

This report does not give legal advice. Legal advice can only be given by qualified legal practitioners.

Appendix I Well Survey Data

Appendix J Chemical Summary Tables

	1															
				Inorg	anics							Nutr	ients			
	Total Dissolved Solids	Total Suspended Solids	ВОВ	Cyanide Total	рн (Lab)	Sulphate	Suiphite as S	Sulphide	Phosphate total (as P)	Phosphorus reactive (as P)	Ammonia as N	Nitrate (as N)	Nitrite (as N)	Total Organic Nitrogen	Nitrogen (Total)	Kjeldahi Nitrogen Total
	mg/L	mg/L	mg/L	mg/L	pH_Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
LOR	10	5	2	0.004	0.1	5	0.5	0.1	0.01	0.01	0.01	0.01	0.01	0.2	0.1	0.1
EPP Water Quality 2015 - Drinking water environmental value - TDS ONLY	1200															
GMRRW 2008 Recreation Health (ADWG x10)				0.8		5,000						113	9.1			
ANZG (2018) Freshwater 95% toxicant DGVs											0.9					
ANZG (2018) Marine water 95% toxicant DGVs											0.91	0.0)5*			
ANZECC 2000 Livestock	13,000								,	_	,			,	,	
ANZECC 2000 Irrigation (LTV)					6				,					,	5	

*stressor guideline

Location Code	Sample ID	Date	Sample Type	Lab report																
Groundwater																				
SLMW01-P	SLMW01-P	5/05/2023	Primary	986883	4,600	20	<5	< 0.005	8.1	250	<2.5	< 0.1	0.03	< 0.01	0.12	17	1.6	1.58	20.7	1.7
SLIVIVVO I-P	SLMW01-P	1/11/2023	Primary	1040740	1,700	72	<5	< 0.005	8.5	630	<2.5	< 0.1	0.02	< 0.01	0.03	18	< 0.02	3.17	21	3.2
SLMW01-Q1	SLMW01-Q1	5/05/2023	Primary	986883	4,700	15	<5	< 0.005	8	220	<2.5	< 0.1	0.04	0.07	0.13	24	1.1	3.07	28.2	3.2
SEIVIVVOT-Q1	SLMW01-Q1	1/11/2023	Primary	1040740	5,500	110	<5	< 0.005	8.2	710	<2.5	< 0.1	< 0.01	< 0.01	0.06	19	0.08	0.74	20	0.8
SLMW02-Q1	SLMW02-Q1	5/05/2023	Primary	986883	4,900	<5	<5	< 0.005	7.9	190	<2.5	< 0.1	0.08	0.02	0.09	16	1.1	3.61	20.7	3.7
SLIVIVVOZ-Q1	SLMW02-Q1	1/11/2023	Primary	1040740	2,100	130	<5	< 0.005	8.3	600	<12.5	< 0.1	0.02	< 0.01	0.11	18	< 0.02	0.59	19	0.7
SLMW03-Q1	SLMW03-Q1	3/05/2023	Primary	986469	9,700	9,800	<5	< 0.005	7.9	1,200	<50	< 0.1	0.21	0.03	0.03	0.11	< 0.02	0.97	1.11	1
3LIVIVVU3-Q1	SLMW03-Q1	1/11/2023	Primary	1040740	1,300	700	<5	< 0.005	8.3	1300	<12.5	< 0.1	0.01	0.01	0.12	0.24	< 0.02	< 0.2	0.2	< 0.2
SLMW04-P	SLMW04-P	8/05/2023	Primary	987308	3,800	240	<5	< 0.005	8.2	160	<1	< 0.1	< 0.01	0.03	0.13	18	0.06	< 0.2	18	< 0.2
3LIVIVVU4-F	SLMW04-P	2/11/2023	Primary	1040740	1,400	69	<5	< 0.005	8.2	480	<2.5	< 0.1	< 0.01	0.02	0.02	17	< 0.02	0.68	18	0.7
SLMW05-P	SLMW05-P	5/05/2023	Primary	986883	4,500	7.2	<5	< 0.005	8.1	240	<2.5	< 0.1	0.02	0.14	0.08	0.54	< 0.02	0.92	1.54	1
SEIVIVVOS I	SLMW05-P	1/11/2023	Primary	1040740	860	65	<5	< 0.005	8.4	830	<2.5	< 0.1	< 0.01	< 0.01	0.14	0.54	< 0.02	< 0.2	0.5	< 0.2
	SLMW05-Q1	5/05/2023	Primary	986883	6,000	31	<5	< 0.005	7.8	370	<2.5	< 0.1	0.02	0.01	0.09	1	0.22	0.61	1.9	0.7
SLMW05-Q1	SLMW05-Q1	1/11/2023	Primary	1040740	6,800	98	<5	< 0.005	8.3	1200	<2.5	< 0.1	< 0.01	< 0.01	0.07	1.4	< 0.02	0.23	1.7	0.3
	Dup-2	1/11/2023	Interlab_D	EM2319725	-	-	-	< 0.004	-	-	-	< 0.1	0.02	-	< 0.01	-	-	-	1.8	0.3
	SLMW06-Q1	3/05/2023	Primary	986469	5,600	160	<5	< 0.005	8.2	780	<1	< 0.1	0.1	0.02	< 0.01	1.1	< 0.02	< 0.2	1.1	< 0.2
SLMW06-Q1	DUP-1	3/05/2023	Interlab_D	EM2307883	6,360	542	<2	< 0.004	-	801	<2	0.2	0.16	0.01	< 0.01	1.22	< 0.01	-	1.8	0.6
	SLMW06-Q1	1/11/2023	Primary	1040740	1,400	350	<5	< 0.005	8.5	800	<12.5	< 0.1	0.02	0.01	0.06	1.2	< 0.02	<0.2	1.4	0.2
SLMW07-Q1	SLMW07-Q1	3/05/2023	Primary	986469	7,000	53	<5	< 0.005	8.3	870	<1	< 0.1	0.21	0.09	0.06	2.3	0.13	8.04	10.5	8.1
SEIVIWO7 Q1	SLMW07-Q1	1/11/2023	Primary	1040740	10,000	1100	<5	< 0.005	8.5	980	<25	< 0.1	0.09	0.07	0.05	1.9	< 0.02	< 0.2	1.9	< 0.2
SLMW08-Q1	SLMW08-Q1	4/05/2023	Primary	986841	5,900	24	<5	< 0.005	8	750	<6.5	< 0.1	0.04	0.02	0.21	0.11	< 0.02	1.69	2.01	1.9
3EWW000 Q1	DUP 2	4/05/2023	Intralab_D	986841	8,100	15	<5	< 0.005	8	740	< 6.5	< 0.1	0.06	< 0.01	0.19	0.12	< 0.02	0.81	1.13	1
SLMW09-P	SLMW09-P	4/05/2023	Primary	987102	2,100	<5	<5	0.008	8.1	350	<6.5	< 0.1	0.08	0.02	0.12	0.04	< 0.02	0.38	0.5	0.5
SLMW10-A	SLMW10-A	2/11/2023	Primary	1041094	7,800	47	<5	< 0.005	8.5	560	<2.5	< 0.1	< 0.01	< 0.01	< 0.01	0.24	< 0.02	< 0.2	0.3	< 0.2
SLMW10-B	SLMW10-B	2/11/2023	Primary	1041094	2,600	52	<5	<0.005	7	490	<2.5	< 0.1	< 0.01	< 0.01	< 0.01	0.42	0.05	<0.2	0.5	< 0.2
SLMW10-C	SLMW10-C	2/11/2023	Primary	1041094	1,500	610	<5	< 0.005	8.3	570	<12.5	< 0.1	< 0.01	< 0.01	< 0.01	10	0.2	1.2	11	1.2
SLMW11-B	SLMW11-B	2/11/2023	Primary	1041094	1,200	340	<5	<0.005	8.2	470	< 6.5	< 0.1	0.05	< 0.01	0.02	11	0.49	0.98	12	1
SLMW11-C	SLMW11-C	2/11/2023	Primary	1041094	5,000	110	<5	< 0.005	8.5	810	<2.5	< 0.1	< 0.01	< 0.01	0.04	1.1	0.2	0.36	1.7	0.4

	1															
				Inorg	anics							Nutr	ients			
	Total Dissolved Solids	Total Suspended Solids	ВОВ	Cyanide Total	рн (Lab)	Sulphate	Suiphite as S	Sulphide	Phosphate total (as P)	Phosphorus reactive (as P)	Ammonia as N	Nitrate (as N)	Nitrite (as N)	Total Organic Nitrogen	Nitrogen (Total)	Kjeldahi Nitrogen Total
	mg/L	mg/L	mg/L	mg/L	pH_Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
LOR	10	5	2	0.004	0.1	5	0.5	0.1	0.01	0.01	0.01	0.01	0.01	0.2	0.1	0.1
EPP Water Quality 2015 - Drinking water environmental value - TDS ONLY	1200															
GMRRW 2008 Recreation Health (ADWG x10)				0.8		5,000						113	9.1			
ANZG (2018) Freshwater 95% toxicant DGVs											0.9					
ANZG (2018) Marine water 95% toxicant DGVs											0.91	0.0)5*			
ANZECC 2000 Livestock	13,000								,	_	,			,	,	
ANZECC 2000 Irrigation (LTV)					6				,					,	5	

*stressor	

Location Code	Sample ID	Date	Sample Type	Lab report																
SLMW12-A	SLMW12-A	31/10/2023	Primary	1040188	4,800	1300	<5	< 0.005	8.5	1000	<50	< 0.1	0.01	< 0.01	0.04	1.6	< 0.02	0.96	2.6	1
SLMW12-B	SLMW12-B	31/10/2023	Primary	1040188	7,300	550	<5	< 0.005	7.9	1100	<5	< 0.1	< 0.01	< 0.01	0.04	1.7	0.08	0.66	2.4	0.7
SLMW12-C	SLMW12-C	31/10/2023	Primary	1040188	8,200	240	<5	< 0.005	8.3	1300	<5	< 0.1	0.01	< 0.01	0.03	2.5	0.06	0.37	2.9	0.4
SLIVIVV 12-C	DUP-1	31/10/2023	Intralab_D	1040188	4,000	280	<5	< 0.005	7.8	1200	<5	< 0.1	< 0.01	< 0.01	0.03	2.5	0.06	0.47	3	0.5
SLMW13-A	SLMW13-A	2/11/2023	Primary	1041094	1,400	72	<5	< 0.005	8.2	520	<2.5	< 0.1	0.02	< 0.01	0.02	18	< 0.02	1.08	19	1.1
SLMW13-B	SLMW13-B	2/11/2023	Primary	1041094	4,500	84	<5	< 0.005	8.3	490	<12.5	< 0.1	0.05	< 0.01	0.03	10	0.69	< 0.2	11	< 0.2
SLMW13-C	SLMW13-C	2/11/2023	Primary	1041094	900	150	<5	< 0.005	8.1	740	<2.5	< 0.1	0.03	< 0.01	0.01	1.4	0.55	< 02	2	< 0.2
6528-2628	6528-2628	4/05/2023	Primary	986841	99,000	1,200	<5	< 0.005	7.6	7,600	< 6.5	< 0.1	0.85	0.02	0.89	< 0.02	< 0.02	1.31	2.2	2.2
6628-21445	6628-21445	8/05/2023	Primary	987308	7,400	70	8.1	< 0.005	8.2	47	<1	< 0.1	< 0.01	< 0.01	0.04	< 0.02	< 0.02	0.56	0.6	0.6
6628-23298	6628-23298	5/05/2023	Primary	986883	5,100	10	<5	< 0.005	7.6	290	<2.5	0.1	0.11	0.01	0.16	< 0.02	< 0.02	3.64	3.8	3.8
0020-23298	6628-23298	7/11/2023	Primary	1042675	4,500	130	<5	< 0.005	7.5	890	<1	< 0.1	0.07	0.04	2	0.35	< 0.02	1	3.4	3

Í																					
											Metals										
	Aluminium (filtered)	Arsenic (filtered)	Barium (filtered)	Beryllium (filtered)	Boron (filtered)	Cadmium (filtered)	Chromium (hexavalent)	Chromium (III+VI) (filtered)	Cobalt (filtered)	Copper (filtered)	Iron (filtered)	Lead (filtered)	Manganese (filtered)	Mercury (filtered)	Molybdenum (filtered)	Nickel (filtered)	Selenium (filtered)	Silver (filtered)	Tin (filtered)	Vanadium (filtered)	Zinc (filtered)
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
LOR	50	1	1	1	50	0.1	5	1	1	1	50	1	1	0.1	5	1	1	5	5	10	5
EPP Water Quality 2015 - Drinking water environmental value - TDS ONLY																					
GMRRW 2008 Recreation Health (ADWG x10)		100	20,000	600	40,000	20	500			20,000		100	5,000	10	500	200	100	1,000			
ANZG (2018) Freshwater 95% toxicant DGVs	55				370	0.2	0.4			1.4		3.4	1,900	0.6		11	11	0.05			8
ANZG (2018) Marine water 95% toxicant DGVs						5.5	4.4		1	1.3		4.4		0.4		70		1.4		100	15
ANZECC 2000 Livestock	5,000	500			5,000	10		1,000	1,000	400		100		2	150	1,000	20				20,000
ANZECC 2000 Irrigation (LTV)	5,000	100		100	500	10		100	50	200	200	2,000	200	2	10	200	20			100	2,000

Location Code	Sample ID	Date	Sample Type																					
Groundwater																								
SLMW01-P	SLMW01-P	5/05/2023	Primary	<50	1	40	<1	3,100	< 0.2	<5	2	<1	2	<50	<1	55	<0.1	-	19	12	<5	<5	-	8
SLIVIVVU1-P	SLMW01-P	1/11/2023	Primary	<50	1	40	<1	2600	< 0.2	<5	<1	<1	<1	<50	<1	9	<0.1	-	7	15	<5	<5	-	5
SLMW01-Q1	SLMW01-Q1	5/05/2023	Primary	<50	<1	30	<1	1,000	< 0.2	<5	<1	<1	2	<50	<1	140	< 0.1	-	5	6	<5	<5	-	10
3LIVIVVOT-Q1	SLMW01-Q1	1/11/2023	Primary	<50	<1	30	<1	1900	< 0.2	<5	<1	<1	<1	<50	<1	93	< 0.1	-	8	8	<5	<5	-	7
SLMW02-Q1	SLMW02-Q1	5/05/2023	Primary	<50	<1	50	<1	2,400	< 0.2	<5	2	1	2	<50	<1	77	<0.1	-	27	7	<5	<5	-	<5
3LIVIVVU2-Q1	SLMW02-Q1	1/11/2023	Primary	<50	<1	60	<1	2400	< 0.2	<5	<1	<1	<1	<50	<1	39	< 0.1	-	8	8	<5	<5	- 1	7
SLMW03-Q1	SLMW03-Q1	3/05/2023	Primary	<50	<1	20	<1	4,000	< 0.2	<5	<1	2	3	<50	<1	160	<0.1	8	18	1	<5	<5	-	8
3LIVIVVU3-Q1	SLMW03-Q1	1/11/2023	Primary	<50	<1	30	<1	3700	< 0.2	<5	<1	<1	<1	<50	<1	15	< 0.1	-	10	2	<5	<5	- 1	6
SLMW04-P	SLMW04-P	8/05/2023	Primary	<50	<1	30	<1	5,400	< 0.2	<5	36	<1	2	<50	<1	7	<0.1	-	2	30	<5	<5	-	13
SLIVIVVU4-P	SLMW04-P	2/11/2023	Primary	<50	<1	40	<1	4,400	< 0.2	<5	<1	<1	3	<50	<1	<5	<0.1	-	1	38	<5	<5	-	<5
SLMW05-P	SLMW05-P	5/05/2023	Primary	<50	<1	20	<1	2,100	< 0.2	12	8	<1	2	<50	<1	7	< 0.1	-	5	34	<5	<5	- 1	<5
3LIVIVUS-F	SLMW05-P	1/11/2023	Primary	<50	<1	30	<1	3600	< 0.2	<5	8	<1	1	<50	<1	<5	<0.1	-	1	54	<5	<5	-	8
	SLMW05-Q1	5/05/2023	Primary	<50	<1	30	<1	3,100	< 0.2	5	12	3	2	<50	<1	160	< 0.1	-	25	25	<5	<5	-	9
SLMW05-Q1	SLMW05-Q1	1/11/2023	Primary	<50	<1	30	<1	3100	< 0.2	<5	8	<1	<1	<50	<1	21	< 0.1	-	11	29	<5	<5	-	8
	Dup-2	1/11/2023	Interlab_D	-	< 1	21	< 1	3050	< 0.1	-	9	< 1	<1	-	<1	22	< 0.1	-	13	30	-	-	<10	11
	SLMW06-Q1	3/05/2023	Primary	<50	<1	<20	<1	5,600	< 0.2	<5	2	<1	2	<50	<1	35	<0.1	21	2	20	<5	<5	-	13
SLMW06-Q1	DUP-1	3/05/2023	Interlab_D	-	< 1	21	< 1	5,180	< 0.1	-	2	< 1	2	-	< 1	34	< 0.1	-	2	30	-	-	10	8
	SLMW06-Q1	1/11/2023	Primary	<50	<1	30	<1	5300	< 0.2	<5	2	<1	1	<50	<1	<5	< 0.1	-	1	21	<5	<5	-	6
SLMW07-Q1	SLMW07-Q1	3/05/2023	Primary	<50	2	30	<1	7,400	< 0.2	<5	<1	<1	3	<50	<1	14	< 0.1	28	26	70	<5	<5	-	<5
3LIVIVO7-Q1	SLMW07-Q1	1/11/2023	Primary	<50	1	40	<1	7000	< 0.2	<5	<1	<1	1	<50	<1	<5	< 0.1	-	<1	75	<5	<5	-	<5
SLMW08-Q1	SLMW08-Q1	4/05/2023	Primary	<50	<1	70	<1	1,400	< 0.2	<5	<1	1	2	<50	<1	36	< 0.1	-	31	6	<5	<5	-	6
3EIVIVV06-Q1	DUP 2	4/05/2023	Intralab_D	<50	< 1	70	< 1	1,400	< 0.2	<5	< 1	1	2	<50	<1	37	< 0.1	-	30	6	<5	<5	-	6
SLMW09-P	SLMW09-P	4/05/2023	Primary	<50	<1	160	<1	2,200	< 0.2	<5	<1	5	<1	60	<1	150	< 0.1	-	45	<1	<5	<5	-	6
SLMW10-A	SLMW10-A	2/11/2023	Primary	<50	<1	30	<1	2,900	< 0.2	<5	<1	<1	<1	<50	<1	<5	< 0.1	-	<1	2	<5	<5	-	<5
SLMW10-B	SLMW10-B	2/11/2023	Primary	<50	<1	30	<1	4,800	< 0.2	<5	<1	<1	2	<50	<1	<5	< 0.1	-	7	9	<5	<5	-	<5
SLMW10-C	SLMW10-C	2/11/2023	Primary	<50	<1	20	<1	800	< 0.2	<5	<1	<1	<1	<50	<1	52	< 0.1	-	<1	30	<5	<5	-	<5
SLMW11-B	SLMW11-B	2/11/2023	Primary	<50	<1	30	<1	4,300	< 0.2	<5	<1	<1	<1	<50	<1	10	< 0.1	-	1	37	<5	<5	-	<5
SLMW11-C	SLMW11-C	2/11/2023	Primary	<50	<1	60	<1	3,000	< 0.2	<5	<1	<1	1	<50	<1	<5	< 0.1	-	10	15	<5	<5	-	<5

														Metals										
				Aluminium (filtered)	Arsenic (filtered)	3arlum (filtered)	3eryllium (filtered)	3oron (filtered)	Cadmium (filtered)	Chromium (hexavalent)	Chromium (III+VI) (filtered)	Cobalt (filtered)	Copper (filtered)	ron (filtered)	-ead (filtered)	Manganese (filtered)	Mercury (filtered)	Molybdenum (filtered)	Nickel (filtered)	Selenium (filtered)	Silver (filtered)	rin (filtered)	Vanadium (filtered)	Zinc (filtered)
				μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
LOR				50	1	1	1	50	0.1	5	1	1	1	50	1	1	0.1	5	1	1	5	5	10	5
EPP Water Quality	2015 - Drinking wat	ter environmental	value - TDS ONLY																					į .
GMRRW 2008 Recre					100	20,000	600	40,000	20	500			20,000		100	5,000	10	500	200	100	1,000			
ANZG (2018) Freshv				55				370	0.2	0.4			1.4		3.4	1,900	0.6		11	11	0.05			8
ANZG (2018) Marin		int DGVs							5.5	4.4		1	1.3		4.4		0.4		70		1.4		100	15
ANZECC 2000 Lives				5,000	500			5,000	10		1,000	1,000	400		100		2	150	1,000	20				20,000
ANZECC 2000 Irriga	ation (LTV)			5,000	100		100	500	10		100	50	200	200	2,000	200	2	10	200	20			100	2,000
Location Code	Sample ID	Date	Sample Type																					
SLMW12-A	SLMW12-A	31/10/2023	Primary	<50	<1	30	<1	7500	< 0.2	<5	3	<1	1	<50	<1	<5	< 0.1	-	<1	58	<5	<5	-	5
SLMW12-B	SLMW12-B	31/10/2023	Primary	<50	<1	30	<1	8300	< 0.2	<5	2	<1	2	<50	<1	14	< 0.1	-	2	51	<5	<5	-	11
SLMW12-C	SLMW12-C	31/10/2023	Primary	<50	<1	20	<1	7600	< 0.2	<5	2	<1	2	<50	<1	18	< 0.1	-	25	65	<5	<5		14
	DUP-1	31/10/2023	Intralab_D	<50	<1	20	< 1	7400	< 0.2	<5	2	< 1	2	<50	< 1	18	< 0.1	-	25	65	<5	<5	-	14
SLMW13-A	SLMW13-A	2/11/2023	Primary	<50	<1	30	<1	4,500	<0.2	<5	<1	<1	2	<50	<1	10	<0.1	-	3	44	<5	<5	-	<5
SLMW13-B	SLMW13-B	2/11/2023	Primary	<50	<1	50	<1	5,000	<0.2	<5	<1	<1	<1	<50	<1	28	<0.1	-	7	93	<5	<5	-	<5
SLMW13-C	SLMW13-C	2/11/2023	Primary	<50	<1	40	<1	4,500	<0.2	<5	<1	1	4	<50	<1	130	<0.1	-	24	30	<5	<5	-	18
6528-2628	6528-2628	4/05/2023	Primary	<50	2	50	<1	11,000	<0.2	<5	<1	5	48	<50	<1	170	<0.1	-	18	<1	<5	<5	-	27
6628-21445	6628-21445	8/05/2023	Primary	<50	1	<20	<1	550	<0.2	<5	5	<1	<1	400	<1	1300	<0.1	-	<1	<1	<5	<5	-	<5
6628-23298	6628-23298	5/05/2023	Primary	<50	3	40	<1	500	<0.2	<5	16	2	<1	330	<1	420	< 0.1	-	25	<1	<5	<5	-	<5
	6628-23298	7/11/2023	Primary	<50	1	50	<1	400	< 0.2	<5	1	<1	<1	220	<1	440	< 0.1	-	5	2	<5	<5	-	6

									TRH			•		•		•	•	BTEX	•			PAH
				TRH C6-C10	TRH C6-C10 less BIEX (F1)	TRH >C10-C16	TRH >C10-C16 less Napthalene (F2)	TRH >C16-C34	TRH >C34-C40	TRH >C10-C40 (sum of fractions)	TPH >C10-C16 (SG)	TPH >C16-C34 (SG)	TPH >C34-C40 (SG)	TPH >C10 - C40 Fraction (sum) (SG)	euezueg	Toluene	Ethylbenzene	(o) Aylene	Xylene (m & p)	Xylene Total	Total BTEX	Naphthalene
				μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
LOR				20	20	50	50	100	100	100	50	100	100	100	1	1	1	1	2	2	1	5
EPP Water Quality 2	2015 - Drinking wat	ter environmental v	value - TDS ONLY																			
GMRRW 2008 Recre	eation Health (ADV	VG x10)													10	8,000	3,000			6,000		
ANZG (2018) Freshw	vater 95% toxicant	DGVs													950			350				16
ANZG (2018) Marine		int DGVs													700							70
ANZECC 2000 Livest	tock																					
ANZECC 2000 Irrigat	tion (LTV)																					
Location Code	Sample ID	Date	Sample Type																			
Groundwater					•																	
SLMW01-P	SLMW01-P	5/05/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SERVIVOTT	SLMW01-P	1/11/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SLMW01-Q1	SLMW01-Q1	5/05/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SEMWOT Q1	SLMW01-Q1	1/11/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SLMW02-Q1	SLMW02-Q1	5/05/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SEIVIVVOZ Q I	SLMW02-Q1	1/11/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SLMW03-Q1	SLMW03-Q1	3/05/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
3LIVIVV03-Q1	SLMW03-Q1	1/11/2023	Primary	<20	<20	<50	<50	200	<100	200	<50	<100	<100	<100	<1	<1	<1	<1	<2	<3	-	<10
SLMW04-P	SLMW04-P	8/05/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SLIVIVVO4-P	SLMW04-P	2/11/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SLMW05-P	SLMW05-P	5/05/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SLIVIVVOS-F	SLMW05-P	1/11/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
	SLMW05-Q1	5/05/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SLMW05-Q1	SLMW05-Q1	1/11/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
	Dup-2	1/11/2023	Interlab_D	<20	<20	< 100	< 100	< 100	< 100	< 100	-	-	-	-	< 1	<2	<2	<2	<2	<2	< 1	<5
	SLMW06-Q1	3/05/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SLMW06-Q1	DUP-1	3/05/2023	Interlab_D	<20	<20	< 100	< 100	< 100	< 100	< 100	-	-	-	-	<1	<2	<2	<2	<2	<2	< 1	<5
	SLMW06-Q1	1/11/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
CLA MAJOZ OZ	SLMW07-Q1	3/05/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SLMW07-Q1	SLMW07-Q1	1/11/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
CLAMAZOO OA	SLMW08-Q1	4/05/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SLMW08-Q1	DUP 2	4/05/2023	Intralab_D	<20	<20	<50	<50	< 100	< 100	< 100	-	-	-	-	< 1	< 1	< 1	< 1	<2	<3	-	<10
SLMW09-P	SLMW09-P	4/05/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SLMW10-A	SLMW10-A	2/11/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SLMW10-B	SLMW10-B	2/11/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SLMW10-C	SLMW10-C	2/11/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SLMW11-B	SLMW11-B	2/11/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SLMW11-C	SLMW11-C	2/11/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10

					•				TRH	•				•				BTEX		•		PAH
				TRH C6-C10	TRH C6-C101ess BIEX (F1)	TRH >C10-C16	TRH >C10-C16 less Napthalene (F2)	TRH >C16-C34	TRH >C34-C40	TRH >C10-C40 (sum of fractions)	TPH >C10-C16 (SG)	TPH >C16-C34 (SG)	TPH >C34-C40 (SG)	TPH >C10 - C40 Fraction (sum) (SG)	Benzene	Toluene	Ethylbenzene	(o) aualíx	Xylene (m & p)	Xylene Total	Total BTEX	Naphthalene
				μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
LOR				20	20	50	50	100	100	100	50	100	100	100	1	1	1	1	2	2	1	5
EPP Water Quality:	2015 - Drinking wat	er environmental v	value - TDS ONLY																			
GMRRW 2008 Recre	eation Health (ADV	VG x10)													10	8,000	3,000			6,000		
ANZG (2018) Freshv	vater 95% toxicant	DGVs													950			350				16
ANZG (2018) Marine	e water 95% toxica	nt DGVs													700							70
ANZECC 2000 Lives	tock																					
ANZECC 2000 Irriga	ntion (LTV)																					
Location Code	Sample ID	Date	Sample Type																			
SLMW12-A	SLMW12-A	31/10/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SLMW12-B	SLMW12-B	31/10/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SLMW12-C	SLMW12-C	31/10/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
	DUP-1	31/10/2023	Intralab_D	<20	<20	<50	<50	< 100	< 100	< 100	-	-	-	-	<1	< 1	<1	< 1	<2	<3	-	<10
SLMW13-A	SLMW13-A	2/11/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SLMW13-B	SLMW13-B	2/11/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
SLMW13-C	SLMW13-C	2/11/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
6528-2628	6528-2628	4/05/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
6628-21445	6628-21445	8/05/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
6628-23298	6628-23298	5/05/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
0020-23270	6628-23298	7/11/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	<10	< 0.2

													On	ganochlori	ine Pestici	des									
													0.												
				4,4-DDD	4,4-DDE	4,4-DDT	001+00E+000	а-внС	Энв-а	d-ВНС	g-BHC (Lindane)	Aldrin	Dieldrin	Aldrin + Dieldrin	chlordane	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	Toxaphene
				μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L
LOR				0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.005
EPP Water Quality	y 2015 - Drinking wat	er environmental	value - TDS ONLY																						
GMRRW 2008 Recr	reation Health (ADV	VG x10)				90					100			3								3		3,000	
ANZG (2018) Fresh	water 95% toxicant	DGVs				0.01					0.2				0.08				0.02			0.09			0.0002
	ne water 95% toxica																		0.008						
ANZECC 2000 Live																									
ANZECC 2000 Irriga																									
, 1.12200 2000 lings	junoii (El V)																								
Location Code	Sample ID	Date	Sample Type																						
Groundwater	эаттріе то	Date	Jampie Type																						
Groundwater	SLMW01-P	5/05/2023	Primary	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.005
SLMW01-P	SLMW01-P	1/11/2023	Primary	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.005
SLMW01-Q1	SLMW01-Q1	5/05/2023	Primary	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.005
<u> </u>	SLMW01-Q1	1/11/2023	Primary	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.005
SLMW02-Q1	SLMW02-Q1	5/05/2023	Primary	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.005
<u> </u>	SLMW02-Q1	1/11/2023	Primary	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.005
SLMW03-Q1	SLMW03-Q1	3/05/2023	Primary	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.005
<u> </u>	SLMW03-Q1	1/11/2023	Primary	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.005
SLMW04-P	SLMW04-P	8/05/2023	Primary	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.005
<u> </u>	SLMW04-P	2/11/2023	Primary	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.005
SLMW05-P	SLMW05-P	5/05/2023	Primary	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.005
	SLMW05-P	1/11/2023	Primary	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.005
	SLMW05-Q1	5/05/2023	Primary	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.005
SLMW05-Q1	SLMW05-Q1	1/11/2023	Primary	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.005
	Dup-2	1/11/2023	Interlab_D	<2	<2	<4	<4	<2	<2	<2	<2	<2	<2	<4	-	<2	<2	<2	<2	-	-	<2	<2	-	-
	SLMW06-Q1	3/05/2023	Primary	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<2	< 0.2	< 0.2	< 0.2	<0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.005
SLMW06-Q1	DUP-1	3/05/2023	Interlab_D	<2	<2	<4	<4	<2	<2	<2	<2	<2	<2	<4	-	<2	<2	<2	<2	-	-	<2	<2	-	-
	SLMW06-Q1	1/11/2023	Primary	< 0.2	< 0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	< 0.2	< 0.2	< 0.2	<0.2	<2	<0.2	<0.2	< 0.2	<0.2	<0.2	< 0.2	< 0.2	< 0.2	<0.2	<0.005
SLMW07-Q1	SLMW07-Q1	3/05/2023	Primary	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	<2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.005
SLIVIVO7-Q1	SLMW07-Q1	1/11/2023	Primary	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	<2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.005
SLMW08-Q1	SLMW08-Q1	4/05/2023	Primary	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	<2	< 0.2	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.005
SLIVIVVU8-Q I	DUP 2	4/05/2023	Intralab_D	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.005
SLMW09-P	SLMW09-P	4/05/2023	Primary	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	<2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.005
SLMW10-A	SLMW10-A	2/11/2023	Primary	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.005
SLMW10-B	SLMW10-B	2/11/2023	Primary	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.005
SLMW10-C	SLMW10-C	2/11/2023	Primary	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.005
SLMW11-B	SLMW11-B	2/11/2023	Primary	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.005
SLMW11-C	SLMW11-C	2/11/2023	Primary	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.005

													Or	ganochlor	rine Pestici	des									
				4-DDD	-DDE	4-DDT	DT+DDE+DDD	BHC	BHC	BHC	BHC (Lindane)	Aldrin	eldrin	drin + Dieldrin	hlordane	rdosulfan I	dosulfan II	dosulfan sulphate	drin	drin aldehyde	drin ketone	ptachlor	aptachlor epoxide	ethoxychlor	xaphene
				4,	4	4,	□	φ	<u>.</u>	ф-		_	Ö	- Ž	U	Ē	<u> </u>	ᇤ	<u> </u>	Eh	<u> </u>	Ψ	Ĭ	Ž	<u>P</u>
LOR				μg/L 0.2	μg/L 0.2	μg/L 0.2	μg/L 0.2	μg/L 0.2	μg/L 0.2	μg/L 0.2	μg/L 0.2	μg/L 0.2	μg/L 0.2	μg/L 0.2	μg/L 2	μg/L 0.2	μg/L 0.2	μg/L 0.2	μg/L 0.2	μg/L 0.2	μg/L 0.2	μg/L 0.2	μg/L 0.2	μg/L 0.2	mg/L 0.005
EPP Water Quality	2015 Drinking wat	tor onvironmental	VIIAO 20T ouley	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.005
	eation Health (ADV		value - 1D3 ONE1			90					100			3								3		3,000	
	water 95% toxicant					0.01					0.2				0.08				0.02			0.09			0.0002
ANZG (2018) Marin	e water 95% toxica	ant DGVs																	0.008						
ANZECC 2000 Lives	stock																								
ANZECC 2000 Irriga	ation (LTV)																								
Location Code	Sample ID	Date	Sample Type																						
SLMW12-A	SLMW12-A	31/10/2023	Primary	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	< 0.005
SLMW12-B	SLMW12-B	31/10/2023	Primary	< 0.2	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	<2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.005
SLMW12-C	SLMW12-C	31/10/2023	Primary	< 0.2	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	<0.2	< 0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.005
	DUP-1	31/10/2023	Intralab_D	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.005
SLMW13-A	SLMW13-A	2/11/2023	Primary	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.005
SLMW13-B	SLMW13-B	2/11/2023	Primary	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.005
SLMW13-C	SLMW13-C	2/11/2023	Primary	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.005
6528-2628	6528-2628	4/05/2023	Primary	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.005
6628-21445	6628-21445 6628-23298	8/05/2023 5/05/2023	Primary Primary	<0.2	<0.2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2 <2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.005 <0.005
6628-23298	6628-23298	7/11/2023	Primary Primary	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.20	

				Phenols					ı	Halogenat	ed Phenol	S		Halogen
	3/4-Methylphenol (m/p-cresol)	2,4-dimethylphenol	2-methylphenol	2-nitrophenol	4-chloro-3-methylphenol	Total Phenois	Phenolics Total	2,4,5-trichlorophenol	2,4,6-trichlorophenol	2,4-dichlorophenol	2,6-dichlorophenol	2-chlorophenol	Pentachlorophenol	Hexachlorobenzene 5
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
LOR	2	1	1	1	1	1	50	1	1	1	1	1	2	0.2
EPP Water Quality 2015 - Drinking water environmental value - TDS ONLY														
GMRRW 2008 Recreation Health (ADWG x10)									200	2,000		3,000	100	
ANZG (2018) Freshwater 95% toxicant DGVs						320			20	160		490	10	
ANZG (2018) Marine water 95% toxicant DGVs						400							22	
ANZECC 2000 Livestock														
ANZECC 2000 Irrigation (LTV)														

Location Code	Sample ID	Date	Sample Type														
Groundwater																	
SLMW01-P	SLMW01-P	5/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLIVIVVO 1-F	SLMW01-P	1/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLMW01-Q1	SLMW01-Q1	5/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SERVIVOT QT	SLMW01-Q1	1/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLMW02-Q1	SLMW02-Q1	5/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
3EIVIVVOZ-Q I	SLMW02-Q1	1/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLMW03-Q1	SLMW03-Q1	3/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
3EIVIVV03-Q1	SLMW03-Q1	1/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLMW04-P	SLMW04-P	8/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
3EIVIVVU4-F	SLMW04-P	2/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLMW05-P	SLMW05-P	5/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
3LIVIVV03-F	SLMW05-P	1/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
	SLMW05-Q1	5/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLMW05-Q1	SLMW05-Q1	1/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
	Dup-2	1/11/2023	Interlab_D	<2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	<2.0	-
	SLMW06-Q1	3/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLMW06-Q1	DUP-1	3/05/2023	Interlab_D	<2.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	-	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	<2.0	-
	SLMW06-Q1	1/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLMW07-Q1	SLMW07-Q1	3/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLIVIVO7-Q1	SLMW07-Q1	1/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLMW08-Q1	SLMW08-Q1	4/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
3LIVIVVUO-Q1	DUP 2	4/05/2023	Intralab_D	-	-	-	-	-	-	<500	-	-	-	-	-	-	< 0.2
SLMW09-P	SLMW09-P	4/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLMW10-A	SLMW10-A	2/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLMW10-B	SLMW10-B	2/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLMW10-C	SLMW10-C	2/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLMW11-B	SLMW11-B	2/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLMW11-C	SLMW11-C	2/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2

																	Halogen
							Phenols	1					Halogenat	ed Phenol	S		atod
				3/4-Methylphenol (m/p-cresol)	2,4-dimethylphenol	2-methylphenol	2-nitrophenol	4-chloro-3-methylphenol	Total Phenols	Phenolics Total	2,4,5-trichlorophenol	2,4,6-trichlorophenol	2,4-dichlorophenol	2,6-dichlorophenol	2-chlorophenol	Pentachlorophenol	Hexachlorobenzene
				μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
LOR				2	1	1	1	1	1	50	1	1	1	1	1	2	0.2
EPP Water Quality:	2015 - Drinking wat	er environmental	value - TDS ONLY														
GMRRW 2008 Recre	eation Health (ADV	VG x10)										200	2,000		3,000	100	
ANZG (2018) Freshv	vater 95% toxicant	DGVs							320			20	160		490	10	
ANZG (2018) Marine	e water 95% toxica	nt DGVs							400							22	
ANZECC 2000 Lives	tock																
ANZECC 2000 Irriga	ition (LTV)																
Location Code	Sample ID	Date	Sample Type														
SLMW12-A	SLMW12-A	31/10/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLMW12-B	SLMW12-B	31/10/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLMW12-C	SLMW12-C	31/10/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
32111112	DUP-1	31/10/2023	Intralab_D	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLMW13-A	SLMW13-A	2/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLMW13-B	SLMW13-B	2/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
SLMW13-C	SLMW13-C	2/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
6528-2628	6528-2628	4/05/2023	Primary	-	-	-	-	-	-	<500		-	-	-	-	-	< 0.2
6628-21445	6628-21445	8/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
6628-23298	6628-23298	5/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	< 0.2
0020-23290	6628-23298	7/11/2023	Primary	-	-	-	-	-	<50	-	-	-	-	-	-	-	< 0.2

				Inor	ganics							Nutrients														Metals										
	Total Dissolved Solids	Total Suspended Solids	вор	Cyanide Total	(дар) н d	Sulphate	Sulphite as S	Sulphide	Phosphate total (as P)	Phosphorus reactive (as P)	Ammonia as N	Nitrate (as N)	Nitrite (as N)	Nitrogen (Total)	Kjeldahi Nitrogen Total	Aluminium (filtered)	Arsenic (filtered)	Barium (filtered)	Beryllium (filtered)	Boron (filtered)	Cadmium (Altered)	Chromium (hexavalent)	Chromium (III+VI) (filtered)	Cobalt (filtered)	Copper (filtered)	Iron (filtered)	Lead (filtered)	Manganese (filtered)	Mercury (filtered)	Molybdenum (filtered)	Nickel (filtered)	Selenium (filtered)	Silver (filtered)	Tin (filtered)	Vanadium (filtered)	Zinc (filtered)
	mg/L	mg/L	mg/L	mg/L	pH_Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
LOR	10	5	2	0.004	0.1	5	0.5	0.1	0.01	0.01	0.01	0.01	0.01	0.1	0.1	50	1	1	1	50	0.1	5	1	1	1	50	1	1	0.1	5	1	1	5	5	10	5
ANZG (2018) Freshwater 95% toxicant DGVs											0.9					55				370	0.2	0.4			1.4		3.4	1,900	0.6		- 11	- 11	0.05			8
ANZG (2018) Marine water 95% toxicant DGVs											0.91	0.0	05*								5.5	4.4		- 1	1.3		4.4		0.4		70		1.4		100	15

ANZG (2018) Marine water 95% loxico												0.91	0.									3.3 4.				4.4		_				1.4		100 15
													* stressor	guideline																				
Location Code Field ID	Date	Sample Type																																
Surface Water (BMT 2022)																																		
UPSTREAM																																		
	10-Mar-22	Primary		<5		8.2				<0.10	0.09	0.09	<0.01	<0.01	<1.0	<1.0	_	<10				<1	<10		<10 -	<10		<0.1		<10				- <52
		+	-	3		0.2			-								-	110	-	-	-	- 51	110	-	10		-			110				
	23-Mar-22	Primary	-			-	-	-	-	0.07	0.12	<0.02	<0.01	<0.01	<0.5	<0.5	-	-	-	-	-		-	-		-			-	-				
	4-Apr-22	Primary	-	3 .		-	-	-	-	0.19	0.04	0.06	0.01	<0.01	1	1	-	-	-	-	-			-		-	-	-	-	-	-	-		
	20-Apr-22	Primary	-	2 .	-	-	-	-	-	0.03	0.03	0.01	<0.01	<0.01	0.3	0.3	-	-	-	-	-		-	-		-	-	-	-	-	-		-	
	2-May-22	Primary	-	2 .		-	-	-	-	0.11	0.03	0.1	<0.01	<0.01	1.6	1.6	-	-	-	-	-			-		-	-	-	-	-	-	-	-	
	18-May-22	Primary	-	<1		-	-	-	-	0.08	0.01	0.12	<0.01	<0.01	0.2	0.2	-	-	-	-	-			-		-	1	-	-	-		- 1	-	
	1-Jun-22	Primary		23 -						0.19	<0.01	0.02	<0.01	<0.01	0.4	0.4		<2				<0.2	<2		<2 -	<2	+	<0.1	-	<2		-	-	- <10
			-			-	-	-	-								-		-	-	-	NO.2 .		-		_	+	V0.1	1		<u>-</u> ⊢			
	28-Jun-22	Primary	-	1 .		-	-	-	-	0.11	0.03	0.09	<0.01	<0.01	<0.1	<0.1	-	-	-	-	-		-	-		-		-	-	-				
	13-Jul-22	Primary	-	2	-	-	-	-	-	0.1	0.04	0.01	0.03	<0.01	1.7	1.7	-	-	-	-	-		-	-		-	-	-	-	-	-	-		
	27-Jul-22	Primary	-	<1	-	-	-	-	-	<0.10	0.01	0.08	< 0.01	<0.01	0.1	0.1	-	-	-	-	-		-	-		-	-	-	-	-	-		-	
	8-Aug-22	Primary	-	1 .		-	-	-	-	0.91	0.02	0.05	<0.01	<0.01	1.1	1.1	-	-	-	-	-		-	-		-	T -	-	-	-	-	-	-	
	31-Aug-22	Primary	-	<1 .						0.14	0.02	0.18	<0.01	<0.01	1.3	1.3					-						+	1	-					
		Primary		4						<0.10	0.03	0.13	<0.01	<0.01	4.2	4.2		6				1.5	<2		4 -	<2	+	<0.1	1	<2	-		-	- 13
	6-Sep-22	+	-		-	-	-	-	-								-	6	-	-	-	1.5	· Z	-	4 -	<-2	+	<0.1	-	<-Z				- 13
	28-Sep-22	Primary	-	64	-	-	-	-	-	0.27	0.06	0.14	0.15	0.03	4.4	4.2	-	-	-	-	-			-		-	-	-	-	-	-	-		
Mouth of Chapman Creek	10-Oct-22	Primary	-	2 .	-	-	-	-	-	<0.10	0.05	<0.05	0.05	<0.01	<1.0	<1.0	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	
(BMT-1)	16-Nov-22	Primary	-	28	-	-	-	-	- 1	0.31	0.13	0.15	0.13	0.01	1.8	1.7	- T	-	-	-	-	-	-	-		-	-	-	-	- 1	ı - T	T	-	
	30-Nov-22	Primary	-	<1	-	-	-	-	- 1	0.28	0.18	0.18	0.02	0.02	1.6	1.6	-	<5	-	-	-	<0.5	<5	-	<5 -	<5	T -	<0.1	-	<5				- <26
	15-Dec-22	Primary	1 -	<1		1 -	+ -	t .	1 . 1	<0.10	0.1	0.09	0.04	<0.01	<1.0	<1.0		_	_	_	_ +	_		_		1	+	+ -						
			+			1	1		+ +				<0.01		1.4						-		- 1 -	+ -		-	+	+-	+	\vdash	\vdash	\rightarrow	\vdash	
	11-Jan-23	Primary	-	<1 .		-	-	-	-	0.24	0.08	0.15		<0.01		1.4	-	-	-	-			-	-		-	+	_ -	-	-	-	-		
	9-Feb-23	Primary	-	53	-	-	-	-	-	<0.10	0.04	<0.05	<0.01	<0.01	<1.0	<1.0	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	
	21-Feb-23	Primary	-	<1	-	-	-	-	-	0.19	0.07	<0.05	<0.01	<0.01	0.9	0.9	-	-	-	-	-		-	-		-	-	-	-	-	-	-		
	15-Mar-23	Primary	-	<1	-	-	-	-	-	0.09	0.03	< 0.05	< 0.01	< 0.01	<0.5	< 0.5	-	-	-	-	-		-	-		-	-	-	-	-	-			
	29-Mar-23	Primary	-	<1		-	-	-	-	0.06	0.07	0.06	<0.01	<0.01	<0.5	<0.5	-	-		-	-			-		-	-	-	-	-	-	-	-	
	4-Apr-23	Primary	-	3 .				-		<0.05	0.03	0.1	<0.01	<0.01	<0.5	<0.5		-			-					-	+		-					
				4		-		_	-					<0.01			-	-	-	-		-		-			+	+	_	-				
	17-Apr-23	Primary	-		-	-	-	-	-	80.0	0.04	<0.02	<0.01		0.5	0.5	-	-	-	-	-		-	-			+		1	-		-		
	5-May-23	Primary	-	<1 .	-	-	-	-	-	0.08	0.04	0.16	0.01	<0.01	0.6	0.6	-	-	-	-	-		-	-		-	-	-	-	-		-		
	20-Jun-23	Primary	-		-	-	-	-	-	1.45	0.03	<0.05	0.06	<0.01	0.6	0.5	-	<5	-	-	-	<0.5	<5	-	<5 -	<5	-	<0.1	-	<5	-	-	-	- <26
	4-Jul-23	Primary	-	59	-	-	-	-	-	< 0.02	0.04	0.14	0.05	0.01	0.5	0.4	-	-	-	-	-		-	-		-	-	-	-	-	-		-	
	1-Aug-23	Primary	-	4 .		-	-	-	-	0.1	0.03	0.03	<0.01	<0.01	0.2	0.2	-	-	-	-	-			-		-	-	-	-	-	-	-	-	
	13-Sep-23	Primary	-	<1		-	-	-	-	0.34	0.02	0.1	<0.01	<0.01	0.4	0.4	-	<5	-	-	-	<0.5	<5	-	<5 -	<5	-	<0.1	-	<5	-	-	-	- <26
	10-Mar-22	Primary	-	<5		8.13	-	-		<0.10	0.09	<0.01	<0.01	<0.01	<1.0	<1.0	-	<10	-			<1	<10	-	<10 -	<10		<0.1	_	<10		- 1		- <52
	23-Mar-22	Primary	-	<1				-		0.16	0.07	<0.02	<0.01	<0.01	7.2	7.2		-			-					-	+	+	_	_			-	
	-	+	-			-	-	-	-					_			-	-	-	-	-		-	-		-	+	-						
	4-Apr-22	Primary	-	2 .	-	-	-	-	-	0.25	0.07	0.05	<0.01	<0.01	1.2	1.2	-	-	-	-	-		-	-		-	+		-	-				
	20-Apr-22	Primary	-	2 -	-	-	-	-	-	0.2	0.05	0.06	0.01	<0.01	1	1	-	-	-	-	-			-		-	-	-	-	-	-	-		
	2-May-22	Primary	-	<1	-	-	-	-	-	<0.10	0.03	0.22	<0.01	<0.01	1.5	1.5	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	
	18-May-22	Primary	-	<1	-	-	-	-	-	0.07	0.03	0.04	< 0.01	< 0.01	0.3	0.3	-	-	-	-	-		-	-		-	-	-	-	-	-		-	
	1-Jun-22	Primary	-	17		-	-	-	-	0.3	0.05	0.04	0.24	<0.01	0.7	0.5	-	<2		-	-	<0.2	<2	-	<2 -	<2	-	<0.1	-	<2	-	-	-	- <10
	28-Jun-22	Primary	-	3 -		-	-	-	-	0.16	0.04	0.09	<0.01	<0.01	0.2	0.2	-	-	-	-	-			-		-	1		-	-		- 1	-	
	13-Jul-22	Primary		<1						0.18	0.02	0.03	<0.01	<0.01	0.1	0.1											+	+	+	_			-	
		-	-		_	-	-	-	-								-	-	-	-	-		-	-		-	+			-	<u>-</u> ⊢			
	27-Jul-22	Primary	-	<1 .	-	-	-	-	-	<0.10	0.03	0.06	0.01	<0.01	8.0	8.0	-	-	-	-	-		-	-		-	-		-	-		-		
	8-Aug-22	Primary	-	<1 .	-	-	-	-	-	0.21	0.02	0.08	0.02	<0.01	1	1	-	-	-	-	-			-		-	-	-	-	-	-	-		
	31-Aug-22	Primary	-	<1	-	-	-	-	-	0.2	0.02	0.03	<0.01	<0.01	1.5	1.5	-	-	-	-	-		-	-		-		-	-	-	-		<u> </u>	-
	6-Sep-22	Primary	-	1 .	-	-	-	-	-	<0.10	0.05	0.18	0.08	<0.01	5.7	5.6	-	10	-	-	-	2.6	4	-	6 -	3	-	<0.1	-	5	ı - T		-	- <10
	28-Sep-22	Primary	-	16		-	-	-	-	0.13	0.04	<0.01	0.01	<0.01	2.7	2.7	-	-	-	-	-		-	-		-	-	-	T -	-	- 1	-	-	
Honer Changas Crost	10-Oct-22	Primary	-	<1		-	1 -	-	- 1	<0.10	0.05	<0.05	0.05	<0.01	<1.0	<1.0	_	-	-	-	-		-	-		-	T -	1 -	-	—				
Upper Chapman Creek (BMT-2)	16-Nov-22	Primary	-	51			1	-	1	0.27	0.15	0.16	0.12	0.01	1.7	1.6		-			-				 	_	+	+-	_	\vdash	\vdash	-		
, ,			-			-	-	-	-								-		-	-			-	-			+	+						
	30-Nov-22	Primary	-	<1 .	-	-	1 -	-	-	0.12	0.08	0.15	0.01	<0.01	1.1	1.1	-	<5	-	-	-	<0.5	<5	-	<5 -	<5	+	<0.1	<u> </u>	<5		-		- <26
	15-Dec-22	Primary	-	<1 .	-	-	-	-	-	0.24	0.09	0.13	0.04	0.01	1.3	1.3	-	-	-	-	-	- -	-	-		-	1 -		-	-	- 1	-		
	11-Jan-23	Primary	-	<1	-	-	-	-	-	0.07	0.08	0.15	<0.01	<0.01	<0.2	<0.2	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	
	9-Feb-23	Primary	-	57	-	-	-	-	-	<0.10	0.06	0.08	< 0.01	<0.01	<1.0	<1.0	-	-	-	-	-		-	-		-	-	-	-	-	-		-	
	21-Feb-23	Primary	-	<1	-	-	-	-	-	0.18	0.07	<0.05	<0.01	<0.01	0.7	0.7	-	-		-	-		-	-		-	-	-	-	-	-	-	-	
	15-Mar-23	Primary	-	<1		-	-	-	-	0.1	0.04	<0.05	<0.01	<0.01	0.6	0.6	-	-	-	-	-			-		-	1 -	-	-	-	-	- 1	-	
	29-Mar-23	Primary	-	<1 .				-		0.1	0.03		<0.01	<0.01	<0.5	<0.5		-			-			-		-	+	-	-			-		
		-	-		_			1																			+	+		_	-		-	
	4-Apr-23	Primary	-	<1 .	-	-	-	-	-	0.13	0.08	0.09	0.02	<0.01	<0.5	<0.5	-	-	-	-	-			+ -		-	+-	+	-		-	-		
	17-Apr-23	Primary	-	<1 .	-	-	-	-	-	0.1	0.05	0.11	0.02	<0.01	0.6	0.6	-	-	-	-	-		-	-		-	1 -		-	-		-		
	5-May-23	Primary	-	<1 .	-	-	-	-	-	0.16	0.05	0.3	<0.01	<0.01	0.3	0.3	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	
	20-Jun-23	Primary	-	<1	-	-	-			<0.05	0.03	<0.05	0.02	<0.01	<0.5	<0.5	-	<5			-	<0.5	<5	-	<5 -	<5		<0.1	-	<5	T	T	<u></u> ¯	- <26
	4-Jul-23	Primary	-	32	-	-	-	-	-	<0.02	0.06	0.2	0.04	<0.01	0.4	0.4	-	-	-	-	-		-	-		-	-	-	-	-	-	- 1	-	
	1-Aug-23	Primary	-	<1 .	-	-	-	-	-	0.1	0.04		<0.01	<0.01	0.3	0.3	-	-	-	-	-		-	-		-	-	1	-	-	- 1	- 1	- 1	
	13-Sep-23	Primary	-	5 .		-	1 -	-	- 1	0.38	0.06	0.16	0.04	<0.01	0.4	0.4	_	<5	-	-	-	<0.5	<5	-	<5 -	<5	T -	<0.1	-	<5				- <26
 		UPSTREAM Minimum		<1		8.13	+	-	 	0.03	0.00	0.01	0.01	0.01	0.1	0.1		<2				<0.2	4	+	<10 -	<2	+-	<0.1	-	<2	\vdash	\dashv	-	- <10
-			_					-									-		-	-			_	-			$+\dot{-}$		1		<u> </u>	-		
	ι	JPSTREAM Maximum	- ا	64	-	8.2	-	-	- 1	1.45	0.18	0.3	0.24	0.03	7.2	7.2	-	10	-	-	-	2.6	4	-	- 6	3	-	<0.1	-	5	-	-	- 1	- 13

231445-01 Groundwater & Surface Water Chemitable.xix 1 of 12

				Inor	ganics							Nutrients														Metals									
	Total Dissolved Solids	Total Suspended Solids	вор	Cyanide Total	рн(цаb)	Sulphate	Suphite as S	Suphide	P hosp hate total (as P)	Phosphorus reactive (as P)	Ammonia as N	Nitrate (as N)	Nitrite (as N)	Nitrogen (Total)	Kjeldahi Nitrogen Total	Aluminium (filtered)	Arsenic (filtered)	Barium (filtered)	Beryllium (filtered)	Boron (filtered)	Cadmium (filtered)	Chromium (hexavalent)	Chromium (III+VI) (filtered)	Cobalt (filtered)	Copper (filtered)	Iron (filtered)	Lead (filtered)	Manganese (filtered)	Mercury (filtered)	Molybdenum (filtered)	Nickel (filtered)	Selenium (filtered)	Silver (filtered)	Tin (Altered)	Vanadium (filtered)
	mg/L	mg/L	mg/L		pH_Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
LOR	10	5	2	0.004	0.1	5	0.5	0.1	0.01	0.01	0.01	0.01	0.01	0.1	0.1	50	1	1	1	50	0.1	5	1	1	1	50	1	1	0.1	5	1	1	5	5	10
ANZG (2018) Freshwater 95% toxicant DGVs											0.9					55				370	0.2	0.4			1.4		3.4	1,900	0.6		11	- 11	0.05		
ANZG (2018) Marine water 95% toxicant DGVs											0.91	0.0)5*								5.5	4.4		1	1.3		4.4		0.4		70		1.4		100

ANZG (2018) Freshwale													0.9					00		_	3/0		0.4		1.4	3.4	1,900 0.6	_	- 11	- 11	0.05	-	٥
ANZG (2018) Marine wa	ater 95% toxicant	DGVs											0.91	0.	05*							5.5	4.4	1	1.3	4.4	0.4		70		1.4	10	00 15
														stressor	guideline																		
Location Code	Field ID	Date	Sample Type																											-			
	TIEIG ID	Dale	Jumple Type																														
DOWNSTREAM																								_									
		10-Mar-22	Primary	-	46	-	-	9.01	-	-	- 0.27	< 0.01	0.09	0.05	<0.01	3.4	3.4	-	8	-		<0.1	- <1	-	1 -	<1	- <0.1	1	- 14	- '	-	.	- <5
		22-Mar-22	Primary	-	6	-	-	-	-	-	- 0.08	0.01	0.4	0.01	0.27	1.5	1.2	-		-		-		-		-				-	-		
												_								+		-				-		+		-			
		4-Apr-22	Primary	-	<1	-	-	-	-	-	- 0.08	<0.01		0.04	0.1	1.6	1.5	-	- '	-		-		-				—			-		
		20-Apr-22	Primary	-	<1	-	-	-	-	-	- 0.2	0.12	0.16	7.16	0.79	10.6	2.6	-	-	-		-		-		-				- '	-	-	. -
		2-May-22	Primary	-	2	-	-		-	-	- 0.24	0.07	0.15	3.11	0.22	6.2	2.9	-				-				-				-		-	
		18-May-22	Primary		<1		-				- 0.14	0.06	0.08	9.45	0.07	11.1	1.6			_		_				-		-					
				-				-	-	_												-	-								-		
		1-Jun-22	Primary	-	8	-	-	-	-	-	- 0.13	<0.01	<0.01	0.69	0.03	1.7	1	-	1 .	-		<0.1	- <1	-	3 -	2	- <0.1	1	- <1	-	-		- 6
		28-Jun-22	Primary	-	10	-	-	-	-	-	- 0.21	0.18	0.09	29.9	0.16	32.7	2.6	-	-	-		-		-		-				-	-		
		13-Jul-22	Primary	-	5	-	-				- 0.22	<0.01	0.04	31.8	0.1	34.5	2.6					-											
												_								_								$-\!\!\!\!\!-$		+			
		27-Jul-22	Primary	-	2	-	-	-	-	-	- 0.14	0.12	0.07	22.6	0.12	25	2.3	-		-		-		-		-				-	-	- -	-
		8-Aug-22	Primary	-	10	-	-	-	-	-	- 0.24	< 0.01	0.01	19.5	0.14	23.8	4.2	-	-	-		-		-		-				- '	-	-	. - '
		31-Aug-22	Primary	-	4	-	-	-	-	-	- 0.28	0.14	0.01	16.3	0.1	21.4	5	-		-		-		-		-				-	-		
					14									19.9		30.8										<1		$\overline{}$	- 7	+			
		6-Sep-22	Primary	-		-	-	-	-	-	- 0.2	<0.01			0.2		10.7	-	2 .	-		<0.1	- <1	-	8 -	<1	- <0.1		- /		-		- 14
		29-Sep-22	Primary	-	2	-	-	-	-	-	- 0.13	0.05	0.15	12.6	0.16	17.6	4.8	-	-	-		-		-		-				- '	-	-	. -
Channe	al .	10-Oct-22	Primary	-	13	-	-	-	-	-	- <0.10	< 0.01	0.03	11.4	0.12	16.5	5	-		-		-		-		-							'
(BMT-4)				1	39		-					<0.01		1.7	0.06		1.0			_		-				1		+		+			-
(=.711 4)		16-Nov-22	Primary	-	_	-		-	-	-	- 0.2					3.6	1.8			-				-		-	 	_		+	-		
		30-Nov-22	Primary	-	<1	-	-	-	-	-	- 0.31	< 0.01	0.18	15.8	0.36	24.9	8.7	-	2	-		<0.1	- <1	-	5 -	<1	- <0.1	1	- 8	-	-		20
		15-Dec-22	Primary	-	<1	-	-	-	-	-	- <0.10	0.01	0.13	14	0.35	17.4	3	-	-	-		-		-		-				-	-		
		11-Jan-23	Primary	-	48		-				- 0.3	0.02		2.92	1.96	10.7	5.8					_				-		-		+			
			-					-	-											-								_			-		
		9-Feb-23	Primary	-	39	-	-	-	-	-	- 0.27	<0.01	0.11	4.13	0.78	6.7	1.8	-	-	-		-		-		-				-	-		
		21-Feb-23	Primary	-	36	-	-	-	-	-	- 1.19	< 0.01	< 0.01	0.33	1.55	11.6	9.7	-		-		-		-		-				- '	-		
		15-Mar-23	Primary	-	18		-				- 0.4	0.24		0.62	0.96	4.3	2.7			_		_											
						-		-	-	-		_								-		-		-		-		_			-		
		29-Mar-23	Primary	-	10	-	-	-	-	-	- 0.64	0.47	0.11	4.21	0.45	8.7	4	-		-		-		-		-				-	-		
		4-Apr-23	Primary	-	20	-	-	-	-	-	- 0.65	0.31	0.02	5.1	0.46	10.2	4.6	-	-	-		-		-		-				-	-		. - '
		17-Apr-23	Primary	-	<1		-			-	- 0.79	0.61	0.06	6.09	0.27	8.3	1.9					-										-	
				-	_			-	-	-										-		-		-		-				+	-		
		5-May-23	Primary	-	12	-	-	-	-	-	- 0.8	0.76	0.09	14.7	0.21	16.3	1.4			-		-		-		-				-	-		-
		20-Jun-23	Primary	-	5	-	-	-	-	-	- 0.34	0.39	0.05	9.33	0.03	10.6	1.2	-	2	-		<0.1	- <1	-	4 -	<1	- <0.	1	- 3	- '	-	-	- 7
		4-Jul-23	Primary		24	-	-		-	-	- 0.07	0.14	0.17	16.3	0.31	19.1	2.5	-				-				-						-	_ _
																				+						+		_		-			
		1-Aug-23	Primary	-	22		-	-	-	-	- 0.25			16.2	0.06	18.7	2.4			-		-		-		-					-		
		13-Sep-23	Primary	-	11	-	-	-	-	-	- 0.16	0.1	0.12	13.9	0.16	15.9	1.8	-	2	-		<0.1	- <1	-	5 -	<1	- <0.1	í.	- 6	-	-	-	- <5
		10-Mar-22	Primary	-	113	-	-	9.13	-	-	- 0.52	0.08	0.07	<0.01	< 0.01	4.5	4.5	-	9 .	-		<0.1	- 2	-	2 -	<1	- <0.1	1	- 17	- '	-	-	- 6
		23-Mar-22	Primary	-	34		-			-	- 0.45	0.49		<0.01	<0.01	3.7	3.7					-				-		_		+			
							-	-	-	-		_			_			-		-		-						—			-		
		4-Apr-22	Primary	-	20	-	-	-	-	-	- 0.55	0.12	0.16	<0.01	<0.01	4.8	4.8	-	-	-		-		-		-				-	-		
		20-Apr-22	Primary	-	11	-	-	-	-	-	- 0.87	0.54	2.8	0.24	0.29	7.5	7	-		-		-		-		-				- '	-		. - '
		2-May-22	Primary		17						- 0.55	0.36	0.13	0.42	0.26	6.5	5.8															-	
				-			-	-	-	-								-		-		-		-		-		-		+	-		
		18-May-22	Primary	-	26	-	-	-	-	-	- 1.43	0.9	1.8	0.45	0.25	6	5.3	-		-		-		-		-				-	-	- -	-
		1-Jun-22	Primary	-	32	-	-	-	-	-	- 0.6	0.48	0.03	2.47	0.25	5.1	2.4	-	3 -	-		<0.1	- 2	-	4 -	5	- <0.1	1	- <1	- '	-		- 8
		28-Jun-22	Primary	-	13	-			-	-	- 0.4	0.34	0.9	24.1	0.47	27.2	2.6	-								-						-	_ _
					_							_								_								-	-+-	+			-+
		13-Jul-22	Primary	-	5	-	-	-	-	-	- 0.39	0.4	0.47	26.4	0.36	28.4	1.6	-		-		-		-		-				-	-		-
		27-Jul-22	Primary	-	<1	-	-	-	-	-	- 0.5	0.48	0.5	9.69	0.41	11.6	1.5	-	-	-		-		-		-				-	-	.	. - '
		8-Aug-22	Primary	-	5	-	-	-	-	-	- 0.48	0.39	0.73	14.3	0.44	19.5	4.8	-		-		-		-		-		\neg		-	-		
		31-Aug-22	Primary	-	10		-		l	-	- 0.78			13.1	0.52	19.4	5.8					-		1		-		_		 			
							-	-	-	-										-							+ - + -				-		
		6-Sep-22	Primary	-	8	-	-	-	-	-	- 0.71	0.41	0.88	12.4	0.45	21.2	8.4	-	3 .	-		<0.1	- <1	-	- 6	<1	- <0.1		- 12	1 -	-	- -	- 12
		29-Sep-22	Primary	-	10	-	-	-	-	-	- 0.38	0.38	0.9	10.7	0.56	16.6	5.3	-		- T		-		-		-			-	-	-	- 1	
		10-Oct-22	Primary	-	<1		-			-	- 1.17			4.95	0.67	9.7	4.1					-				-		-		_			_
Thompson C (BMT-5)	reek			+		-		-	-											-		-		-		+		_			-		
(BM1-3)		16-Nov-22	Primary	-	11	-	-	-	-	-	- 0.72	0.5	0.03	2.04	0.48	5.6	3.1	-		-		-		-		-				-	-		
		30-Nov-22	Primary	-	43	-	-	-	-	-	- 2.22	0.06	0.1	3.15	0.56	10.6	6.9	-	5	-		<0.1	- <1	-	5 -	<1	- <0.1	1	- 13		-	-	- 13
		15-Dec-22	Primary		3						- 0.39	0.01	0.81	1.45	0.61	7.3	5.2											_					
				-	-	-	-	-	-	-								-	-	-		-		-		-		-			-		
		11-Jan-23	Primary	-	100	-	-	-	-	-	- 2.03	0.23	0.08	<0.01	<0.01	12.2	12.2	-		-		-		-		-				-	-		
		9-Feb-23	Primary	-	27	-	-	-	-	-	- 0.75	0.38	0.03	<0.01	<0.01	1.6	1.6	-	- -	-		-		-		-	- -			-	-	-	. - '
		21-Feb-23	Primary	_	61		_	-	_	_	- 1.77	0.97		<0.01	<0.01	7.4	7.4	_	_	.		_				-		\top			_		
1				+ -			-		<u> </u>						_					-+				1		+ -	 	+		+	-		
1		15-Mar-23	Primary	-	14	-	-	-	-	-	- 0.81	0.5		<0.01	<0.01	3.6	3.6	-	-	-		-		-		-		\perp		-	-		
		29-Mar-23	Primary	-	35	-	-	-	-	-	- 0.78	0.23	<0.01	<0.01	<0.01	4.5	4.5	-		-		-		-		-				-	-		
		4-Apr-23	Primary	-	49	-	-	-	-	-	- 0.66			0.33	0.14	5.2	4.7	-		-		-		-		-		\top		-	-		
1				_					 											-+				1			 	_					
1		17-Apr-23	Primary	-	25	-	-	-	-	-	- 0.87	0.26		1.73		6.5	4.5	-		-		-		-		-		\bot		-	-		
1		5-May-23	Primary	-	71	-	-	-	-	-	- 0.91	< 0.01	0.06	5.08	0.49	12.1	6.5	-		-		-		-		-				-	-	- -	
		20-Jun-23	Primary	-	17	-	-	-	-	-	- 0.64	0.59	0.27	15.3	0.32	17.6	2	-	3 .	-		<0.1	- <1	-	4 -	<1	- <0.1	1	- 8	T -	_		- 19
									-											-				1			10.	_		+			
		4-Jul-23	Primary	-	33	-	-	-	-	-	- 0.49			17.5		20.5	2.7	-		-		-		-		-		+			-		
		1-Aug-23	Primary	-	52	-	-	-	-	-	- 0.39	0.09	0.04	17.5	0.41	20.5	2.6	-	-	-		-		-		-				-	-		
		13-Sep-23	Primary	-	15	-	-	-	-	- 1	- 0.38	0.29	0.44	6.88	0.47	9.6	2.3	-	3 -	-		<0.1	- <1	-	5 -	<1	- <0.1	1	- 10	-	_	-	- 13
1			,	1			1	1			2.50		1 11 11 11							1				1		1	1 -0			1	1	. 1	

Part																																								
Parish								Inorg	ganics						No	utrients														Metals										
Part					Dissolved Solids	Suspended Solids		ide Total	ab)	ate	ite as S	ide	_	ohorus reactive (as P)	8			gen (Total)	ahi Nitrogen Total	inium (filtered)	aic (filtered)	m (filtered)	ium (filtered)	te re	nium (filtered)	nium (hexavalent)	mium (III+VI) (filtered)	all (filtered)	oer (filtered)			ganese (fillered)	ury (filtered)	odenum (filtered)	A (filtered)	ium (fillered)	(fillered)	ltered)	dium (filtered)	inc (filtered)
Fig.					Total	Total	BOD	Cyan	л) н d	Sulph	Sulph	Sulph	P hosp	P hosp	Amm	Nitrat	Nitrite et	Nifrog	Kjeld	Alum	Arsen	Bariu	Beryll	Boror	Cadn	Chro	Chror	Cobo	Copp	Iron (Lead	Mang	Merc	Molyt	Nicke	Selen	Silver	Tin (fil	Vana	Zinc (
Part															_																									μg/L
Parish		water 95% toxicant DO	iGV:		10	5	2	0.004	0.1	5	0.5	0.1	0.01	0.01		0.01	0.01	0.1	0.1		1	1	1				1	1		50				5				5	10	5 8
Section Code New Section Code New Section Code Section																0.0)5*									_		1											100	15
Mary	,													·	•	stressor (guideline												·	·										
May	Location Code	Field ID				-6			0.04				-0.10	0.00	0.12	-0.01	-0.01	-1.0	-1.0		-10				-10		-10		-10		-10		-0.1		-10					450
Section Process Proc					-		-	-	8.04	-	-									-	<10	-	-	-	<1.0	-	-	-	<10	-	<10	-	<0.1	-	<10	-	-		-	<52
Second content					-		-		-	-	-									-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Section Sect			20-Apr-22	Primary	-	3	-	-	-	-	-	-	0.49	0.02				0.7	0.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Section Sect					-		-	-	-	-	-									-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
State Stat				-	-	_	-	-	-	-	-									-	-	-	-	-	-02	-	-	-	-	-		-	-01	-	-	-	-	-		<10
1.3.1.22 Minory 1 2 3 3 4 5 5 5 5 5 5 5 5 5				_	-		-	-	-	-	-									-	-		-	-		-		-		-	-	-		-	-	-	-	-	-	- 10
A-1				-			-	-	-	-	-									-	-		-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-
Section Sect			27-Jul-22	Primary	-	<1	-	-	-	-	-		<0.10	0.02	0.06	<0.01	<0.01	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			8-Aug-22	Primary	-	4	-	-	-	-	-	-	0.56	0.02	0.1	0.01	<0.01	0.2	0.2	-	-	-	-		-	-	-	-	-	-	-		-	-			-	-	-	-
Section Sec					-	+	-	-	-	-	-		_							-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Official Purple 10-0-09					-	_	-	-	-	-	-									-	7	-	-	-	1.7	-	<2	-	3	-	<2	-	<0.1	-	2	-	-	-	-	<10
Profestional Professional Pro	0,50				-		-	-	-	-	-									-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-		-
34-base 14-base 14-b					-				-	-	-										-		-	-			-	-	-			-		-	-	-		-		
1 1 1 2 2 2 2 2 2 2			30-Nov-22	Primary	-	+	-	-	-	-	-		-							-	<5	-	-		<0.5	-	<5	-	<5	-	<5		<0.1	-	<5	-	-	- 1	-	<26
Price Pric			15-Dec-22	Primary	-	<1	-	-	-	-	-	-	0.14	0.11	0.09	0.17	0.03	1.6	1.4		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-
				Primary	-		-	-	-	-	-									-	-	-	-	-	-	-	-	-	-	-	-		-	-			-	-	-	-
15May 23 Primary 1.0 1.1 1					-		-	-	-	-	-		_							-	-	-	-	-	-	-		-	-		-	-	-	-	-	-		-		-
24May 23 Pimory 1 1 1 1 1 1 1 1 1					-	_	-	+	-	-	-		_							-	-	-	-	-	-	-		-	-		-	-	-	-	-	-		-		-
Hand the proper					-		-	-	-	-	-									-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-			-
Find					-		-	-	-	-	-		_							-	-		-		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
Synce Meter (IMN-CPUSH) Synce Synce Meter (IMN-CPUSH) Synce Me				Primary	-		-	-	-	-	-					0.02				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
4.4\(\)23			5-May-23	Primary	-	<1	-	-	-	-	-	-	0.17	0.09	0.22	0.14	0.02	0.8	0.6	-	-	-	-		-	-	-	-	-	-	-		-	-			-	-	-	-
1.4ug-23					-		-	-	-	-	-					-				-	<5	-	-	-	<0.5	-		-	<5	-	<5	-	<0.1	-		-	-	-	-	<26
13-Sep-23 Primary - - - - - - - - -					-		-	-	-	-	-									-		-	-	-	-	-		-	-		-	-	-	-		-				-
Primary 1					-		-	-	-	-	-									-	_	-	-	-	<0.5	-		-	- <5		<.5	-	<0.1	-		-		\pm		<26
Inshore Bolivar Outlet 4-Jul-23 Primary - 122 - - - - - - - - -				_	-		-	-	-	-	-					-				-		-	-	-		-		-				-		-		-	-			<26
Suffice Welfer (LBWc 2023) Frimary 1,000	Inshore Bo	olivar Outlet	4-Jul-23	Primary	-	122	-	-	-	-	-	-	0.04	0.06	0.15	0.09	0.01	0.4	0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface Water (LBWc-2023) SW01	(BM	AT-7)	1-Aug-23	Primary	-	_	-	-	-	-	-		_						0.5	-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-		-
SW01 SW01 7/11/2023 Primary 480 35 <5 0.01 9.1 1.200 - 0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02			13-Sep-23	Primary	-	43	-	-	-	-	-	-	0.65	0.48	0.4	0.17	0.1	1.9	1.6	-	<5	-	-	-	<0.5	-	<5	-	9	-	<5	-	<0.1	-	<5	-	-			<26
SW02 5W02 7/11/2023 Primary 3,70 44 <5 <5,0005 8.1 740 - <0.1 4.2 4.6 0.39 70 0.07 72 2.4 510 6 40 <1 5,500 <0.2 <5 1 <1 4 550 <1 30 <0.1 - 4 10 <5 <5 - SW03 SW03 7/11/2023 Primary 4,300 45 7.7 <0.005 8.6 450 - <0.1 1.7 1.7 <0.01 0.02 <0.02 <5 70 9 90 <1 2,400 <0.2 <5 <5 2 <1 170 <1 540 0.3 - 34 <1 <5 <5 <- <- <- <- <- <-		1	7/11/2022	Reiman	400	25	-6	0.01	0.1	1 200		-0.1	<0.01	<0.01	0.4	0.14	<0.02	1.1	0.0	2/0	1 2	FO.	-1	4.400	-0.2		-1	1	2	210	-1	,	-0.1		2	16				
SW03 SW03 7/11/2023 Primary 4.30 45 7.7 <0.005 8.6 450 - <0.1 1.7 1.7 <0.01 0.05 0.05 8.6 450 - <0.1 1.7 1.7 <0.01 0.05 0.05 8.6 450 - <0.1 1.7 1.7 <0.01 0.05 0.05 8.6 450 - <0.1 1.7 1.7 <0.01 0.05 0.05 9.3 1.00 - <0.01 0.05 0.05 9.3 1.00 - <0.01 0.05 0.05 9.3 1.00 - <0.01 0.05 0.05 9.3 1.00 - <0.01 0.05 0.05 9.3 1.00 - <0.01 0.05 0.05 9.3 1.00 - <0.01 0.05 0.05 9.3 1.00 - <0.01 0.05 0.05 0.05 9.3 1.00 - <0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05						_						_		_			0.07				6						1	<1	4					-						<5 46
SW04 SW04 7/11/2023 Primary 16,000 170 16 0.006 8.9 2.30 - <0.1 0.69 0.42 0.31 <0.02 <0.02 4.8 4.8 1.80 18 130 <1 8,600 <0.2 <5 3 2 2 1,600 <1 180 <0.1 - 19 3 <5 <5 - <5 SW05 SW05 7/11/2023 Primary 3.200 100 <5 0.005 9.3 1.300 - <0.1 0.96 0.78 0.65 0.48 0.27 4.4 3.6 350 6 - <1 8,600 <0.2 <5 <1 2 3 30 <1 23 <0.1 - 8 7 <5 <5 - <5 SW05 SW05 7/11/2023 Primary 7.500 150 <5 0.078 9.1 1.300 - <0.1 0.72 0.29 0.38 17 0.71 21 3.2 70 5 40 <1 6,100 <0.2 <5 <1 2 6 80 <1 19 <0.1 - 6 11 <5 <5 - <1																	<0.02				9					-	<1	2	<1					-			-		-	<5
SW06 SW06 7/11/2023 Primory 7.500 150 <5 0.078 9.1 1.300 - <0.1 0.72 0.29 0.38 17 0.71 21 3.2 70 5 40 <1 6.100 <0.2 <5 <1 2 6 80 <1 19 <0.1 - 6 11 <5 <5 -					+	_						_			_													2												<5
				Primary																	_	-						_	2					-					- 1	<5
SWD/ SWD/ // /2023 Primary 8,100 140 <5 0,006 9,1 1,200 - <0,1 0.95 0.67 0.71 3.7 0.53 6.8 2.6 3.20 4.0 <5 1 2 4.0 <5 1 2 4.0 310 <1 3.4 <0.1 - 7 9 <5 <5 -					+	_															_													-						11
	SW07	SW07		Primary	8,100		<5											6.8	2.6	320	4	40	<1		<0.2	<5	1	2	6		<1	34	<0.1			9	<5	<5		7
3008	SW08				+	_							_								_							2						-				_	-	<5
	SW09				+	_							_								_							1	1					-					-	<5
							<5	<0.005	8.04	450	-	<0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<50	1	30	<1	2400	<0.2	0	1	<1	<1	50	<1	6	<0.1	-	2	<1	<5	<5	-	<5
DOWNSTREAM Maximum 37000 540 16 0.078 9.3 4600 - <0.1 4.2 4.6 2.8 70 1.96 72 12.2 1800 18 130 <1 12000 1.7 0 3 2 9 1600 5 540 0.3 - 34 15 <5 <5 - <- > 34 15 <5 <5 - <- > <- > <- > <- > <- > <- >			DOW	/NSTREAM Maximum	a 37000	540	16	0.078	9.3	4600	-	<0.1	4.2	4.6	2.8	70	1.96	72	12.2	1800	18	130	<1	12000	1.7	0	3	2	9	1600	5	540	0.3	-	34	15	<5	<5	-	46

231445-01 Groundwater & Surface Water Chemtoble sits
3 of 12

				Inorg	ganics							Nutrients														Metals										
	Total Dissolved Solids	Total Suspended Solids	вор	Cyanide Total	рн((сар)	Sulphate	Sulphite as S	Sulphide	P hosp hate total (as P)	Phosphorus reactive (as P)	Ammonia as N	Nitrate (as N)	Nitrite (as N)	Nitrogen (Total)	Kjeldahi Nitrogen Total	Aluminium (filtered)	Arsenic (filtered)	Barium (filtered)	Beryllium (filtered)	Boron (filtered)	Cadmium (filtered)	Chromium (hexavalent)	Chromium (III+VI) (filtered)	Cobalt (filtered)	Copper (filtered)	Iron (filtered)	Lead (fillered)	Manganese (filtered)	Mercury (filtered)	Molybdenum (filtered)	Nickel (filtered)	Selenium (filtered)	Silver (filtered)	Tin (filtered)	Vanadium (fillered)	7inc (filtered)
	mg/L	mg/L	mg/L	mg/L	pH_Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg
	10	5	2	0.004	0.1	5	0.5	0.1	0.01	0.01	0.01	0.01	0.01	0.1	0.1	50	1	1	1	50	0.1	5	1	1	1	50	- 1	1	0.1	5	1	1	5	5	10	
(2018) Freshwater 95% toxicant DGVs											0.9					55				370	0.2	0.4			1.4		3.4	1,900	0.6		- 11	- 11	0.05			
118) Marine water 95% toxicant DGVs											0.91	0.	.05*								5.5	4.4		1	1.3		4.4		0.4		70		1.4		100	

															* stresso	r guideline																							
Location Code	Field ID	Date	Sample Type																																				
Groundwater																																							
	SLMW01-P	5/05/2023	Primary	4,600	20	<5	<0.005	8.1	250	<2.5	<0.1	0.03	< 0.01	0.12	17	1.6	20.7	1.7	<50	1	40	<1	3,100	<0.2	<5	2	<1	2	<50	<1	55	<0.1	-	19	12	<5	<5	-	8
SLMW01-P	SLMW01-P	1/11/2023	Primary	1700	72	<5	<0.005	8.5	630	<2.5	<0.1	0.02	<0.01	0.03	18	<0.02	21	3.2	<50	1	40	<1	2600	<0.2	<5	<1	<1	<1	<50	<1	9	<0.1	-	7	15	<5	<5	-	5
	SLMW01-Q1	5/05/2023	Primary	4,700	15	<5	<0.005	8	220	<2.5	<0.1	0.04	0.07	0.13	24	1.1	28.2	3.2	<50	<1	30	<1	1,000	<0.2	<5	<1	<1	2	<50	<1	140	<0.1	-	5	6	<5	<5	-	10
SLMW01-Q1	SLMW01-Q1	1/11/2023	Primary	5500	110	<5	<0.005	8.2	710	<2.5	<0.1	<0.01	<0.01	0.06	19	0.08	20	0.8	<50	<1	30	<1	1900	<0.2	<5	<1	<1	<1	<50	<1	93	<0.1	-	8	8	<5	<5	-	7
	SLMW02-Q1	5/05/2023	Primary	4,900	<5	<5	<0.005	7.9	190	<2.5	<0.1	0.08	0.02	0.09	16	1.1	20.7	3.7	<50	<1	50	<1	2,400	<0.2	<5	2	1	2	<50	<1	77	<0.1	-	27	7	<5	<5	-	<5
SLMW02-Q1	SLMW02-Q1	1/11/2023	Primary	2100	130	<5	<0.005	8.3	600	<12.5	<0.1	0.02	<0.01	0.11	18	<0.02	19	0.7	<50	<1	60	<1	2400	<0.2	<5	<1	<1	<1	<50	<1	39	<0.1	-	8	8	<5	<5	-	7
	SLMW03-Q1	3/05/2023	Primary	9,700	9,800	<5	<0.005	7.9	1,200	<50	<0.1	0.21	0.03	0.03	0.11	<0.02	1.11	1	<50	<1	20	<1	4,000	<0.2	<5	<1	2	3	<50	<1	160	<0.1	8	18	1	<5	<5	-	8
SLMW03-Q1	SLMW03-Q1	1/11/2023	Primary	1300	700	<5	<0.005	8.3	1300	<12.5	<0.1	0.01	0.01	0.12	0.24	<0.02	0.2	<0.2	<50	<1	30	<1	3700	<0.2	<5	<1	<1	<1	<50	<1	15	<0.1	-	10	2	<5	<5	-	6
	SLMW04-P	8/05/2023	Primary	3,800	240	<5	<0.005	8.2	160	<1	<0.1	<0.01	0.03	0.13	18	0.06	18	<0.2	<50	<1	30	<1	5,400	<0.2	<5	36	<1	2	<50	<1	7	<0.1	-	2	30	<5	<5	- /	13
SLMW04-P	SLMW04-P	2/11/2023	Primary	1400	69	<5	<0.005	8.2	480	<2.5	<0.1	<0.01	0.02	0.02	17	<0.02	18	0.7	<50	<1	40	<1	4,400	<0.2	<5	<1	<1	3	<50	<1	<5	<0.1	-	1	38	<5	<5	-	<5
	SLMW05-P	5/05/2023	Primary	4,500	7.2	<5	<0.005	8.1	240	<2.5	<0.1	0.02	0.14	0.08	0.54	<0.02	1.54	1	<50	<1	20	<1	2,100	<0.2	12	8	<1	2	<50	<1	7	<0.1	-	5	34	<5	<5	-	<5
SLMW05-P	SLMW05-P	1/11/2023	Primary	860	65	<5	<0.005	8.4	830	<2.5	<0.1	<0.01	<0.01	0.14	0.54	<0.02	0.5	<0.2	<50	<1	30	<1	3600	<0.2	<5	8	<1	1	<50	<1	<5	<0.1	-	1	54	<5	<5	-	8
	SLMW05-Q1	5/05/2023	Primary	6,000	31	<5	<0.005	7.8	370	<2.5	<0.1	0.02	0.01	0.09	- 1	0.22	1.9	0.7	<50	<1	30	<1	3,100	<0.2	5	12	3	2	<50	<1	160	<0.1	-	25	25	<5	<5	-	9
SLMW05-Q1	SLMW05-Q1	1/11/2023	Primary	6800	98	<5	<0.005	8.3	1200	<2.5	<0.1	<0.01	<0.01	0.07	1.4	<0.02	1.7	0.3	<50	<1	30	<1	3100	<0.2	<5	8	<1	<1	<50	<1	21	<0.1	-	11	29	<5	<5	-	8
	Dup-2	1/11/2023	Interlab_D	-	-	-	< 0.004	-	-	-	< 0.1	0.02	-	< 0.01	-	-	1.8	0.3	-	<1	21	<1	3050	< 0.1	-	9	<1	<]	-	<1	22	< 0.1	-	13	30	-		<10	11
	SLMW06-Q1	3/05/2023	Primary	5,600	160	<5	<0.005	8.2	780	<1	<0.1	0.1	0.02	<0.01	1.1	<0.02	1.1	<0.2	<50	<1	<20	<1	5,600	<0.2	<5	2	<1	2	<50	<1	35	<0.1	21	2	20	<5	<5	- /	13
SLMW06-Q1	DUP-1	3/05/2023	Interlab_D	6,360	542	<2	< 0.004	-	801	<2	0.2	0.16	0.01	< 0.01	1.22	< 0.01	1.8	0.6	-	<1	21	<1	5,180	< 0.1	-	2	<1	2	-	<1	34	< 0.1	-	2	30	-	-	10	8
	SLMW06-Q1	1/11/2023	Primary	1400	350	<5	<0.005	8.5	800	<12.5	<0.1	0.02	0.01	0.06	1.2	<0.02	1.4	0.2	<50	<1	30	<1	5300	<0.2	<5	2	<1	1	<50	<1	<5	<0.1	-	1	21	<5	<5	-	6
	SLMW07-Q1	3/05/2023	Primary	7,000	53	<5	<0.005	8.3	870	<1	<0.1	0.21	0.09	0.06	2.3	0.13	10.5	8.1	<50	2	30	<1	7,400	<0.2	<5	<1	<1	3	<50	<1	14	<0.1	28	26	70	<5	<5	-	<5
SLMW07-Q1	SLMW07-Q1	1/11/2023	Primary	10000	1100	<5	<0.005	8.5	980	<25	<0.1	0.09	0.07	0.05	1.9	<0.02	1.9	<0.2	<50	1	40	<1	7000	<0.2	<5	<1	<1	1	<50	<1	<5	<0.1	-	<1	75	<5	<5	-	<5
01.11100.01	SLMW08-Q1	4/05/2023	Primary	5,900	24	<5	<0.005	8	750	<6.5	<0.1	0.04	0.02	0.21	0.11	<0.02	2.01	1.9	<50	<1	70	<1	1,400	<0.2	<5	<1	1	2	<50	<1	36	<0.1	-	31	6	<5	<5	-	6
SLMW08-Q1	DUP 2	4/05/2023	Intralab_D	8,100	15	<5	< 0.005	8	740	<6.5	< 0.1	0.06	< 0.01	0.19	0.12	< 0.02	1.13	1	<50	<1	70	<1	1,400	< 0.2	<5	<1	1	2	<50	<1	37	< 0.1	-	30	6	<5	<5	-	6
SLMW09-P	SLMW09-P	4/05/2023	Primary	2,100	<5	<5	0.008	8.1	350	<6.5	<0.1	0.08	0.02	0.12	0.04	<0.02	0.5	0.5	<50	<1	160	<1	2,200	<0.2	<5	<1	5	<1	60	<1	150	<0.1	-	45	<1	<5	<5	-	6
SLMW10-A	SLMW10-A	2/11/2023	Primary	7800	47	<5	<0.005	8.5	560	<2.5	<0.1	<0.01	<0.01	<0.01	0.24	<0.02	0.3	<0.2	<50	<1	30	<1	2,900	<0.2	<5	<1	<1	<1	<50	<1	<5	<0.1	-	<1	2	<5	<5	-	<5
SLMW10-B	SLMW10-B	2/11/2023	Primary	2600	52	<5	<0.005	7	490	<2.5	<0.1	<0.01	<0.01	<0.01	0.42	0.05	0.5	<0.2	<50	<1	30	<1	4800	<0.2	<5	<1	<1	2	<50	<1	<5	<0.1	-	7	9	<5	<5	-	<5
SLMW10-C	SLMW10-C	2/11/2023	Primary	1500	610	<5	<0.005	8.3	570	<12.5	<0.1	<0.01	<0.01	<0.01	10	0.2	11	1.2	<50	<1	20	<1	800	<0.2	<5	<1	<1	<1	<50	<1	52	<0.1	-	<1	30	<5	<5	-	<5
SLMW11-B	SLMW11-B	2/11/2023	Primary	1200	340	<5	<0.005	8.2	470	<6.5	<0.1	0.05	<0.01	0.02	- 11	0.49	12	1	<50	<1	30	<1	4300	<0.2	<5	<1	<1	<1	<50	<1	10	<0.1	-	1	37	<5	<5	-	<5
SLMW11-C	SLMW11-C	2/11/2023	Primary	5000	110	<5	<0.005	8.5	810	<2.5	<0.1	<0.01	<0.01	0.04	1.1	0.2	1.7	0.4	<50	<1	60	<1	3000	<0.2	<5	<1	<1	1	<50	<1	<5	<0.1	-	10	15	<5	<5	-	<5
SLMW12-A	SLMW12-A	31/10/2023	Primary	4800	1300	<5	<0.005	8.5	1000	<50	<0.1	0.01	<0.01	0.04	1.6	<0.02	2.6	1	<50	<1	30	<1	7500	<0.2	<5	3	<1	1	<50	<1	<5	<0.1	-	<1	58	<5	<5	-	5
SLMW12-B	SLMW12-B	31/10/2023	Primary	7300	550	<5	<0.005	7.9	1100	<5	<0.1	<0.01	<0.01	0.04	1.7	0.08	2.4	0.7	<50	<1	30	<1	8300	<0.2	<5	2	<1	2	<50	<1	14	<0.1	-	2	51	<5	<5	- /	11
SLMW12-C	SLMW12-C	31/10/2023	Primary	8200	240	<5	<0.005	8.3	1300	<5	<0.1	0.01	<0.01	0.03	2.5	0.06	2.9	0.4	<50	<1	20	<1	7600	<0.2	<5	2	<1	2	<50	<1	18	<0.1	-	25	65	<5	<5	- /	14
SLIVIVV12-C	DUP-1	31/10/2023	Intralab_D	4000	280	<5	< 0.005	7.8	1200	<5	< 0.1	< 0.01	< 0.01	0.03	2.5	0.06	3	0.5	<50	<1	20	<1	7400	<0.2	<5	2	<1	2	<50	<1	18	<0.1	-	25	65	<5	<5	- /	14
SLMW13-A	SLMW13-A	2/11/2023	Primary	1400	72	<5	<0.005	8.2	520	<2.5	<0.1	0.02	<0.01	0.02	18	<0.02	19	1.1	<50	<1	30	<1	4500	<0.2	<5	<1	<1	2	<50	<1	10	<0.1	-	3	44	<5	<5	-	<5
SLMW13-B	SLMW13-B	2/11/2023	Primary	4500	84	<5	<0.005	8.3	490	<12.5	<0.1	0.05	<0.01	0.03	10	0.69	11	<0.2	<50	<1	50	<1	5000	<0.2	<5	<1	<1	<1	<50	<1	28	<0.1	-	7	93	<5	<5	-	<5
SLMW13-C	SLMW13-C	2/11/2023	Primary	900	150	<5	<0.005	8.1	740	<2.5	<0.1	0.03	<0.01	0.01	1.4	0.55	2	<0.2	<50	<1	40	<1	4500	<0.2	<5	<1	1	4	<50	<1	130	<0.1	-	24	30	<5	<5	- /	18
6628-21445	6628-21445	8/05/2023	Primary	7,400	70	8.1	<0.005	8.2	47	<1	<0.1	<0.01	<0.01	0.04	<0.02	<0.02	0.6	0.6	<50	1	<20	<1	550	<0.2	<5	5	<1	<1	400	<1	1,300	<0.1	-	<1	<1	<5	<5	-	<5
6628-23298	6628-23298	5/05/2023	Primary	5,100	10	<5	<0.005	7.6	290	<2.5	0.1	0.11	0.01	0.16	<0.02	<0.02	3.8	3.8	<50	3	40	<1	500	<0.2	<5	16	2	<1	330	<1	420	<0.1	-	25	<1	<5	<5	-	<5
	6628-23298	7/11/2023	Primary	4,500	130	<5	<0.005	7.5	890	<1	<0.1	0.07	0.04	2	0.35	<0.02	3.4	3	<50	1	50	<1	400	<0.2	<5	<1	<1	<1	220	<1	440	<0.1	-	5	2	<5	<5	-	6
6528-2628 (offsite)	6528-2628	4/05/2023	Primary	99,000	1,200	<5	<0.005	7.6	7,600	<6.5	<0.1	0.85	0.02	0.89	<0.02	<0.02	2.2	2.2	<50	2	50	<1	11,000	<0.2	<5	<1	5	48	<50	<1	170	<0.1	-	18	<1	<5	<5	- /	27
		ONSITE GROU	NDWATER Minimum	860	7.2	<5	<0.005	7	47	<1	<0.1	<0.01	<0.01	<0.01	<0.02	<0.02	0.2	<0.2	<50	<1	<20	<1	400	<0.2	<5	<1	<1	<1	<50	<1	<5	<0.1	8	<1	<1	<5	<5 <	<10	<5
		ONSITE GROUN	NDWATER Maximum	10,000	9800	8.1	0.008	8.5	1300	<25	0.2	0.21	0.14	0.21	24	1.6	28.2	8.1	<50	3	160	<1	8300	<0.2	12	36	5	4	400	<1	1300	<0.1	28	45	93	<5	<5	10	18

231445-01 Groundwater & Surface Water Chemtoble sits
4 of 12

_																																									
						TRH									BTEX				PAH										Org	ganochlorir	ne Pesticio	des									
	TRH C6-C10	TRH C6-C10 less BTEX (F1)	TRH >C10-C16	TRH >C10-C16 less Napthalene (F2)	TRH >C16-C34	TRH >C34-C40	TRH >C 10-C40 (sum of fractions)	TPH >C10-C16 (SG)	TPH >C16-C34 (SG)	TPH >C34-C40 (SG)	TPH >C10 - C40 Fraction (sum) (SG)	Benzene	Toluene	Ethylbenzene	Xylene (o)	Xylene (m & p)	Xylene Total	Total BTEX	Naphthalene	4 <i>A</i> -DDD	4,4-DDE	4,4-DDT	DDT+DDE+DDD	а-вис	р.внс	d-BHC	g-BHC (Lindane)	Aldrin	Dieldrin	Aldrin + Dieldrin	chlordane	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	Неріасһіог	Heptachlor epoxide	Methoxychlor	Toxaphene
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L
LOR	20	20	50	50	100	100	100	50	100	100	100	1	1	1	1	2	2	1	5	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.005
ANZG (2018) Freshwater 95% toxicant DGVs												950			350				16			0.01					0.2				0.08				0.02			0.09			0.0002
ANZG (2018) Marine water 95% toxicant DGVs												700							70																0.008						

ANZG (2018) Marine water 95% toxicar	nt DGVs			700		70						0.008			
Location Code Field ID	Date Sample Type														
Surface Water (BMT 2022)															
UPSTREAM		 		1						1					
	10-Mar-22 Primary -	 	 	 	 			 	 	-			 -		
	23-Mar-22 Primary -	 	 	 	 			 	 	-			 -		
	4-Apr-22 Primary -	 	 	 	 			 	 	-			 -		
	20-Apr-22 Primary -	 	 	 	 			 	 	-			 -		
	2-May-22 Primary -	 	 	 	 			 	 	-			 -		-
	18-May-22 Primary -	 	 	 	 			 	 	-			 -	-	-
	1-Jun-22 Primary - 28-Jun-22 Primary -	 	 	 	 			 	 	-			 -	- -	
		 	 	 	 			 	 	-			 -	-	
	13-Jul-22 Primary - 27-Jul-22 Primary -	 	 		 		-						-		
	8-Aug-22 Primary -							 					-		
	31-Aug-22 Primary -	 	 	 	 			 	 	_			 -		
	6-Sep-22 Primary -	 	 	 	 			 	 	-			 -		
	28-Sep-22 Primary -	 	 	 	 			 	 	-			 -		
Mouth of Chapman Creek	10-Oct-22 Primary -	 	 	 	 			 	 	-			 -		
(BMT-1)	16-Nov-22 Primary -	 	 	 	 			 	 	-			 -		
	30-Nov-22 Primary -	 	 	 	 			 	 	-			 -		-
	15-Dec-22 Primary -	 	 	 	 			 	 	-			 -	- -	
	11-Jan-23 Primary -	 	 	 	 			 	 	-			 -		-
	9-Feb-23 Primary -	 	 	 	 			 	 	-			 -		-
	21-Feb-23 Primary -	 	 	 	 			 	 	-			 -		
	15-Mar-23 Primary -	 	 	 	 			 	 	-			 -		
	29-Mar-23 Primary -	 	 	 	 			 	 	-			 -		
	4-Apr-23 Primary -	 	 	 	 			 	 	-			 -		
	17-Apr-23 Primary -	 	 	 	 			 	 	-			 -		
	5-May-23 Primary -	 	 	 	 			 	 	-			 -		-
	20-Jun-23 Primary -	 	 	 	 			 	 	-			 -		
	4-Jul-23 Primary - 1-Aug-23 Primary -	 	 	 	 			 	 	-			 -	- -	
	13-Sep-23 Primary -	 						 		-			-		
	10-Mar-22 Primary -														
	23-Mar-22 Primary -	 	 	 	 			 	 	_			 -		
	4-Apr-22 Primary -	 	 	 	 			 	 	-			 -		
	20-Apr-22 Primary -	 	 	 	 			 	 	-			 -		
	2-May-22 Primary -	 	 	 	 			 	 	-			 -		
	18-May-22 Primary -	 	 	 	 			 	 	-			 -		
	1-Jun-22 Primary -	 	 	 	 			 	 	-			 -		-
	28-Jun-22 Primary -	 	 	 	 			 	 	-			 -		-
	13-Jul-22 Primary -	 	 	 	 			 	 	-			 -		-
	27-Jul-22 Primary -	 	 	 	 			 	 	-			 -		
	8-Aug-22 Primary -	 	 	 	 			 	 	-			 -		-
	31-Aug-22 Primary -	 	 	 	 			 	 	-			 -		-
	6-Sep-22 Primary -	 	 	 	 			 	 	-			 -		-
	28-Sep-22 Primary -	 	 	 	 			 	 	-			 -		
Upper Chapman Creek (BMT-2)	10-Oct-22 Primary - 16-Nov-22 Primary -	 	 		 			 +	 				 -		
	30-Nov-22 Primary -							+						-	
	15-Dec-22 Primary -									-	. . -		_	_ _	
	11-Jan-23 Primary -			 	 				 	-			 -		
	9-Feb-23 Primary -	 	 	 	 			 	 	-			 -		
	21-Feb-23 Primary -	 	 	 	 			 	 	-			 -		
	15-Mar-23 Primary -	 	 	 	 			 	 	-			 -		
	29-Mar-23 Primary -	 	 	 	 			 	 	-			 -		
	4-Apr-23 Primary -	 	 	 	 			 	 	-			 -		-
	17-Apr-23 Primary -	 	 	 	 			 	 	-			 -		-
	5-May-23 Primary -	 	 	 	 			 	 	-			 -		
	20-Jun-23 Primary -	 	 	 	 			 	 	-			 -		-
	4-Jul-23 Primary -	 	 	 	 			 	 	-			 -		-
	1-Aug-23 Primary -	 	 	 	 			 	 	-			 -		
	13-Sep-23 Primary -	 	 	 	 			 	 	-			 -		
	UPSTREAM Minimum -	 	 	 	 			 1 - 1 -	 	-			 -		-
	UPSTREAM Maximum -	 	 	 - -	 			 	 	-			 -		-

231445-01 Groundwater & Surface Water Chemidable.stsx 5 of 12

						TRH									BTEX				PAH										Or	ganochlor	rine Pestici	des								
	TRH C6-C10	TRH C6-C10 less BTEX (F1)	TRH >C10-C16	TRH >C10-C16 less Napthalene (F2)	TRH >C16-C34	TRH >C34-C40	TRH >C10-C40 (sum of fractions)	TPH >C10-C16 (SG)	TPH >C16-C34 (SG)	TPH >C34-C40 (SG)	TPH >C10 - C40 Fraction (sum) (SG)	Benzene	Toluene	Ethylbenzene	Xylene (o)	Xylene (m & p)	Xylene Total	Total BTEX	Naphthalene	4,4-DDD	4,4-DDE	14.bDT	DDT+DDE+ DDD	а-ВНС	b-BHC	д-ВНС	g-BHC (Lindane)	Aldrin	Dieldrin	Aldrin + Dieldrin	chlordane	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
LOR	20	20	50	50	100	100	100	50	100	100	100	1	1	1	1	2	2	1	5	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
ANZG (2018) Freshwater 95% toxicant DGVs												950			350				16			0.01					0.2				0.08				0.02			0.09		
ANZG (2018) Marine water 95% toxicant DGVs												700							70																0.008					

LOR	20	20 50	50 50	100	100	100 50	100 100	100			2 2	'	5 0.2	0.2 0.2	0.2 0.2	0.2 0.2 0.2	0.2 0.2	0.2 2	0.2 0.2		0.2 0.2 0		
ANZG (2018) Freshwater 95% toxicant DG									950	350			16	0.01		0.2		0.08		0.02	0	.09	0.0002
ANZG (2018) Marine water 95% toxicant I	† DGVs								700				70							0.008			
Location Code Field ID	Date Sample Type																						
DOWNSTREAM																							
	10-Mar-22 Primary -			-	-			-				-											
	22-Mar-22 Primary -			-	-			-				-											
	4-Apr-22 Primary -			-	_								+ - + -										
	20-Apr-22 Primary -		_			_		_					+ - + -										
-			-	-						-	-	_	+										
-	2-May-22 Primary -			-	-			-				-											
	18-May-22 Primary -			-	-			-				-											
	1-Jun-22 Primary -			-	-			-				-									-		
	28-Jun-22 Primary -			-	-			-				-									-		
	13-Jul-22 Primary -			-	-			-				-									-		
	27-Jul-22 Primary -			-	-			-				-									-		
	8-Aug-22 Primary -			-	-			-				-											
	31-Aug-22 Primary -			-	-			-				-											
	6-Sep-22 Primary -			-	-			-				-											
	29-Sep-22 Primary -			-	-			-				-											
Channel	10-Oct-22 Primary -			-	-			-				-											
Channel (BMT-4)	16-Nov-22 Primary -			-	-			-				-											
	30-Nov-22 Primary -			-	_			-		<u> </u>		-	† <u>-</u> † <u>-</u> '										
	15-Dec-22 Primary -			+ -				+ -				+ .	+						+ . + . +				
	11-Jan-23 Primary -			-	1			+ -				1	+				+ -		+ - + - +				
				-	-			-				-	'										
	9-Feb-23 Primary -			-	-			-				-	+								+		
	21-Feb-23 Primary -			-	-			-				-											
	15-Mar-23 Primary -			-	-			-				-									-		
	29-Mar-23 Primary -			-	-			-				-									-		
	4-Apr-23 Primary -			-	-			-				-									-		
	17-Apr-23 Primary -			-	-			-				-											
	5-May-23 Primary -			-	-			-				-	'										
	20-Jun-23 Primary -			-	-			-				-											
	4-Jul-23 Primary -			-	-			-				-											
	1-Aug-23 Primary -			-	-			-				-											
	13-Sep-23 Primary -			-	-			-				-											
	10-Mar-22 Primary -			-	-			-				-	T . T .										
	23-Mar-22 Primary -			_	_			_				_	+ - + - '										
-	4-Apr-22 Primary -		_										+ - + '										
-	20-Apr-22 Primary -												+										
-				-	-			-				-	+										
-	2-May-22 Primary -			-	-			-				-											
-	18-May-22 Primary -			-	-			-				-											
	1-Jun-22 Primary -			-	-			-				-											
	28-Jun-22 Primary -			-	-			-				-									-		
	13-Jul-22 Primary -			-	-			-				-									-		
	27-Jul-22 Primary -			-	-			-				-									-		
	8-Aug-22 Primary -		-	-	-			-				-											
	31-Aug-22 Primary -			-	-			-				-									-		
	6-Sep-22 Primary -			-	-			-				-											
	29-Sep-22 Primary -			-	-			-				-											
Thompson Creek	10-Oct-22 Primary -			-	-			-				-											
Thompson Creek (BMT-5)	16-Nov-22 Primary -			-	-			-				-											
	30-Nov-22 Primary -			-	-			-				-											
-	15-Dec-22 Primary -			-	_								+ - + -										
-	11-Jan-23 Primary -		_			_		_					+ - + -										
-													+										
-			-	-	-			-		 		1 -	+ '	- -	- -	+ - + - + -		 - -	+ - + - +				
-	21-Feb-23 Primary -			-	-			-				-	+						+ - + - +		+-+		
	15-Mar-23 Primary -			-	-			-				-		- -									
	29-Mar-23 Primary -			-	-			-				-											
	4-Apr-23 Primary -			-	-			-				-											
	17-Apr-23 Primary -			-	-			-				-									-		
[5-May-23 Primary -			-	-																		
	20-Jun-23 Primary -			-	-			-				-											
ļ	4-Jul-23 Primary -			-	-			-				-											
							+	+	+ + +	+ + +	+	+	+		1 1	 			1 1		-	-	-+
				-	-			-			- 1 -	-	-		- 1 -								
	1-Aug-23 Primary - 13-Sep-23 Primary -			-	-			-				-	+										

									TRH									BTEX				PAH									Organ	chlorine	Pesticides									
				TRH C6-C10	TRH C6-C10 less BTEX (F1)	TRH >C10-C16	TRH >C 10-C 16 less Napthalene (F2)	TRH >C16-C34	TRH >C34-C40	TRH >C10-C40 (sum offractions)	TPH >C10-C16 (SG)	TPH >C16-C34 (SG)	TPH >C34-C40 (SG)	TPH >C10 - C40 Fraction (sum) (SG)	Benzene	Toluene	Ethylbenzene	Xylene (o)	Xylene (m & p)	Xylene Total	Total BTEX	Naphthalene	4.4-DDD	4,4-DDE	4.4-DDT	DDT+DDE+DDD	a-BHC b-BHC	рнс-	g-BHC (Lindane)	Aldrin	Dieldrin	Aldrin + Dieldrin	chlordane Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehy de	Endrin ketone	Heptachlor	Hepta chlor epoxide	Methoxychlor	Toxaphene
				μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L		μg/L	µg/L	μg/L			μg/L			μg/L μg/L	_	_				µg/L µg/	_		μg/L		μg/L		μg/L	μg/L	mg/L
LOR ANZG (2018) Freshw		DCV4		20	20	50	50	100	100	100	50	100	100	100	950	1	1	350	2	2	1	5 16	0.2	0.2	0.2	0.2	0.2 0.2	0.2	0.2	0.2	0.2		2 0.2	. 0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.005
ANZG (2018) Marine															700			350				70			0.01				0.2				0.08			0.002			0.09			0.0002
Location Code	Field ID	Date	Sample Type	1													1	1	1		1			1														1				
		10-Mar-22 23-Mar-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-
		23-Mar-22 4-Apr-22	Primary Primary	-	-		-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-		-	-
		20-Apr-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-
		2-May-22	Primary	-	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-
		18-May-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-
		1-Jun-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-
		28-Jun-22 13-Jul-22	Primary Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	_	-	-
		27-Jul-22	Primary		-			-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-		+-		-	
		8-Aug-22	Primary	-	-	-		-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-
		31-Aug-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-
		6-Sep-22	Primary	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-
		28-Sep-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	- '	-	-	-
Offs (BN		10-Oct-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	- '	-	-	-
(DIV	11-01	16-Nov-22 30-Nov-22	Primary Primary	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-		-	-
		15-Dec-22	Primary		-				-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-		-	-	-	-	-		-	-		-	-		-	-	-
		11-Jan-23	Primary	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-		-	-		-	-	-
		9-Feb-23	Primary	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-
		21-Feb-23	Primary	-	-	-	-	-	-	-	-	-		-	-	,	-		-	-		-	-		-	-		-	-	-	-	-		-	-	-	-	-	- '	-	-	-
		15-Mar-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	'	-	-	-
		29-Mar-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	'	-	-	-
		4-Apr-23	Primary Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-		-	-
		17-Apr-23 5-May-23	Primary	-	-		-		-	-	-		-	-	<u> </u>		-	-	-	-	-	-		-	-	-					-	-		-	-	-		-			-	-
		20-Jun-23	Primary	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-		-	-	-	_	-		-	-	-	-	-		-	-	_
		4-Jul-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-
		1-Aug-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	- 1	-	-	-
		13-Sep-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	_	-	-	-
		20-Jun-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-
Inshore Bo (BN	livar Outlet T-7)	4-Jul-23 1-Aug-23	Primary Primary	-	-		-	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-		-	-	-	-	-		-	-		-		-	-	-	-
		13-Sep-23	Primary		-				-	-	-	-		-		-	-		-	-	-	-		-	-	-			-	-				-	-		-		+-		-	-
Surface Water (LBW	co 2023)																			1									-1	ļ.,					- 1		-1					
SW01	SW01	7/11/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10	<0.2	<0.2	<0.2	<0.2	<0.2 <0.2	<0.2	<0.2	<0.2	<0.2	0.2	<2 <0.	2 <0.	2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.005
SW02	SW02	7/11/2023	Primary	<20		<50	<50	<100	_			-	-	-	<1			<1		_	-						<0.2 <0.2												<0.2			
S0W3	SW03	7/11/2023	Primary	<20	<20	60	60	300	<100									<1	<2	_	-			<0.2			<0.2 <0.2	_	_				<2 <0.		2 <0.2		<0.2		<0.2			
SW04 SW05	SW04 SW05	7/11/2023 7/11/2023	Primary Primary	<20 <20	<20 <20	390 <50	390 <50	900 <100	<100 <100	1,290	<50	<100	<100	<100		<1		<1	<2 <2	_	-			<0.2			<0.2 <0.2	_	_		<0.2 <		<2 <0.	_	2 <0.2		<0.2		<0.2			
SW06	SW06	7/11/2023	Primary	<20		<50		<100			-	-	-	-		<1		<1		_	-			<0.2			<0.2 <0.2	_	_				<2 <0.		2 <0.2		<0.2		<0.2			
SW07	SW07	7/11/2023	Primary	<20	<20	110		200		310		<100				<1			<2	_	-						<0.2 <0.2						<2 <0.		2 <0.2		<0.2		<0.2			
SW08	SW08	7/11/2023	Primary	<20	<20	<50	<50	<100	<100	<100	-	-	-	_	<1		<1		<2	<3	-			<0.2		<0.2	<0.2 <0.2	<0.2					<2 <0.	_		_		<0.2				
34400	SW-DUP-1	7/11/2023	Field_D	<20	<20	<50		<100	<100		-	-	-	-		<1		<1	<2	<3	-			<0.2			<0.2 <0.2	_		<0.2			<2 <0	_	< 0.2		<0.2		<0.2			
SW09	SW09	7/11/2023	Primary	<20	<20	<50	<50	<100	<100		-	-	-	-		<1		-	<2		-			<0.2			<0.2 <0.2					0.2			2 <0.2		_	<0.2			<0.2	
			NSTREAM Minimum		<20 <20	60	60 390	200 900	<100 <100	310		<100 <100	<100	<100		<1	<1 <1		<2 <2	_	-			<0.2			<0.2 <0.2						<2 <0.		2 <0.2							
		DOWN	STREAM MOXIMUM	<20	<2U	390	390	900	<100	1290	<3U	<100	<100	<100	<1	<1	<1	<1	<2	<3	-	<1U	<u.z< td=""><td><0.2</td><td><0.2</td><td>~U.∠</td><td>~U.Z <u.2< td=""><td><0.2</td><td><0.2</td><td><0.2</td><td>~U.∠ </td><td>U.Z</td><td><2 <0.</td><td>∠ <0.</td><td>2 <0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><u.2< td=""><td><0.2</td><td><0.005</td></u.2<></td></u.2<></td></u.z<>	<0.2	<0.2	~U.∠	~U.Z <u.2< td=""><td><0.2</td><td><0.2</td><td><0.2</td><td>~U.∠ </td><td>U.Z</td><td><2 <0.</td><td>∠ <0.</td><td>2 <0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><u.2< td=""><td><0.2</td><td><0.005</td></u.2<></td></u.2<>	<0.2	<0.2	<0.2	~ U.∠ 	U.Z	<2 <0.	∠ <0.	2 <0.2	<0.2	<0.2	<0.2	<0.2	<u.2< td=""><td><0.2</td><td><0.005</td></u.2<>	<0.2	<0.005

231445-01 Groundwater & Surface Water Chembable xlsx 7 of 12

						TRH									BTEX				PAH										Organo	chlorine Pe	sticides										
	TRH C4-C10	TRH C6-C10 less BTEX (F1)	TRH >C10-C16	TRH >C10-C16 less Napthalene (F2)	TRH >C16-C34	TRH >C34-C40	TRH >C10-C40 (sum offractions)	TPH >C10-C16 (SG)	TPH >C16-C34 (SG)	TPH >C34-C40 (SG)	TPH >C10 - C40 Fraction (sum) (SG)	Benzene	Toluene	Ethylbenzene	(ylene (o)	Xylene (m & p)	Xylene Total	Total BTEX	Naphthalene	4,4-DDD	4,4-DDE	4.4-DDT	DDT+DDE+DDD	a-BHC	р-вис	д-вис	g-BHC (Lindane)	aldrin Seldrin		Aldrin + Dieldrin Chlordane		Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	Toxaphene
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L		μg/L							µg/L µg/				μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/
OR	20	20	50	50	100	100	100	50	100	100	100	1	1	1	1	2	2	1	5	0.2	0.2	0.2).2	0.2	0.2	0.2	0.2	0.2 0.2	2 C	.2 2	2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.005
ANZG (2018) Freshwater 95% toxicant DGVs												950			350				16			0.01					0.2			0.0	08				0.02			0.09			0.0002
ANZG (2018) Marine water 95% toxicant DGVs												700							70																0.008						

ANZO (2016) Mullile	water 95% loxicant	DGVS												700						70														4	0.006	$oxed{oxed}$	ىلىلىن	ىلىك	طلط	
laaniian Code	Field ID	Dela	Samuela Toma																																			 		
Location Code	Field ID	Date	Sample Type																																			 		
Groundwater					1													_																				 		
SLMW01-P	SLMW01-P	5/05/2023	Primary <20	_	_		<100	<100	<100	-	-		-	<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2	<0.2	_	<0.2	<0.2	_		0.2 <0.2	_	_	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			:0.005
	SLMW01-P	1/11/2023	Primary <20	_	<50		<100	<100	<100	-	-		-	<1	<1	<1	<1	<2	<3	- <10		0.2 <0.2	<0.2		<0.2	<0.2	_		0.2 <0.2		<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	 		:0.005
SLMW01-Q1	SLMW01-Q1	5/05/2023	Primary <20	_			-	-	<100	-	-		-	<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2	_	_	<0.2	<0.2			0.2 <0.2				<0.2		<0.2	_	<0.2			:0.005
	SLMW01-Q1	1/11/2023	Primary <20	_	_			-	<100	-	-		-	<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2	_	_	-	<0.2	_		0.2 <0.2	_	_	_	<0.2	<0.2	<0.2	_	<0.2			:0.005
SLMW02-Q1	SLMW02-Q1	5/05/2023	Primary <20				<100		<100	-	-		-	<1	<1	<1	<1	<2	<3	- <10			<0.2		<0.2	<0.2			0.2		<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			:0.005
	SLMW02-Q1	1/11/2023	Primary <20	<20			<100	<100	<100	-	-		-	<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2	<0.2		<0.2	<0.2			0.2 <0.2		<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			:0.005
SLMW03-Q1	SLMW03-Q1	3/05/2023	Primary <20						<100	-	- 100	- 100	- 100	<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2				<0.2			0.2				<0.2		<0.2		<0.2			:0.005
	SLMW03-Q1 SLMW04-P	1/11/2023	Primary <20					<100	200	<50	<100	<100	<100	<1	<1	<1	<1	<2	<3	- <10			<0.2		<0.2	<0.2			0.2 <0.2		<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			:0.005
SLMW04-P		8/05/2023	Primary <20	<20			<100	<100	<100	-	-		-	<1	<1	<1	<1	<2	<3	- <10		0.2 <0.2	<0.2		<0.2	<0.2	_			_	_	<0.2				_				
	SLMW04-P	2/11/2023	Primary <20	_			-	-	<100	-	-		-	<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2	_	_	-	<0.2			0.2 <0.2			<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			:0.005
SLMW05-P	SLMW05-P	5/05/2023	Primary <20	_	_		<100	<100	<100	-	-			<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2	<0.2	_	<0.2	<0.2			0.2 <0.2			<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			:0.005
	SLMW05-P	1/11/2023	Primary <20	<20	_		<100	<100	<100	-	-		-	<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2	<0.2	_	<0.2	<0.2			0.2		<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			:0.005
01.11.05.03	SLMW05-Q1	5/05/2023	Primary <20	_	_			-	<100	-	-		-	<1	<1	<1	<1 <1	<2	<3	- <10	_	0.2 <0.2	_		<0.2	<0.2			0.2			<0.2	<0.2	<0.2	<0.2		<0.2			:0.005
SLMW05-Q1	SLMW05-Q1	1/11/2023	Primary <20	_	_		-	-	<100	-	-		-	<1		<1		<2	<3	- <10	_	0.2 <0.2	+	_	<0.2	<0.2			0.2 <0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2 <0	:0.005
	Dup-2	1/11/2023	Interlab_D <20	<20	_			<100	<100	-	-		-		<2	<2	<2	<2	<2	-,			<4	<4	<2	<2		-2-			-	<2	<2	<2	<2	-	<0.2	<0.2	-	
	SLMW06-Q1	3/05/2023	Primary <20				-	-		-	-		-	<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2	_	_	<0.2	<0.2			0.2 <0.2	_	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2 <0	:0.005
SLMW06-Q1	DUP-1 SLMW06-Q1	3/05/2023	Interlab_D <20	<20 <20			_	<100	<100	-	-		-	<1	<2	<2 <1	<2	<2	<2	<1 <5 - <10	_	2 <2	<0.2		<2	<0.2			2 <2		<2	<0.2	<0.2	<0.2	<2 <0.2	-0.0	<0.2			:0.005
	SLMW05-Q1 SLMW07-Q1	1/11/2023 3/05/2023	Primary <20 Primary <20				<100	<100	<100	-	-		-	<1	<1	<1	<1 <1	<2	<3	- <10	_	0.2 <0.2	<0.2		<0.2	<0.2			0.2 <0.2		<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			:0.005
SLMW07-Q1	SLMW07-Q1	1/11/2023	Primary <20						<100	-	-		-	<1	<1	<1	<1	<2	<3	- <10		0.2 <0.2			<0.2	<0.2			0.2 <0.2				<0.2	<0.2	<0.2		<0.2			:0.005
	SLMW08-Q1	4/05/2023	Primary <20	<20			<100	<100	<100	-	-		-	<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2	<0.2	_	<0.2	<0.2	_		0.2 <0.2	_	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			:0.005
SLMW08-Q1	DUP 2	4/05/2023	Intralab_D <20	<20	<50	<50	<100	<100	<100	-	-		-	<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2	<0.2		<0.2	<0.2			1.2 <0.2		<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			0.005
SLMW09-P	SLMW09-P	4/05/2023	Primary <20	+					<100	-	-		-	<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2	_	_	<0.2	<0.2	_		0.2 <0.2	_	_	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			0.005
SLMW10-A	SLMW10-A	2/11/2023	Primary <20	_	_			-	<100	-	-		-	<1	<1	<1	<1	<2	<3	- <10	_		<0.2	_	<0.2	<0.2	_		0.2 <0.2	_	_	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			:0.005
SLMW10-B	SLMW10-B	2/11/2023	Primary <20				<100	<100	<100					<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2	<0.2		<0.2	<0.2			0.2 <0.2		<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			:0.005
SLMW10-C	SLMW10-B SLMW10-C	2/11/2023	Primary <20	+	_			<100	<100	-				<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2	_	_	<0.2	<0.2	_		0.2 <0.2	_	_	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			0.005
SLMW11-B	SLMW11-B	2/11/2023	Primary <20	_				-	<100					<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2				<0.2			0.2 <0.2				<0.2		<0.2		<0.2			:0.005
SLMW11-C	SLMW11-C	2/11/2023	Primary <20				<100	<100	<100				_	<1	<1	<1	<1	<2	<3	- <10		0.2 <0.2	<0.2		<0.2	<0.2			0.2 <0.2		<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			:0.005
SLMW12-A	SLMW12-A	31/10/2023	Primary <20	<20	-		<100	<100	<100	-	-		_	<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2	<0.2	_	<0.2	<0.2			0.2 <0.2		<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			:0.005
SLMW12-B	SLMW12-B	31/10/2023	Primary <20							-	-		_	<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2				<0.2			0.2 <0.2				<0.2		<0.2		<0.2			:0.005
	SLMW12-C	31/10/2023	Primary <20				<100	<100	<100	-	-		_	<1	<1	<1	<1	<2	<3	- <10		0.2 <0.2	<0.2		<0.2	<0.2			0.2 <0.2		<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			:0.005
SLMW12-C	DUP-1	31/10/2023	Intralab_D <20	<20		<50	<100	<100	<100	-	-		-	<1	<1	<1	<1	<2	<3	- <10			<0.2	_	<0.2	<0.2			.2 <0.2		<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			0.005
SLMW13-A	SLMW13-A	2/11/2023	Primary <20						<100	-	-		_	<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2				<0.2			0.2 <0.2				<0.2	<0.2	<0.2		<0.2			:0.005
SLMW13-B	SLMW13-B	2/11/2023	Primary <20	+	_		<100	-	<100	-	-		_	<1	<1	<1	<1	<2	<3	- <10	_		<0.2	_	<0.2	<0.2	_		0.2 <0.2	_	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			:0.005
SLMW13-C	SLMW13-C	2/11/2023	Primary <20	<20	_		<100	<100	<100	-	-		_	<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2	<0.2	_	<0.2	<0.2	_		0.2 <0.2	_	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			:0.005
6628-21445	6628-21445	8/05/2023	Primary <20	_	_			-	<100	-	-		-	<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2	_	_	<0.2	<0.2			0.2 <0.2	_	_		<0.2	<0.2	<0.2		<0.2			:0.005
	6628-23298	5/05/2023	Primary <20	+	-		+	<100	<100	-	-		-	<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2	<0.2		<0.2	<0.2			0.2 <0.2			<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			:0.005
6628-23298	6628-23298	7/11/2023	Primary <20	<20	_		<100	<100	<100	-	-		-	<1	<1	<1	<1	<2	<3	<10 <0.2		0.2 <0.2	<0.2		<0.2	<0.2			0.2 <0.2		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.005	-
6528-2628	6528-2628	4/05/2023	Primary <20	<20	<50	<50	<100	<100	<100	-	-		-	<1	<1	<1	<1	<2	<3	- <10	_	0.2 <0.2	<0.2	_	<0.2	<0.2	_		0.2 <0.2	_	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			:0.005
(ottsite)	1		NDWATER Minimum <20	_	_	_	_	<100	<100	<50	<100	<100	<100	<1	<1	<1	<1	<2	<3	<10 <0.2		0.2 <0.2	_	_	<0.2	<0.2			0.2 <0.2	_			<0.2	<0.2	<0.2		<0.2	 		:0.005
			IDWATER Maximum <20	<20				<100	200		<100		<100	<1	<1	<1	<1	<2	<3	<10 <10	_	0.2 <0.2	<0.2		<0.2	<0.2			0.2 <0.2		<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			:0.005
								J	1							<u> </u>							1	1														 		

231445-01 Groundwater & Surface Water Chemidable.xix 8 of 12

				Phenols						Halogenat	ed Phenol:	1		Halogen ated
	3/4-Methylphenol (m/p-cresol)	2,4-dimethylphenol	2 -methylphenol	2 -nitrophenol	4-chloro-3-methylphenol	Total Phenois	Phenolics Total	2,4,5-trichlorophenol	2,4,6-trichlorophenol	2,4-dichlorophenol	2,6-dichlorophenol	2 -chlorophenol	P entachlor ophenol	Hexachlorobenzene
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
LOR	2	1	1	1	1	1	50	1	1	1	1	1	2	0.2
ANZG (2018) Freshwater 95% toxicant DGVs						320			20	160		490	10	
ANZG (2018) Marine water 95% toxicant DGVs						400							22	

Location Code Field ID	Date	Sample Type														
Surface Water (BMT 2022)																
UPSTREAM																
	10-Mar-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	23-Mar-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4-Apr-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	20-Apr-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2-May-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	18-May-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1-Jun-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	28-Jun-22 13-Jul-22	Primary Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	27-Jul-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	8-Aug-22	Primary	-	-	-	-	-	-	-	-	-			-	-	-
	31-Aug-22	Primary	-	-			-	-	-	_	-			-	-	-
	6-Sep-22	Primary	-			-	-	-	-	-		-		-	-	-
	28-Sep-22	Primary	-	-	-		-	-	-	-	-	-		-	-	-
Mouth of Chapman Creek	10-Oct-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(BMT-1)	16-Nov-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	30-Nov-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15-Dec-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11-Jan-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	9-Feb-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	21-Feb-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15-Mar-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	29-Mar-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4-Apr-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	17-Apr-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	5-May-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	20-Jun-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4-Jul-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1-Aug-23 13-Sep-23	Primary Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	10-Mar-22	Primary	-	-	-	-	-	-	-	-	-	-		-	-	-
	23-Mar-22	Primary	-	-	-		_	-	-	-	-	-	-		-	-
	4-Apr-22	Primary	-	-		-	-	-	-	-		-		-	-	-
	20-Apr-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2-May-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	18-May-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1-Jun-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	28-Jun-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	13-Jul-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	27-Jul-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	8-Aug-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	31-Aug-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	6-Sep-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	28-Sep-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Upper Chapman Creek (BMT-2)	10-Oct-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(DIVIT-2)	16-Nov-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	30-Nov-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15-Dec-22 11-Jan-23	Primary Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	9-Feb-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	9-Feb-23 21-Feb-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15-Mar-23	Primary	-	-	-	-	-	-	-		-		-	-	-	-
	29-Mar-23	Primary	-	-	-	-	-	-	-	-	-		-	-	-	-
	4-Apr-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	17-Apr-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	5-May-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	20-Jun-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4-Jul-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1-Aug-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	13-Sep-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	·	IPSTREAM Minimum	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	U	PSTREAM Maximum	-	-	-	-	-	-	-	-	-	-	-	-	-	-

				Phenois						Halogenal	ed Phenol:	3		Halogen ated
	3/4-Methylphenol (m/p-cresol)	2,4-dimethylphenol	2-methylphenol	2-nitrophenol	4-chloro-3-methylphenol	Total Phenols	Phenolics Total	2,4,5-trichlorophenol	2,4,6-trichlorophenol	2,4-dichlorophenol	2,6-dichlorophenol	2 -chlorophenol	P entachlorophenol	Hexachlorobenzene
	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L
LOR	2	1	1	1	1	1	50	1	1	1	1	1	2	0.2
ANZG (2018) Freshwater 95% toxicant DGVs						320			20	160		490	10	
ANZG (2018) Marine water 95% toxicant DGVs						400							22	

Location Code Field ID	Date	Sample Type														
DOWNSTREAM																
	10-Mar-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	22-Mar-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4-Apr-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	20-Apr-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2-May-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	18-May-22	Primary	-	-	_	-	-	-	-	-	-	-	-	-	-	-
	1-Jun-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	28-Jun-22	Primary	-		-	-	-	-	-	-	-	_			-	-
	13-Jul-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
				-			-		-	-	-	-	-	-	-	-
	27-Jul-22	Primary Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	8-Aug-22															
	31-Aug-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	6-Sep-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	29-Sep-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Channel (PAAT 4)	10-Oct-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(BMT-4)	16-Nov-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	30-Nov-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15-Dec-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11-Jan-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	9-Feb-23	Primary	-	-	-	-	-	-	-	-	-	-			-	-
	21-Feb-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15-Mar-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	29-Mar-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4-Apr-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	17-Apr-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	5-May-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	20-Jun-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4-Jul-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1-Aug-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	13-Sep-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	10-Mar-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	23-Mar-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4-Apr-22	Primary	-		-		-	-	-		-	-	-	-	-	-
	20-Apr-22	Primary	-	-	-		-	-	-	-	-	-			-	-
	2-May-22	Primary	-	-	-			-	-	_	-				-	_
	18-Mgy-22	Primary	-	-	-		-	-	-	-	-	-	-		-	
					-	-	-		-	-	-	-		-		-
	1-Jun-22 28-Jun-22	Primary	-	-				-					-		-	
		Primary	-	-	-	-	-		-	-	-	-	-	-	-	-
	13-Jul-22	Primary	-	-	-	-	-	-	-	-	-		-	-	-	-
	27-Jul-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	8-Aug-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	31-Aug-22	Primary	-	-	-	-	-	-	-	-	-	-			-	-
	6-Sep-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	29-Sep-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Thompson Creek	10-Oct-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(BMT-5)	16-Nov-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	30-Nov-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15-Dec-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11-Jan-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	9-Feb-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	21-Feb-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15-Mar-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	29-Mar-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4-Apr-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	17-Apr-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	5-May-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	20-Jun-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4-Jul-23	Primary	-		-	-	-	-	-	-	-	-	-	-	-	-
	1-Aug-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	13-Sep-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	10-30p-23	THITIGHY	1 -	1 -	1 -	1 -				1 -		1 -	1 -	1 -	1 -	- 1

231445-01 Groundwater & Surface Water Chemitable.xix 10 of 12

				Phenois						Halogenat	ed Phenol	3		Halogen ated
	3/4-Methylphenol (m/p-cresol)	2,4-dimethylphenol	2-methylphenol	2-nifrophenol	4 -chloro-3-methylphenol	Total Phenols	Phenolics Total	2,4,5-trichlorophenol	2,4,6-trichlorophenol	2.4-dichlorophenol	2,6-dichlorophenol	2-chlorophenol	Pentachlorophenol	Hexachlorobenzene
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
LOR	2	1	1	1	1	1	50	1	1	1	1	1	2	0.2
ANZG (2018) Freshwater 95% toxicant DGVs						320			20	160		490	10	
ANZG (2018) Marine water 95% toxicant DGVs						400							22	

Location Code	Field ID	Date	Sample Type							1					1		
		10-Mar-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		23-Mar-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		4-Apr-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		20-Apr-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		2-May-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		18-May-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		1-Jun-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		28-Jun-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		13-Jul-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		27-Jul-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		8-Aug-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		31-Aug-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		6-Sep-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		28-Sep-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Offsh		10-Oct-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(BMT	-3)	16-Nov-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		30-Nov-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		15-Dec-22	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		11-Jan-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		9-Feb-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		21-Feb-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		15-Mar-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		29-Mar-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		4-Apr-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		17-Apr-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		5-May-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		20-Jun-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		4-Jul-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		1-Aug-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		13-Sep-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		20-Jun-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Inshore Boli		4-Jul-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(BM1	-/)	1-Aug-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		13-Sep-23	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface Water (LBW)	o 2023)			r				r	r								
SW01	SW01	7/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SW02	SW02	7/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SW03	SW03	7/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SW04	SW04	7/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SW05	SW05	7/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SW06	SW06	7/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SW07	SW07	7/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SW08	SW08	7/11/2023	Primary	-	-	-	-	-	-	<50		-	-	-	-	-	<0.2
5.700	SW-DUP-1	7/11/2023	Field_D	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SW09	SW09	7/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
		DOW	NSTREAM Minimum	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
		DOW	NSTREAM Maximum	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2

231445-01 Groundwater & Surface Water Chemitoble xits

11 of 12

				Phenois						Ualoaonai	ed Phenols			Halogen
				rnenois						naiogenai	ea rnenoi:	•		ated
	3/4-Methylphenol (m/p-cresol)	2,4-dimethylphenol	2-methylphenol	2 -nitrophenol	4-chloro-3-methylphenol	rotal Phenols	Phenolics Total	2,4,5-trichlorophenol	2,4,6-trichlorophenol	2,4-dichlorophenol	2,6-dichlorophenol	2-chlorophenol	P entachlor ophenol	Hexachlorobenzene
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
LOR	2	1	1	1	1	1	50	1	1	1	1	1	2	0.2
ANZG (2018) Freshwater 95% toxicant DGVs						320			20	160		490	10	
ANZG (2018) Marine water 95% toxicant DGVs						400							22	

Location Code	Field ID	Date	Sample Type														
Groundwater			T		I								ı	I			
SLMW01-P	SLMW01-P	5/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
	SLMW01-P	1/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW01-Q1	SLMW01-Q1	5/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
	SLMW01-Q1	1/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW02-Q1	SLMW02-Q1	5/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
	SLMW02-Q1	1/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW03-Q1	SLMW03-Q1	3/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
	SLMW03-Q1	1/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW04-P	SLMW04-P	8/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
	SLMW04-P	2/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW05-P	SLMW05-P	5/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
	SLMW05-P	1/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
	SLMW05-Q1	5/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW05-Q1	SLMW05-Q1	1/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
	Dup-2	1/11/2023	Interlab_D	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	-
	SLMW06-Q1	3/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW06-Q1	DUP-1	3/05/2023	Interlab_D	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	-
	SLMW06-Q1	1/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW07-Q1	SLMW07-Q1	3/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
	SLMW07-Q1	1/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW08-Q1	SLMW08-Q1	4/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
	DUP 2	4/05/2023	Intralab_D	-	-	-	-	-	-	<500	-	-	-	-	-	-	<0.2
SLMW09-P	SLMW09-P	4/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW10-A	SLMW10-A	2/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW10-B	SLMW10-B	2/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW10-C	SLMW10-C	2/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW11-B	SLMW11-B	2/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW11-C	SLMW11-C	2/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW12-A	SLMW12-A	31/10/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW12-B	SLMW12-B	31/10/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW12-C	SLMW12-C	31/10/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
	DUP-1	31/10/2023	Intralab_D	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW13-A	SLMW13-A	2/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW13-B	SLMW13-B	2/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
SLMW13-C	SLMW13-C	2/11/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
6628-21445	6628-21445	8/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
6628-23298	6628-23298	5/05/2023	Primary	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
	6628-23298	7/11/2023	Primary	-	-	-	-	-	<50	-	-	-	-	-	-	-	<0.2
6528-2628 (offsite)	6528-2628	4/05/2023	Primary	-	-	-	-	-	-	<500	-	-	-	-	-	-	<0.2
		ONSITE GROU	NDWATER Minimum	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2
		ONSITE GROUP	NDWATER Maximum	-	-	-	-	-	-	<50	-	-	-	-	-	-	<0.2

231445-01 Groundwater & Surface Water Chemitoble sits

12 of 12

Appendix K

Laboratory Certificates and Chain of Custody Documentation

LABORATORY TESTING ORDER

Project Title: Riverlea Dewatering Assessment

Job Number: 231445-01 Froject Manager: Tess O'Leary

Phone: 08 8331 2417

Results for results a lowce com au. lowce sestas com au

Invoice to: Imance #lbwco.com.as:

LBW co's COC REFERENCE (sample delivery group)

231445-01_COC_20230503

Primary Laboratory: Eurofine
Laboratory Quote Ref: 2303031.BWS

Secondary Laboratory: ALS

Laboratory Quote Ref: ADBQ-001-18_LBWco_SO

Ternaround Required

Standard (5 Day)

	CHEMICAL TESTING REQUIRED																														
Date Sampled	ŝample ID	Sample Mahtx	Additional Information / Comments	OD 5 Dey	_	-	2	A (plus additional metals)	119E	ů	Mate as S	iffide as 3	S az eliji	yanide	renotics (total) - Spectrophotometric lechnique		H C4-C10		-5 (13 Metals)	-4 (TRH/NTEX)	075 (OC!)	F375A (Phenob)	030 (BOD 5 day)	(DOAT (suitode)	1085 (swiftde)	tal Suspended Solids	ki Dissolved Solids	ranide (lakal)	026 (sulfite)	I-BA	alo
03-May-23	I G-COWMJ2	Water		х	×	x	×	Х	X	×	X	X	×	X	×	3	-	+	3	3	-	-	2	-	8	.0	- 0	0	=	2	¥
03-May-23	\$1WW04-Q1	Water		х	×	х	×	х	×	×	×	x	×	×	×																
03-May-23	SLAW07-Q1	Water		×	×	×	×	×	×	×	×	x	×	x	×		1								-						
03-May-23	DUP-1	Water	Forward to ALS														1	†	X	х	х	х	х	х	x	х	×	х	х	X	
03-May-23	MINSE-1	Water														×															x
03-May-23	TB-1	Water															×														X
LIST CO AUTHORISATION LASGRATORY RECEIPT		3	3	3	3	3	3	3	3	3	3	3	3	1	1	0	1	1	1	1	1	1	1	Т	1	1	,	-	22		
Decembed by: O'Leany Deletion Deletio																Please forw	ard sample	DUP-1 to A	LS for cancily	nis											

415/23

184 Megili Road, Norwood SA 5067 PO Box 225 Stepney SA 5069 P: 08 8331 2417 F: 08 6331 2415

LABORATORY TESTING ORDER

Project Tille: Riverlea Dewatering Assessment

Job Wumber: 23144S-01 Project Manager: Tess O'Leary

Small I sigle # Bowse.com.ou

Phone: 08 8331 2417

Results to: (esults a lowco.com.au, lowco.cesdat.com.au

Invoice to: Imance / Ibwco.com.or.

Primary Laboratory: Evrofin Laboratory Quote Ref: 230303LBWS

Secondary Laboratory; ALS

Laboratory Quote Ref: ADBQ-001-18_LBWco_SO

LBW co's COC REFERENCE (sample deliberry group)

231445-01_COC_20230503

Tumaround Required

Standard (5 Day)

	EAJ													_	CHE	MICAL TE	TING NEQ		-												
Dof# Scrripled	Sample ID	Sample Metric	Additional information / Comments	OD 8 Day	=		80	A (plus addilland melds)	360	- D	effective on S	Mide as \$	en 3	yanida	senolics (foldi) - Specirophotometra technique	13	IN CA-CIO		-2 (13 Meldis)	ф (тви/втво) 	107S (OCF)	075A (Phancib)	030 (BOD 5 day)	1041 (sufficte)	D085 (evilide)	fall Suspanded Solids	lal Dissalved Solids	whide (total)	IIS6 (suditio)	44	
03-May-23	\$LMW03-Q1	Water		×	х	х	×	х	×	х	×	X	X	x	х	- 2	E			- 5		- 8	=	-2-	-10	-2-		.0	- 9	_=	\vdash
03-May-23	SEMWO4-Q1	Worter		×	х	х	х	х	Х	x	×	х	х	х	×																
03-May-23	\$LMW07-Q1	Water		×	×	×	×	х	х	х	X	x	x	х	×																\Box
03-May-23	DU?-1	Water	Forward to ALS																×	х	х	x	x	Х	X	х	х	χ	x	X	Т
03-May-23	MNSE-1	Water														х															T
03-Mary-23	TB-1	Water		1						_							х														F
																												V			
																												Ì			
																												. А . 31.			
																															-
LBW co AU	THORISATION	LAI	ORATORY RECEIPT	3	3	3	3	3	3	3	3	3	3	3	3	_	1	0	1	,	_										F
referd by:		Becelved by:	AT NAMED T	, ·		9	· ·	3	3	3	3	3	3	3	- 3		kdditional	_		1	1	_ [1 ,	1	1	1	1	1_	1	1	2

Please forward sample DUP-1 to ALS for analysis
Analysis as per quote 23030318WS

4986469 4/5/43

Tyrone Gowans

Tess O Leary <tess.oleary@lbwco.com.au> Wednesday, 3 May 2023 5:44 PM From: Sent:

#AU_CAU001_EnviroSampleVic; Amy Meunier

öö

Jarrod Bishop

231445-01_LTO_230503.pdf LTO for Job 231445-01 **Attachments: Subject:**

Categories: Incoming Transit

CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins. Do not click on links or open attachments unless you recognise the sender and are certain that the content is safe.

Hi Amy / Sample Receipt

Please find attached testing order for water samples dropped to Parimal this afternoon. Please use quote 230303LBWS.

Let me know if there are any queries relating to this.

Kind regards

Tess

Tess O'Leary

Senior Environmental Advisor | Team Leader

The last 15 years wouldn't have been possible without our fabulous team, our valued clients, our trusted suppliers, and our support network. We wouldn't be LBWco without you all - thank you!

4986469

SAMPLE REGISTER & CHAIN OF CUSTODY

Project Title: Riverleaded and ALT WATER OF WATER US

Project manager: Annabel Geitz Job Number:

Email: annabel.geitz@lbwco.com.au

Send results to: results@lbwco.com.au Send invoice to: finance@lbwco.com.au Phone: 8331 2417

Primary Lab: Eurofins Lab Quote Ref: Price Book 2017-2018

Secondary lab: ALS

ADBQ-001-18_LBWco_SO

281445-01_Coc 2023 05 09 COC Reference: (sample delivery group)

Sample Custody - Step 1	Relinqished by Chermo Saker	3/5/23 4.00 pm Signature: 90 All	Courier and consignment number: Received by:	Date/Time Received:	Signature:	Relingished by:	Date/Time Relinquished:	Courier and consignment number:	Received by: Date/Time Received:	Signature:	Page of 1
Sample Details 2	SLMW06-Q1 LBW Job#: 231445-01 Matrix: Water Date: . O3 /05/2023	DUP-1 LBW Job#: 231445-01 Matrix: Water Date: . 03 /05/2023	78-1 23/445-01 3/5/23								
Sample Details 1	51mV03-@1 231415-01 WATER 03/05/2023	SLMW07-Q1 LBW Job#: 231445-01 Matrix: Water Date: . 93 /05/2023	RINJE-1 231445-01 3/5/23								

www.eurofins.com.au

EnviroSales@eurofins.com

Penrose,

Auckland 1061

IANZ# 1327

Tel: +64 9 526 45 51

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091

Canberra

1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600

Brisbane

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 25403 NATA# 1261 Site# 25466 NATA# 1261 Site# 25466 NATA# 1261 Site# 2579 & 25289

ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444

NATA# 2377 Site# 2370

NZBN: 9429046024954 Auckland 35 O'Rorke Road

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Sample Receipt Advice

Company name:

LBW co Pty Ltd

Contact name: Project name:

- cc ALL RESULTS - SEND TO PM AS WELL RIVERLEA DEWATERING ASSESSMENT

Project ID:

231445-01 5 Day

Turnaround time: Date/Time received

May 3, 2023 5:44 PM

Eurofins reference

986469

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Samples received by the laboratory after 5.30pm are deemed to have been received the following working day.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Amy Meunier on phone: or by email: AmyMeunier@eurofins.com

Results will be delivered electronically via email to - cc ALL RESULTS - SEND TO PM AS WELL - results@lbwco.com.au.

Note: A copy of these results will also be delivered to the general LBW co Pty Ltd email address.

LBW co Pty Ltd 184 Magill Road Norwood SA 5069

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: TESS O'LEARY

Report 986469-W

Project name RIVERLEA DEWATERING ASSESSMENT

Project ID 231445-01 Received Date May 03, 2023

Client Sample ID			SLMW03-Q1	SLMW06-Q1	SLMW07-Q1	RINSE-1
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- My0011351	M23- My0011352	M23- My0011353	M23- My0011354
Date Sampled			May 03, 2023	May 03, 2023	May 03, 2023	May 03, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons		-				
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	-
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	-
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	-
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	-
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	-
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	-
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	< 0.02	-
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	-
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	< 0.05	< 0.05	-
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	-
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	-
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	< 0.1	-
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	-
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	-
4-Bromofluorobenzene (surr.)	1	%	102	112	123	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	-
Organochlorine Pesticides						
Chlordanes - Total	0.002	mg/L	< 0.002	< 0.002	< 0.002	-
4.4'-DDD	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
4.4'-DDE	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
4.4'-DDT	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
a-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Aldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
b-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
d-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Dieldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Endosulfan I	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Endosulfan II	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Endosulfan sulphate	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-

Client Sample ID			SLMW03-Q1	SLMW06-Q1	SLMW07-Q1	RINSE-1
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- My0011351	M23- My0011352	M23- My0011353	M23- My0011354
Date Sampled			May 03, 2023	May 03, 2023	May 03, 2023	May 03, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides	<u> </u>					
Endrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Endrin aldehyde	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Endrin ketone	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
g-HCH (Lindane)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Heptachlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Heptachlor epoxide	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Hexachlorobenzene	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Methoxychlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Toxaphene	0.005	mg/L	< 0.005	< 0.005	< 0.005	-
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	-
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	-
Dibutylchlorendate (surr.)	1	%	59	91	80	-
Tetrachloro-m-xylene (surr.)	1	%	68	103	88	-
, i (iii)						
Ammonia (as N)	0.01	mg/L	0.03	< 0.01	0.06	-
Biochemical Oxygen Demand (BOD-5 Day)	5	mg/L	< 5	< 5	< 5	_
Chromium (hexavalent)	0.005	mg/L	< 0.005	< 0.005	< 0.005	_
Cyanide (total)	0.005	mg/L	< 0.005	< 0.005	< 0.005	_
Nitrate & Nitrite (as N)	0.05	mg/L	0.11	1.1	2.4	_
Nitrate (as N)	0.02	mg/L	0.11	1.1	2.3	-
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02	0.13	-
Organic Nitrogen (as N)*	0.2	mg/L	0.97	< 0.2	8.04	-
pH (at 25 °C)	0.1	pH Units	7.9	8.2	8.3	-
Phenolics (total)	0.05	mg/L	< 0.05	< 0.05	< 0.05	-
Phosphate total (as P)	0.01	mg/L	0.21	0.10	0.21	-
Phosphorus reactive (as P)	0.01	mg/L	0.03	0.02	0.09	-
Sulphate (as SO4)	5	mg/L	1200	780	870	-
Sulphide (as S)	0.1	mg/L	< 0.1	< 0.1	< 0.1	-
Sulphite (as S)	0.5	mg/L	< 50	< 1	< 1	-
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	9700	5600	7000	-
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	1.0	< 0.2	8.1	-
Total Nitrogen (as N)*	0.2	mg/L	1.11	1.1	10.5	-
Total Suspended Solids Dried at 103 °C to 105 °C	5	mg/L	9800	160	53	-
Heavy Metals		, J				
Aluminium	0.05	mg/L	< 0.05	< 0.05	< 0.05	-
Arsenic	0.001	mg/L	< 0.001	< 0.001	0.002	-
Arsenic (filtered)	0.001	mg/L	-	-	-	< 0.001
Barium	0.02	mg/L	0.02	< 0.02	0.03	-
Beryllium	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Beryllium (filtered)	0.001	mg/L	-	-	-	< 0.001
Boron	0.05	mg/L	4.0	5.6	7.4	-
Boron (filtered)	0.05	mg/L			-	< 0.05
Cadmium	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	
Cadmium (filtered)	0.0002	mg/L	-	-	-	< 0.0002
Chromium	0.0002	mg/L	< 0.001	0.002	< 0.001	
Chromium (filtered)	0.001	mg/L		-		< 0.001
Cobalt	0.001	mg/L	0.002	< 0.001	< 0.001	1 0.001

Client Sample ID			SLMW03-Q1	SLMW06-Q1	SLMW07-Q1	RINSE-1
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- My0011351	M23- My0011352	M23- My0011353	M23- My0011354
Date Sampled			May 03, 2023	May 03, 2023	May 03, 2023	May 03, 2023
Test/Reference	LOR	Unit				
Heavy Metals						
Cobalt (filtered)	0.001	mg/L	-	-	-	< 0.001
Copper	0.001	mg/L	0.003	0.002	0.004	-
Copper (filtered)	0.001	mg/L	-	=	=	< 0.001
Iron	0.05	mg/L	< 0.05	< 0.05	< 0.05	-
Lead	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Lead (filtered)	0.001	mg/L	-	=	=	< 0.001
Manganese	0.005	mg/L	0.16	0.035	0.014	-
Manganese (filtered)	0.005	mg/L	-	=	=	< 0.005
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	-
Mercury (filtered)	0.0001	mg/L	-	-	=	< 0.0001
Nickel	0.001	mg/L	0.019	0.003	0.027	-
Nickel (filtered)	0.001	mg/L	-	-	=	< 0.001
Selenium	0.001	mg/L	0.001	0.019	0.066	-
Selenium (filtered)	0.001	mg/L	-	-	=	< 0.001
Silver	0.005	mg/L	< 0.005	< 0.005	< 0.005	-
Tin	0.005	mg/L	< 0.005	< 0.005	< 0.005	-
Zinc	0.005	mg/L	0.009	0.009	< 0.005	-
Zinc (filtered)	0.005	mg/L	-	-	-	< 0.005

Client Sample ID			TB-1
Sample Matrix			Water
Eurofins Sample No.			M23- My0011355
Date Sampled			May 03, 2023
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons			
TRH C6-C10	0.02	mg/L	< 0.02

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B6A			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Melbourne	May 05, 2023	7 Days
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	May 05, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40	Mallaguna	May 05, 0000	7 Davis
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	May 05, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40 BTEX	Melbourne	May 05, 2023	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Chromium (hexavalent)	Melbourne	May 05, 2023	28 Days
- Method: LTM-INO-4100 Hexavalent Chromium by Spectrometric detection			
NEPM 2013 Metals : Metals M12	Melbourne	May 05, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Total Recoverable Hydrocarbons	Melbourne	May 05, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Organochlorine Pesticides	Melbourne	May 05, 2023	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)			
Biochemical Oxygen Demand (BOD-5 Day)	Melbourne	May 05, 2023	2 Days
- Method: LTM-INO-4010 Biochemical Oxygen Demand (BOD5) in Water		•	·
Cyanide (total)	Melbourne	May 05, 2023	14 Days
- Method: LTM-INO-4020 Total Free WAD Cyanide by CFA		, ,	,
pH (at 25 °C)	Melbourne	May 05, 2023	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE		.,,	
Phenolics (total)	Melbourne	May 05, 2023	7 Days
- Method: LTM-INO-4050 Total Phenolics in Waters and solids by CFA		,,	, .
Sulphate (as SO4)	Melbourne	May 05, 2023	28 Days
- Method: LTM-INO-4110 Sulfate by Discrete Analyser		ay 00, 2020	20 20,0
Sulphide (as S)	Melbourne	May 09, 2023	7 Days
- Method: LTM-INO-4011 Suphide		ay 00, 2020	. 24,0
Sulphite (as S)	Melbourne	May 05, 2023	28 Days
- Method: LTM-INO-4240 Sulfite & Thiosulfate in Water		ay 00, 2020	20 20,0
Total Suspended Solids Dried at 103 °C to 105 °C	Melbourne	May 05, 2023	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry		ay 00, 2020	. 24,0
Heavy Metals	Melbourne	May 11, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS	Moleculio	May 11, 2020	20 24,0
NEPM 2013 Filtered Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)	Melbourne	May 05, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS		• .	•
Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P			
Ammonia (as N)	Melbourne	May 05, 2023	28 Days
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA		· , · · · ·	
Nitrate & Nitrite (as N)	Melbourne	May 05, 2023	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA		,,	
Nitrate (as N)	Melbourne	May 05, 2023	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA		ay 00, 2020	20 24,0
Nitrite (as N)	Melbourne	May 05, 2023	2 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA	Molodanio	May 00, 2020	2 Dayo
Organic Nitrogen (as N)*	Melbourne	May 11, 2023	7 Days
- Method: APHA 4500 Organic Nitrogen (N)	Moisounio	may 11, 2020	. Days
Phosphate total (as P)	Melbourne	May 05, 2023	28 Days
	MODOUITIE	141ay 00, 2020	20 Days
- Method: LTM-INO-4040 Phosphate by CFA Phosphorus reactive (as P)	Melbourne	May 05, 2023	2 Days
i moophorus reactive (as i)	MICIDOUITIE	way 00, 2023	2 Days

Description	Testing Site	Extracted	Holding Time
- Method: APHA 4500-P			
Total Kjeldahl Nitrogen (as N)	Melbourne	May 05, 2023	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Total Dissolved Solids Dried at 180 °C ± 2 °C	Melbourne	May 05, 2023	28 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 1/21 Smallwood Place

Newcastle 1/2 Frost Drive Tel: +61 2 4968 8448

Mayfield West NSW 2304 NATA# 1261 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd ABN: 91 05 0159 898 NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061

Tel: +64 9 526 45 51

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Company Name:

Address:

LBW co Pty Ltd

184 Magill Road Norwood

SA 5069

Order No.: Report #:

986469

Brisbane

Murarrie

QLD 4172

Tel: +61 7 3902 4600

Phone: 08 8331 2417 08 8331 2415 Fax:

May 3, 2023 5:44 PM Due: May 9, 2023 Priority: 5 Dav

Perth

Welshpool

WA 6106

Received:

46-48 Banksia Road

Tel: +61 8 6253 4444

NATA# 2377 Site# 2370

Contact Name: - cc ALL RESULTS - SEND TO PM

IANZ# 1327

Project Name: Project ID:

RIVERLEA DEWATERING ASSESSMENT

231445-01

Eurofins Analytical Services Manager: Amy Meunier

		Sa	mple Detail			Biochemical Oxygen Demand (BOD-5 Day)	Cyanide (total)	pH (at 25 °C)	Phenolics (total)	Sulphate (as SO4)	Sulphide (as S)	Sulphite (as S)	Total Suspended Solids Dried at 103 °C to 105 °C	TRH C6-C10	Organochlorine Pesticides	Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P	Eurofins Suite B6A	NEPM 2013 Filtered Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn,	Total Dissolved Solids Dried at 180 °C ± 2 °C
Melb	ourne Laborato	ory - NATA # 12	61 Site # 12	54		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х
Exte	rnal Laboratory	,																	
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID														
1	SLMW03-Q1	May 03, 2023		Water	M23-My0011351	Χ	Х	Х	Х	Х	Χ	Х	Х		Х	Х	Χ		X
2	SLMW06-Q1	May 03, 2023		Water	M23-My0011352	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Χ		Χ
3	SLMW07-Q1	May 03, 2023		Water	M23-My0011353	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Χ		Χ
4	RINSE-1	May 03, 2023		Water	M23-My0011354													Х	
5	TB-1	May 03, 2023		Water	M23-My0011355									Χ					
Test	Counts					3	3	3	3	3	3	3	3	1	3	3	3	1	3

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant, Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre µg/L: micrograms per litre

ppm: parts per million ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report
CRM Certified Reference Material (ISO17034) - reported as percent recovery

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Heavy Metals					
Aluminium	mg/L	< 0.05	0.05	Pass	
Arsenic	mg/L	< 0.001	0.001	Pass	
Barium	mg/L	< 0.02	0.02	Pass	
Beryllium	mg/L	< 0.001	0.001	Pass	
Boron	mg/L	< 0.05	0.05	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Cobalt	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Iron	mg/L	< 0.05	0.05	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Manganese	mg/L	< 0.005	0.005	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Selenium	mg/L	< 0.001	0.001	Pass	
Silver	mg/L	< 0.005	0.005	Pass	
Tin	mg/L	< 0.005	0.005	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery	IIIg/L	< 0.005	0.003	1 033	
Total Recoverable Hydrocarbons		T T			
•	%	102	70 120	Door	
TRH C6-C9 TRH C6-C10	%	103	70-130	Pass	
	%	104	70-130	Pass	
LCS - % Recovery BTEX		T		I	
	%	00	70-130	Dana	
Benzene		89		Pass	
Toluene	%	86	70-130	Pass	
Ethylbenzene	%	87	70-130	Pass	
m&p-Xylenes	%	93	70-130	Pass	
Xylenes - Total*	%	91	70-130	Pass	
LCS - % Recovery		Т		T	
Total Recoverable Hydrocarbons - 2013 NEPM Fract				_	
Naphthalene	%	94	70-130	Pass	
LCS - % Recovery				T	
Organochlorine Pesticides					
Chlordanes - Total	%	89	70-130	Pass	
4.4'-DDD	%	102	70-130	Pass	
4.4'-DDE	%	93	70-130	Pass	
4.4'-DDT	%	93	70-130	Pass	
a-HCH	%	93	70-130	Pass	
Aldrin	%	87	70-130	Pass	
b-HCH	%	97	70-130	Pass	
d-HCH	%	97	70-130	Pass	
Dieldrin	%	92	70-130	Pass	
Endosulfan I	%	92	70-130	Pass	
Endosulfan II	%	93	70-130	Pass	
Endosulfan sulphate	%	101	70-130	Pass	
Endrin	%	108	70-130	Pass	
Endrin aldehyde	%	89	70-130	Pass	
Endrin ketone	%	91	70-130	Pass	
g-HCH (Lindane)	%	93	70-130	Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Heptachlor			%	101			70-130	Pass	
Heptachlor epoxide			%	88			70-130	Pass	
Hexachlorobenzene			%	87			70-130	Pass	
Methoxychlor			%	97			70-130	Pass	
LCS - % Recovery									
Total Kjeldahl Nitrogen (as N)			%	84			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				Dogult 1					
Total Recoverable Hydrocarbons		СР	0/	Result 1			70.420	Doos	
TRH C6-C9 TRH C6-C10	M23-My0011351	CP	<u>%</u> %	106			70-130	Pass	
	M23-My0011351	[CP]	<u> </u>	105			70-130	Pass	
Spike - % Recovery				Desult 4			T		
BTEX	M00 M 0044054	CD.	0/	Result 1			70.400	Dana	
Benzene	M23-My0011351	CP	%	98			70-130	Pass	
Toluene	M23-My0011351	CP	%	94			70-130	Pass	
Ethylbenzene	M23-My0011351	CP	%	95			70-130	Pass	
m&p-Xylenes	M23-My0011351	CP	%	103			70-130	Pass	
o-Xylene	M23-My0011351	CP	%	96			70-130	Pass	
Xylenes - Total*	M23-My0011351	CP	%	101			70-130	Pass	
Spike - % Recovery				T			1	l	
Total Recoverable Hydrocarbons				Result 1				_	
Naphthalene	M23-My0011351	CP	%	86			70-130	Pass	
Spike - % Recovery				T			T		
				Result 1				_	
Total Kjeldahl Nitrogen (as N)	M23-My0011351	CP	%	74			70-130	Pass	
Spike - % Recovery				T			T		
Heavy Metals	T			Result 1				_	
Arsenic	M23-My0011351	CP	%	92			75-125	Pass	
Barium	M23-My0011351	CP	%	120			75-125	Pass	
Beryllium	M23-My0011351	CP	%	92			75-125	Pass	
Cadmium	M23-My0011351	CP	%	84			75-125	Pass	
Chromium	M23-My0011351	CP	%	100			75-125	Pass	
Cobalt	M23-My0011351	CP	%	95			75-125	Pass	
Copper	M23-My0011351	CP	%	96			75-125	Pass	
Lead	M23-My0011351	CP	%	84			75-125	Pass	
Mercury	M23-My0011351	CP	%	91			75-125	Pass	
Nickel	M23-My0011351	CP	%	110			75-125	Pass	
Selenium	M23-My0011351	CP	%	86			75-125	Pass	
Silver	M23-My0011351	CP	%	80			75-125	Pass	
Tin	M23-My0011351	CP	%	93			75-125	Pass	
Zinc	M23-My0011351	CP QA	%	119			75-125 Acceptance	Pass Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Qualifying Code
Duplicate						_			
Heavy Metals	T			Result 1	Result 2	RPD			
Aluminium	M23-My0011351	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Arsenic	M23-My0011351	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Barium	M23-My0011351	CP	mg/L	0.02	0.02	<1	30%	Pass	
Beryllium	M23-My0011351	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Boron	M23-My0011351	CP	mg/L	4.0	4.0	<1	30%	Pass	
Cadmium	M23-My0011351	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	M23-My0011351	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt	M23-My0011351	CP	mg/L	0.002	0.002	<1	30%	Pass	
Copper	M23-My0011351	CP	mg/L	0.003	0.003	<1	30%	Pass	l

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Iron	M23-My0011351	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Lead	M23-My0011351	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese	M23-My0011351	CP	mg/L	0.16	0.16	<1	30%	Pass	
Mercury	M23-My0011351	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	M23-My0011351	CP	mg/L	0.019	0.019	<1	30%	Pass	
Selenium	M23-My0011351	СР	mg/L	0.001	0.001	<1	30%	Pass	
Silver	M23-My0011351	СР	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Tin	M23-My0011351	СР	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc	M23-My0011351	СР	mg/L	0.009	0.009	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Ammonia (as N)	M23-My0011352	СР	mg/L	< 0.01	0.01	29	30%	Pass	
Nitrate & Nitrite (as N)	M23-My0011352	СР	mg/L	1.1	1.2	2.0	30%	Pass	
Nitrite (as N)	M23-My0011352	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Authorised by:

N02

Amy Meunier Analytical Services Manager Edward Lee Senior Analyst-Organic Emily Rosenberg Senior Analyst-Metal Senior Analyst-Volatile Harry Bacalis Mary Makarios Senior Analyst-Inorganic Mary Makarios Senior Analyst-Metal Mele Singh Senior Analyst-Volatile

General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

LABORATORY TESTING ORDER

rioject tille; kiveried Dewatering Assessment	
Job Number: 231445-01	Primary Laboratory: Eurofins
ect Manager: Tess O'Leary	Laboratory Quote Ref: 230303LBWS
Email: † ss.ole ry@lbwco.com.au	
Phone: 08 8331 2417	Secondary Laboratory: ALS
Results to: results@lbwco.com.au bwco@esdat.com.au	Laboratory Quote Ref: ADBQ-001-18_LBWco_SO
Involce to: finance@lbwco.com.au	

LBW co's COC REFERENCE (sample delivery group) Turnaround Required 231445-01_COC_20230504 Standard (5 Day)

SAMPLE DETAILS							_	_	_	CHEMI	ICAL TE	STING F	EQUIRE	D					
Date Sampled	Sample ID	Sample Matrix	Additional information / Comments	BOD 5 Day	на	155	TDS	B6A (plus additional metals)	819E	OCP	Sulfate as S	Suffide as S	Sulfite as S	Cyanide	Phenolics (total) - Spectrophotometric technique	M13	RH C6-C10		200
04-May-23	SLMW08-Q1	Water		х	х	х	х	х	×	x	X	X	X	×	X	>	F		+
04-May-23	6528-2628	Water		х	х	х	х	х	х	х	х	х	х	×	×				
04-May-23	SLMW09-P	Water		х	х	х	х	х	х	х	х	х	х	х	×				
04-May-23	RINSE-2	Water														х			1
04-May-23	TB-02	Water															х		
	HORISATION		TORY RECEIPT	3	3	3	3	3	3	3	3	3	3	3	3	1	1	0	19
vested by: D'Leary s\time requested: -May-23		Received by: Date\time received:									itional (
alure		Signature:							Ar	nalysis a	s ber qu	or e 230	303LBWS	i					

986841 515 Page 1 of 1

Tyrone Gowans

From:

Amy Meunier

Sent:

Thursday, 4 May 2023 6:17 PM

To:

#AU_CAU001_EnviroSampleVic

Subject:

FW: Testing Order - Job 231445-01 231445-01 LTO 230504.pdf

Categories:

Attachments:

Incoming Transit

INFO: INTERNAL EMAIL - Sent from your own Eurofins email domain.

COC attached for transit samples tomorrow.

Kind regards,

Amy Meunier

Analytical Services Manager

Mobile: +61 477 574 867

Email: AmyMeunier@eurofins.com

Eurofins

6 Monterey Road. Dandenong VIC 3175

Australia

To see Eurofins full Field Services Capabilities click here

From: Tess O Leary <tess.oleary@lbwco.com.au>

Sent: Thursday, 4 May 2023 5:41 PM

To: #AU_CAU001_EnviroSampleVic <EnviroSampleVic@eurofins.com>; Amy Meunier <AmyMeunier@eurofins.com>

Cc: Jarrod Bishop <jarrod.bishop@lbwco.com.au>

Subject: Testing Order - Job 231445-01

CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins.

Do not click on links or open attachments unless you recognise the sender and are certain that the content is safe.

Hi Amy

Please see attached testing order for samples dropped to Parimal this afternoon.

If there are any queries, please let me know.

Kind regards

Tess

Tess O'Leary

Senior Environmental Advisor | Team Leader

井986841

SAMPLE REGISTER & CHAIN OF CUSTODY

Project Title: Riverlea Dewatering GME

Job Number: 2004 23/445-01

Project manager: Annabel Geitz

Email: annabel.geitz@lbwco.com.au

Phone: 8331 2417

Send results to: results@lbwco.com.au Send invoice to: finance@lbwco.com.au Primary Lab: Eurofins

Lab Quote Ref: Price Book 2017-2018

Secondary lab: Envirolab

19SA158

COC Reference: (sample delivery group)

231445-01_COC_ COZ\$ P5 OL

Sample Details 1	Sample Details 2	Sample Custody - Step 1
SLMW08-Q1	6528-2628	Relinaished by:
LBW Job#: 231445-01	LBW Job#: 231445-01	
Matrix: Water	Matrix: Water	Gaetano Garfi
Date: . O 4 /05/2023	Date: . 84 /05/2023	Date/Time Relinquished:
T8-0Z	Rinse-2	Oh/05/2023 3.50pm
231446-01	LBW Job#: 231445-01	
	Matrix: Water	Signature:
04/05/2023	Date: . 94 /05/2023	Goels Guels
		- Jan 1
		Courier and consignment number:
		Received by:
		1 0 00 1
		Palfmal.
		Date/Time Received:
		04/05 LUDM.
		04/05 Appm.
		Signature:
		7
		Sample Custody - Step 2 Relingished by:
		Reiniqished by.
		Date/Time Relinquished:
		Signature:
		-
		Courier and consignment number:
		Received by:
		Date/Time Received: 515
		**
		Date/Time Received: 515
		Tell
		Signature:
		Dana 1 of

Tyrone Gowans

From: Tess O Leary <tess.oleary@lbwco.com.au>

Sent: Monday, 8 May 2023 8:48 AM

To: #AU_CAU001_EnviroSampleVic; Amy Meunier

Subject: RE: Eurofins Sample Receipt Advice - Report 986841 : Site RIVERLEA DEWARTERING

ASSESSMENT (231445-01)

Importance: High

Follow Up Flag: Follow up Flag Status: Flagged

CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins.

Do not click on links or open attachments unless you recognise the sender and are certain that the content is safe.

Hi Amy / Sample Receipt

Could you please assign testing to sample DUP-2? Same testing as sample SLMW08-Q1.

Thanks

Tess

Tess O'Leary

Senior Environmental Advisor | Team Leader

08 8331 2417 0405 480 106 www.lbwco.com.au

From: EnviroSampleVic@eurofins.com <EnviroSampleVic@eurofins.com>

Sent: Friday, May 5, 2023 3:04 PM

To: Tess O Leary <tess.oleary@lbwco.com.au>

Subject: Eurofins Sample Receipt Advice - Report 986841 : Site RIVERLEA DEWARTERING ASSESSMENT (231445-01)

Dear Valued Client,

Sample DUP 2 received instead of SLMW09-P

Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chain-of-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins | mgt

LBW co Pty Ltd 184 Magill Road Norwood SA 5069

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: TESS O'LEARY

Report 986841-W

Project name RIVERLEA DEWARTERING ASSESSMENT

Project ID 231445-01
Received Date May 05, 2023

Client Sample ID			SLMW08-Q1	6528-2628	RINSE-2	TB-02
Sample Matrix			Water	Water	Water	Water
Function Commis No.			M23-	M23-	M23-	M23-
Eurofins Sample No.			My0014385	My0014386	My0014387	My0014388
Date Sampled			May 04, 2023	May 04, 2023	May 04, 2023	May 04, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	1	Г				
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	-	-
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	-	-
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	-	-
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	-	-
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	-	-
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	-	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	-	-
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	-	-
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	< 0.05	-	-
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	-	-
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	-	-
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	-	-
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	-	-
Toluene	0.001	mg/L	< 0.001	< 0.001	-	-
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	=	-
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	=	-
o-Xylene	0.001	mg/L	< 0.001	< 0.001	=	-
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	=	-
4-Bromofluorobenzene (surr.)	1	%	105	101	=	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	-	-
Organochlorine Pesticides						
Chlordanes - Total	0.002	mg/L	< 0.002	< 0.002	-	-
4.4'-DDD	0.0002	mg/L	< 0.0002	< 0.0002	-	-
4.4'-DDE	0.0002	mg/L	< 0.0002	< 0.0002	-	-
4.4'-DDT	0.0002	mg/L	< 0.0002	< 0.0002	-	-
a-HCH	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Aldrin	0.0002	mg/L	< 0.0002	< 0.0002	-	-
b-HCH	0.0002	mg/L	< 0.0002	< 0.0002	-	-
d-HCH	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Dieldrin	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Endosulfan I	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Endosulfan II	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Endosulfan sulphate	0.0002	mg/L	< 0.0002	< 0.0002	_	_

Client Comple ID			01.181400.04	0500 0000	D.110E 0	TD 00
Client Sample ID			SLMW08-Q1	6528-2628	RINSE-2	TB-02
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- My0014385	M23- My0014386	M23- My0014387	M23- My0014388
Date Sampled			May 04, 2023	May 04, 2023	May 04, 2023	May 04, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides	•					
Endrin	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Endrin aldehyde	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Endrin ketone	0.0002	mg/L	< 0.0002	< 0.0002	_	-
g-HCH (Lindane)	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Heptachlor	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Heptachlor epoxide	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Hexachlorobenzene	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Methoxychlor	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Toxaphene	0.005	mg/L	< 0.005	< 0.005	-	-
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	-	-
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	-	-
Dibutylchlorendate (surr.)	1	%	55	72	-	-
Tetrachloro-m-xylene (surr.)	1	%	72	84	-	-
	<u>'</u>	•				
Ammonia (as N)	0.01	mg/L	0.21	0.89	-	-
Biochemical Oxygen Demand (BOD-5 Day)	5	mg/L	< 5	< 5	-	-
Chromium (hexavalent)	0.005	mg/L	< 0.005	< 0.005	< 0.005	-
Cyanide (total)	0.005	mg/L	< 0.005	< 0.005	-	-
Nitrate & Nitrite (as N)	0.05	mg/L	0.11	< 0.05	_	-
Nitrate (as N)	0.02	mg/L	0.11	< 0.02	_	-
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02	_	-
Organic Nitrogen (as N)*	0.2	mg/L	1.69	1.31	_	-
pH (at 25 °C)	0.1	pH Units	8.0	7.6	_	-
Phenolics (total)	0.05	mg/L	< 0.05	< 0.5	-	-
Phosphate total (as P)	0.01	mg/L	0.04	0.85	-	-
Phosphorus reactive (as P)	0.01	mg/L	0.02	0.02	-	-
Sulphate (as SO4)	5	mg/L	750	7600	-	-
Sulphide (as S)	0.1	mg/L	< 0.1	< 0.1	-	-
Sulphite (as SO3)	0.5	mg/L	< 6.5	< 6.5	-	-
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	5900	99000	-	-
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	1.9	2.2	-	-
Total Nitrogen (as N)*	0.2	mg/L	2.01	2.2	-	-
Total Suspended Solids Dried at 103 °C to 105 °C	5	mg/L	24	1200	-	-
Heavy Metals						
Aluminium (filtered)	0.05	mg/L	< 0.05	< 0.05	-	-
Arsenic (filtered)	0.001	mg/L	< 0.001	0.002	< 0.001	-
Barium (filtered)	0.02	mg/L	0.07	0.05	-	-
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Boron (filtered)	0.05	mg/L	1.4	11	< 0.05	-
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	-	-
Cobalt (filtered)	0.001	mg/L	0.001	0.005	< 0.001	-
Copper (filtered)	0.001	mg/L	0.002	0.048	< 0.001	-
Iron (filtered)	0.05	mg/L	< 0.05	< 0.05	-	-
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Manganese (filtered)	0.005	mg/L	0.036	0.17	< 0.005	-
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	-

Client Sample ID			SLMW08-Q1	6528-2628	RINSE-2	TB-02
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- My0014385	M23- My0014386	M23- My0014387	M23- My0014388
Date Sampled			May 04, 2023	May 04, 2023	May 04, 2023	May 04, 2023
Test/Reference	LOR	Unit				
Heavy Metals						
Nickel (filtered)	0.001	mg/L	0.031	0.018	< 0.001	-
Selenium (filtered)	0.001	mg/L	0.006	< 0.001	< 0.001	-
Silver (filtered)	0.005	mg/L	< 0.005	< 0.005	-	-
Tin (filtered)	0.005	mg/L	< 0.005	< 0.005	-	-
Zinc (filtered)	0.005	mg/L	0.006	0.027	< 0.005	-

Client Sample ID			DUP 2
Sample Matrix			Water
			M23-
Eurofins Sample No.			My0014389
Date Sampled			May 04, 2023
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons			
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
ВТЕХ	·		
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	103
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	•	
Naphthalene ^{N02}	0.01	mg/L	< 0.01
Organochlorine Pesticides			
Chlordanes - Total	0.002	mg/L	< 0.002
4.4'-DDD	0.0002	mg/L	< 0.0002
4.4'-DDE	0.0002	mg/L	< 0.0002
4.4'-DDT	0.0002	mg/L	< 0.0002
a-HCH	0.0002	mg/L	< 0.0002
Aldrin	0.0002	mg/L	< 0.0002
b-HCH	0.0002	mg/L	< 0.0002
d-HCH	0.0002	mg/L	< 0.0002
Dieldrin	0.0002	mg/L	< 0.0002
Endosulfan I	0.0002	mg/L	< 0.0002
Endosulfan II	0.0002	mg/L	< 0.0002
Endosulfan sulphate	0.0002	mg/L	< 0.0002

Client Sample ID			DUP 2
Sample Matrix			Water
Eurofins Sample No.			M23- My0014389
Date Sampled			May 04, 2023
Test/Reference	LOR	Unit	may 04, 2020
Organochlorine Pesticides	LOK	Offic	
	0.0002	ma/l	z 0 0002
Endrin Endrin aldehyde		mg/L	< 0.0002
Endrin aldenyde Endrin ketone	0.0002	mg/L	< 0.0002
g-HCH (Lindane)	0.0002	mg/L mg/L	< 0.0002 < 0.0002
Heptachlor	0.0002	mg/L	< 0.0002
Heptachlor epoxide	0.0002	mg/L	< 0.0002
Hexachlorobenzene	0.0002	mg/L	< 0.0002
Methoxychlor	0.0002	mg/L	< 0.0002
Toxaphene	0.005	mg/L	< 0.005
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002
Dibutylchlorendate (surr.)	1	%	78
Tetrachloro-m-xylene (surr.)	1	%	82
, , ,	<u>'</u>		
Ammonia (as N)	0.01	mg/L	0.19
Biochemical Oxygen Demand (BOD-5 Day)	5	mg/L	< 5
Chromium (hexavalent)	0.005	mg/L	< 0.005
Cyanide (total)	0.005	mg/L	< 0.005
Nitrate & Nitrite (as N)	0.05	mg/L	0.13
Nitrate (as N)	0.02	mg/L	0.12
Nitrite (as N)	0.02	mg/L	< 0.02
Organic Nitrogen (as N)*	0.2	mg/L	0.81
pH (at 25 °C)	0.1	pH Units	8.0
Phenolics (total)	0.05	mg/L	< 0.5
Phosphate total (as P)	0.01	mg/L	0.06
Phosphorus reactive (as P)	0.01	mg/L	< 0.01
Sulphate (as SO4)	5	mg/L	740
Sulphide (as S)	0.1	mg/L	< 0.1
Sulphite (as SO3)	0.5	mg/L	< 6.5
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	8100
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	1.0
Total Nitrogen (as N)*	0.2	mg/L	1.13
Total Suspended Solids Dried at 103 °C to 105 °C	5	mg/L	15
Heavy Metals		1	
Aluminium (filtered)	0.05	mg/L	< 0.05
Arsenic (filtered)	0.001	mg/L	< 0.001
Barium (filtered)	0.02	mg/L	0.07
Beryllium (filtered)	0.001	mg/L	< 0.001
Boron (filtered)	0.05	mg/L	1.4
Cadmium (filtered)	0.0002	mg/L	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001
Cobalt (filtered)	0.001	mg/L	0.001
Copper (filtered)	0.001	mg/L	0.002
Iron (filtered)	0.05	mg/L	< 0.05
	0.001	mg/L	< 0.001
Lead (filtered) Manganese (filtered)	0.005	mg/L	0.037

Client Sample ID Sample Matrix Eurofins Sample No.			DUP 2 Water M23- My0014389
Date Sampled			May 04, 2023
Test/Reference	LOR	Unit	
Heavy Metals			
Nickel (filtered)	0.001	mg/L	0.030
Selenium (filtered)	0.001	mg/L	0.006
Silver (filtered)	0.005	mg/L	< 0.005
Tin (filtered)	0.005	mg/L	< 0.005
Zinc (filtered)	0.005	mg/L	0.006

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B6A (filtered metals) Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	May 08, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	May 08, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			7.5
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	May 08, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40	NA - Us - com	M 00, 0000	44 Davis
BTEX	Melbourne	May 08, 2023	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH	Malhaurna	May 00, 2022	20 Dave
Chromium (hexavalent)	Melbourne	May 08, 2023	28 Days
 - Method: LTM-INO-4100 Hexavalent Chromium by Spectrometric detection NEPM 2013 Metals: Metals M12 (filtered) 	Melbourne	May 08, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS	Weibourie	Way 00, 2023	20 Days
Total Recoverable Hydrocarbons	Melbourne	May 08, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40	Weibourne	May 00, 2020	7 Days
Organochlorine Pesticides	Melbourne	May 08, 2023	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)	Molocumo	May 00, 2020	. Dayo
Biochemical Oxygen Demand (BOD-5 Day)	Melbourne	May 08, 2023	2 Days
- Method: LTM-INO-4010 Biochemical Oxygen Demand (BOD5) in Water		ay 00, 2020	
Cyanide (total)	Melbourne	May 08, 2023	14 Days
- Method: LTM-INO-4020 Total Free WAD Cyanide by CFA		ay 00, 2020	20,0
pH (at 25 °C)	Melbourne	May 08, 2023	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE		,,	
Phenolics (total)	Melbourne	May 08, 2023	7 Days
- Method: LTM-INO-4050 Total Phenolics in Waters and solids by CFA		•	·
Sulphate (as SO4)	Melbourne	May 08, 2023	28 Days
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
Sulphide (as S)	Melbourne	May 10, 2023	7 Days
- Method: LTM-INO-4011 Suphide			
Sulphite (as SO3)	Melbourne	May 08, 2023	2 Days
- Method: LTM-INO-4240 Sulfite & Thiosulfate in Water			
Total Suspended Solids Dried at 103 °C to 105 °C	Melbourne	May 08, 2023	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Heavy Metals (filtered)	Melbourne	May 08, 2023	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P			
Ammonia (as N)	Melbourne	May 08, 2023	28 Days
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA			
Nitrate & Nitrite (as N)	Melbourne	May 08, 2023	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Nitrate (as N)	Melbourne	May 08, 2023	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			_
Nitrite (as N)	Melbourne	May 08, 2023	2 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Organic Nitrogen (as N)*	Melbourne	May 08, 2023	7 Days
- Method: APHA 4500 Organic Nitrogen (N)	NA - Us - con	M 00 0000	00 D
Phosphate total (as P)	Melbourne	May 08, 2023	28 Days
- Method: LTM-INO-4040 Phosphate by CFA	NA - Us - con	M 00 0000	0.0
Phosphorus reactive (as P)	Melbourne	May 08, 2023	2 Days
- Method: APHA 4500-P	Malhaurr	May 00, 2022	20 Days
Total Kjeldahl Nitrogen (as N)	Melbourne	May 08, 2023	28 Days

Description	Testing Site	Extracted	Holding Time
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Total Dissolved Solids Dried at 180 °C ± 2 °C	Melbourne	May 08, 2023	28 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			
Mobil Metals : Metals M15	Melbourne	May 08, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

Tel: +61 3 8564 5000

ABN: 50 005 085 521

Tel: +61 3 8564 5000

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Canberra Brisbane Unit 1.2 Dacre Street Mitchell Murarrie ACT 2911 QLD 4172 Tel: +61 7 3902 4600 Tel: +61 2 6113 8091

986841

08 8331 2417

08 8331 2415

Order No.:

Report #:

Phone:

Fax:

1/21 Smallwood Place

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261

Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289 NATA# 2377 Site# 2370

Perth

ABN: 91 05 0159 898

46-48 Banksia Road

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Company Name:

Project Name:

Address:

LBW co Pty Ltd

184 Magill Road Norwood

SA 5069

RIVERLEA DEWARTERING ASSESSMENT

Project ID: 231445-01 Received: May 5, 2023 5:41 PM

> Due: May 15, 2023 **Priority:** 5 Dav

TESS O'LEARY **Contact Name:**

Eurofins Analytical Services Manager: Amy Meunier

35 O'Rorke Road

Tel: +64 9 526 45 51

Auckland 1061

IANZ# 1327

Auckland

Penrose,

NZBN: 9429046024954

		Sa	ımple Detail			Aluminium (filtered)	Barium (filtered)	Biochemical Oxygen Demand (BOD-5 Day)	Chromium (filtered)	Cyanide (total)	Iron (filtered)	рН (at 25 °C)	Phenolics (total)	Silver (filtered)	Sulphate (as SO4)	Sulphide (as S)	Sulphite (as SO3)	Tin (filtered)	Total Suspended Solids Dried at 103 °C to 105 °C	TRH C6-C10	Organochlorine Pesticides	NEPM 2013 Metals : Metals M13 filtered	Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P	Eurofins Suite B6A (filtered metals)	Total Dissolved Solids Dried at 180 °C ± 2 °C
Melb	ourne Laborate	ory - NATA # 12	61 Site # 12	54		Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	X	Х
Exte	rnal Laboratory	!																						<u> </u>	
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																				
1	SLMW08-Q1	May 04, 2023		Water	M23-My0014385	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ		Х		Х	Х	Х
2	6528-2628	May 04, 2023		Water	M23-My0014386	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х
3	RINSE-2	May 04, 2023		Water	M23-My0014387																	Х			
4	TB-02	May 04, 2023		Water	M23-My0014388															Х					
5	DUP 2	May 04, 2023		Water	M23-My0014389	Χ	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ		Х		Х	Х	Х
Test	Counts					3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3	1	3	3	3

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre µg/L: micrograms per litre

ppm: parts per million ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report
CRM Certified Reference Material (ISO17034) - reported as percent recovery

DryWhere a moisture has been determined on a solid sample the result is expressed on a dry basis.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank				•	
втех					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank	ı mg/ L	10.000	0.000	1 466	
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions			I	
Naphthalene	mg/L	< 0.01	0.01	Pass	
Method Blank	IIIg/L	< 0.01	0.01	1 033	
Organochlorine Pesticides					
Chlordanes - Total	mg/L	< 0.002	0.002	Pass	
4.4'-DDD	mg/L	< 0.002	0.002	Pass	
4.4'-DDE	mg/L	< 0.0002	0.0002	Pass	
4.4'-DDT	mg/L	< 0.0002	0.0002	Pass	
a-HCH		< 0.0002	0.0002		
Aldrin	mg/L	< 0.0002	0.0002	Pass	
	mg/L	< 0.0002		Pass	
b-HCH	mg/L		0.0002	Pass	
d-HCH	mg/L	< 0.0002	0.0002	Pass	
Dieldrin	mg/L	< 0.0002	0.0002	Pass	
Endosulfan I	mg/L	< 0.0002	0.0002	Pass	
Endosulfan II	mg/L	< 0.0002	0.0002	Pass	
Endosulfan sulphate	mg/L	< 0.0002	0.0002	Pass	
Endrin	mg/L	< 0.0002	0.0002	Pass	
Endrin aldehyde	mg/L	< 0.0002	0.0002	Pass	
Endrin ketone	mg/L	< 0.0002	0.0002	Pass	
g-HCH (Lindane)	mg/L	< 0.0002	0.0002	Pass	
Heptachlor	mg/L	< 0.0002	0.0002	Pass	
Heptachlor epoxide	mg/L	< 0.0002	0.0002	Pass	
Hexachlorobenzene	mg/L	< 0.0002	0.0002	Pass	
Methoxychlor	mg/L	< 0.0002	0.0002	Pass	
Toxaphene	mg/L	< 0.005	0.005	Pass	
Method Blank		1			
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
Biochemical Oxygen Demand (BOD-5 Day)	mg/L	< 5	5	Pass	
Chromium (hexavalent)	mg/L	< 0.005	0.005	Pass	
Cyanide (total)	mg/L	< 0.005	0.005	Pass	
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Nitrate (as N)	mg/L	< 0.02	0.02	Pass	
Nitrite (as N)	mg/L	< 0.02	0.02	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Phenolics (total)	mg/L	< 0.05	0.05	Pass	Oode
Phosphate total (as P)	mg/L	< 0.01	0.01	Pass	
Sulphate (as SO4)	mg/L	< 5	5	Pass	
Sulphide (as S)	mg/L	< 0.1	0.1	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Total Suspended Solids Dried at 103 °C to 105 °C	mg/L	< 5	5	Pass	
Method Blank	19 _				
Heavy Metals					
Aluminium (filtered)	mg/L	< 0.05	0.05	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Barium (filtered)	mg/L	< 0.02	0.02	Pass	
Beryllium (filtered)	mg/L	< 0.001	0.001	Pass	
Boron (filtered)	mg/L	< 0.05	0.05	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Cobalt (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Iron (filtered)	mg/L	< 0.05	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Manganese (filtered)	mg/L	< 0.005	0.001	Pass	
Mercury (filtered)		< 0.0001	0.003	Pass	
Nickel (filtered)	mg/L	1			
	mg/L	< 0.001	0.001	Pass	
Selenium (filtered)	mg/L	< 0.001	0.001	Pass	
Silver (filtered)	mg/L	< 0.005	0.005	Pass	
Tin (filtered)	mg/L	< 0.005	0.005	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery		T	<u> </u>		
Total Recoverable Hydrocarbons		00	70.400		
TRH C6-C9	%	96	70-130	Pass	
TRH C10-C14	%	102	70-130	Pass	
TRH C6-C10	%	93	70-130	Pass	
TRH >C10-C16	%	97	70-130	Pass	
LCS - % Recovery		T			
BTEX				_	
Benzene	%	86	70-130	Pass	
Toluene	%	85	70-130	Pass	
Ethylbenzene	%	82	70-130	Pass	
m&p-Xylenes	%	82	70-130	Pass	
Xylenes - Total*	%	83	70-130	Pass	
LCS - % Recovery		T T	1		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	78	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
Chlordanes - Total	%	87	70-130	Pass	
4.4'-DDD	%	97	70-130	Pass	
4.4'-DDE	%	99	70-130	Pass	
4.4'-DDT	%	111	70-130	Pass	
а-НСН	%	89	70-130	Pass	
Aldrin	%	88	70-130	Pass	
b-HCH	%	106	70-130	Pass	
d-HCH	%	97	70-130	Pass	
Dieldrin	%	89	70-130	Pass	
Endosulfan I	%	99	70-130	Pass	

Test	:		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan II			%	106		70-130	Pass	
Endosulfan sulphate			%	106		70-130	Pass	
Endrin			%	114		70-130	Pass	
Endrin aldehyde			%	93		70-130	Pass	
Endrin ketone			%	121		70-130	Pass	
g-HCH (Lindane)			%	95		70-130	Pass	
Heptachlor			%	99		70-130	Pass	
Heptachlor epoxide			%	77		70-130	Pass	
Hexachlorobenzene			%	79		70-130	Pass	
Methoxychlor			%	123		70-130	Pass	
LCS - % Recovery								
Ammonia (as N)			%	120		70-130	Pass	
Chromium (hexavalent)			%	92		70-130	Pass	
Cyanide (total)			%	100		70-130	Pass	
Nitrate & Nitrite (as N)			%	128		70-130	Pass	
Nitrite (as N)			%	108		70-130	Pass	
Phenolics (total)			%	104		70-130	Pass	
Phosphate total (as P)			%	106		70-130	Pass	
Phosphorus reactive (as P)			%	94		70-130	Pass	
Sulphate (as SO4)			%	108		70-130	Pass	
Total Dissolved Solids Dried at 18	0 °C ± 2 °C		%	120		70-130	Pass	
Total Kjeldahl Nitrogen (as N)			%	129		70-130	Pass	
Total Suspended Solids Dried at	103 °C to 105 °C		%	102		70-130	Pass	
LCS - % Recovery				-				
Heavy Metals								
Aluminium (filtered)			%	98		80-120	Pass	
Arsenic (filtered)			%	95		80-120	Pass	
Boron (filtered)			%	81		80-120	Pass	
Cadmium (filtered)			%	97		80-120	Pass	
Chromium (filtered)			%	99		80-120	Pass	
Cobalt (filtered)			%	99		80-120	Pass	
Copper (filtered)			%	100		80-120	Pass	
Iron (filtered)			%	99		80-120	Pass	
Lead (filtered)			%	99		80-120	Pass	
Manganese (filtered)			%	100		80-120	Pass	
Mercury (filtered)			%	93		80-120	Pass	
Nickel (filtered)			%	100		80-120	Pass	
Selenium (filtered)			%	95		80-120	Pass	
Silver (filtered)			%	94		80-120	Pass	
Tin (filtered)			%	95		80-120	Pass	
Zinc (filtered)			%	96		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbon	s			Result 1				
TRH C10-C14	M23-My0014425	NCP	%	84		70-130	Pass	
TRH >C10-C16	M23-My0014425	NCP	%	81		70-130	Pass	
Spike - % Recovery								
Organochlorine Pesticides				Result 1				
Chlordanes - Total	B23-My0006056	NCP	%	79		70-130	Pass	
4.4'-DDD	B23-My0006056	NCP	%	87		70-130	Pass	
4.4'-DDE	B23-My0006056	NCP	%	80		70-130	Pass	
4.4'-DDT	B23-My0006056	NCP	%	86		70-130	Pass	
	<u> </u>	1 1			1			
a-HCH	B23-My0006056	NCP	%	73	1	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
b-HCH	B23-My0006056	NCP	%	87			70-130	Pass	
d-HCH	B23-My0006056	NCP	%	83			70-130	Pass	
Dieldrin	B23-My0006056	NCP	%	76			70-130	Pass	
Endosulfan I	B23-My0006056	NCP	%	83			70-130	Pass	
Endosulfan II	B23-My0006056	NCP	%	91			70-130	Pass	
Endosulfan sulphate	B23-My0006056	NCP	%	85			70-130	Pass	
Endrin	B23-My0006056	NCP	%	77			70-130	Pass	
Endrin aldehyde	B23-My0006056	NCP	%	74			70-130	Pass	
Endrin ketone	B23-My0006056	NCP	%	84			70-130	Pass	
g-HCH (Lindane)	B23-My0006056	NCP	%	76			70-130	Pass	
Heptachlor	B23-My0006056	NCP	%	83			70-130	Pass	
Heptachlor epoxide	B23-My0006056	NCP	%	72			70-130	Pass	
Hexachlorobenzene	B23-My0006056	NCP	%	83			70-130	Pass	
Methoxychlor	B23-My0006056	NCP	%	72			70-130	Pass	
Spike - % Recovery									
				Result 1					
Nitrite (as N)	M23-My0016033	NCP	%	108			70-130	Pass	
Phosphate total (as P)	B23-My0007982	NCP	%	87			70-130	Pass	
Total Kjeldahl Nitrogen (as N)	M23-My0013797	NCP	%	93			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Aluminium (filtered)	M23-My0018317	NCP	%	108			75-125	Pass	
Arsenic (filtered)	M23-My0018317	NCP	%	106			75-125	Pass	
Barium (filtered)	M23-My0018317	NCP	%	98			75-125	Pass	
Beryllium (filtered)	M23-My0018317	NCP	%	106			75-125	Pass	
Cadmium (filtered)	M23-My0018317	NCP	%	105			75-125	Pass	
Chromium (filtered)	M23-My0018317	NCP	%	106			75-125	Pass	
Cobalt (filtered)	M23-My0018317	NCP	%	104			75-125	Pass	
Copper (filtered)	M23-My0018317	NCP	%	104			75-125	Pass	
Iron (filtered)	M23-My0018317	NCP	%	106			75-125	Pass	
Lead (filtered)	M23-My0018317	NCP	%	110			75-125	Pass	
Manganese (filtered)	M23-My0018317	NCP	%	106			75-125	Pass	
Mercury (filtered)	M23-My0018317	NCP	%	106			75-125	Pass	
Nickel (filtered)	M23-My0018317	NCP	%	104			75-125	Pass	
Selenium (filtered)	M23-My0018317		%	105			75-125	Pass	
Silver (filtered)	M23-My0018317	NCP	%	100			75-125	Pass	
Tin (filtered)	M23-My0018317	NCP	%	87			75-125	Pass	
Zinc (filtered)	M23-My0018317	NCP	%	108			75-125	Pass	
Spike - % Recovery	, , , , , , ,								
Heavy Metals				Result 1					
Boron (filtered)	M23-My0022183	NCP	%	108			75-125	Pass	
,	Lab Sample ID	QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Total Recoverable Hydrocarbons	1.,		=	Result 1	Result 2	RPD			
TRH C6-C9	M23-My0011725		mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	M23-My0015748		mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	M23-My0015748		mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	M23-My0015748		mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C6-C10	M23-My0011725	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16	M23-My0015748		mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	M23-My0015748		mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	M23-My0015748	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	

Duplicate									
BTEX				Dogult 1	Decult 2	RPD	l		
	M00 M-0044705	NOD		Result 1	Result 2		200/	Dana	
Benzene	M23-My0011725	NCP NCP	mg/L	< 0.001	< 0.001	<1 <1	30%	Pass	
Toluene	M23-My0011725		mg/L	< 0.001	< 0.001		30%	Pass	
Ethylbenzene	M23-My0011725	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	M23-My0011725	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	M23-My0011725	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	M23-My0011725	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate	0040 NEDM 5			D 11.4		DDD	T		
Total Recoverable Hydrocarbons -				Result 1	Result 2	RPD		-	
Naphthalene	M23-My0011725	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate				D 11.4		DDD			
Organochlorine Pesticides				Result 1	Result 2	RPD	2001		
Chlordanes - Total	M23-My0015829	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
4.4'-DDD	M23-My0015829	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDE	M23-My0015829	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDT	M23-My0015829	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
a-HCH	M23-My0015829	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Aldrin	M23-My0015829	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
b-HCH	M23-My0015829	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
d-HCH	M23-My0015829	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Dieldrin	M23-My0015829	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan I	M23-My0015829	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan II	M23-My0015829	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan sulphate	M23-My0015829	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin	M23-My0015829	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin aldehyde	M23-My0015829	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin ketone	M23-My0015829	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
g-HCH (Lindane)	M23-My0015829	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor	M23-My0015829	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor epoxide	M23-My0015829	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Hexachlorobenzene	M23-My0015829	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Methoxychlor	M23-My0015829	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Toxaphene	M23-My0015829	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Ammonia (as N)	M23-My0016032	NCP	mg/L	0.11	0.11	1.1	30%	Pass	
Biochemical Oxygen Demand (BOD-5 Day)	M23-My0014354	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Chromium (hexavalent)	M23-My0014587	NCP	mg/L	0.005	0.009	54	30%	Fail	Q15
Cyanide (total)	M23-My0010238	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Nitrate & Nitrite (as N)	M23-My0016031	NCP	mg/L	0.06	0.05	12	30%	Pass	
Nitrate (as N)	M23-My0015850	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Nitrite (as N)	M23-My0016031	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Phosphate total (as P)	M23-My0030930	NCP	mg/L	0.08	0.04	18	30%	Pass	
Phosphorus reactive (as P)	M23-Ap0053720	NCP	mg/L	< 0.01	0.02	74	30%	Fail	Q15
Sulphate (as SO4)	M23-Ap0053720	NCP	mg/L	340	340	<1	30%	Pass	
Sulphide (as S)	S23-Ap0058795	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Sulphite (as SO3)	M23-My0025758	NCP	mg/L	< 12.5	< 12.5	<1	30%	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	M23-My0012404	NCP			4600	27			
	, , , , , , , , , , , , , , , , , , ,		mg/L	6000	1		30%	Pass	
Total Suspended Solids Dried at	M23-My0014585	NCP	mg/L	3.2	3.1	<1	30%	Pass	
Total Suspended Solids Dried at 103 °C to 105 °C	M23-My0012404	NCP	mg/L	53	54	1.5	30%	Pass	

Duplicate								
Heavy Metals				Result 1	Result 2	RPD		
Aluminium (filtered)	M23-My0018317	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass
Arsenic (filtered)	M23-My0018317	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Barium (filtered)	M23-My0018317	NCP	mg/L	0.10	0.10	<1	30%	Pass
Beryllium (filtered)	M23-My0018317	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Boron (filtered)	M23-My0015577	NCP	mg/L	3.1	3.2	1.8	30%	Pass
Cadmium (filtered)	M23-My0018317	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass
Chromium (filtered)	M23-My0018317	NCP	mg/L	0.008	0.008	<1	30%	Pass
Cobalt (filtered)	M23-My0018317	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Copper (filtered)	M23-My0018317	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Iron (filtered)	M23-My0018317	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass
Lead (filtered)	M23-My0018317	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Manganese (filtered)	M23-My0018317	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass
Mercury (filtered)	M23-My0018317	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass
Nickel (filtered)	M23-My0018317	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Selenium (filtered)	M23-My0018317	NCP	mg/L	0.005	0.005	<1	30%	Pass
Silver (filtered)	M23-My0018317	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass
Tin (filtered)	M23-My0018317	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass
Zinc (filtered)	M23-My0018317	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

N02

Catherine Wilson Analytical Services Manager Edward Lee Senior Analyst-Organic Emily Rosenberg Senior Analyst-Metal Joseph Edouard Senior Analyst-Volatile Mary Makarios Senior Analyst-Inorganic

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

LABORATORY TESTING ORDER

Project Title :	Riverlea Dewatering Assessment
Job Number :	231445-01
Project Manager:	Tess O'Leary
Email:	tess.oleary@lbwco.com.au
Phone:	08 8331 2417
Results to:	results@lowco.com.au, lbwco@esdal.com.au
invoice to:	finance@lbwco.com.au

LBW co's COC REFERENCE (sample delivery group)

231445-01_COC_20230505

Primary Laboratory:	Eurofins
Laboratory Quote Ref:	230303LBWS
Secondary Laboratory: Laboratory Quote Ref:	ALS ADBQ-001-18_LBWco_SO

Turnaround Required Standard (5 Day)

	SAMPLE D	TAILS		CHEMICAL TESTING REQUIRED															
Date Sampled	Sample ID	Sample Mairtx	Additional Information / Comments	BOD 5 Day	Hd	125	P38	86A (plus addillonal metals)	819E	ů.	Sulfate as 5	Sullde as S	Sulfite as S	Cyanide	Phenolics (total) - Spectrophotometric technique	M13	TRH C6-C10		НОГР
05-May-23	SLMW01-P	Water		Х	Х	Х	Х	Х	Х	Х	х	X	Х	х	х				
05-May-23	SLMW01-Q1	Water		х	×	х	Х	х	х	х	х	Х	х	х	х				
05-May-23	SLMWQ5-P	Water		Х	Х	х	Х	x	х	х	х	Х	Х	х	х				
05-May-23	SLMW05-Q1	Water		Х	Х	х	Х	x	х	х	х	х	Х	х	х				
05-May-23	\$LMW02-Q1	Water		х	х	х	х	х	х	х	х	х	х	х	×				
05-May-23	6628-23298	Water		Х	х	х	х	х	х	х	х	х	х	х	x				
05-May-23	RINSE-3	Water														х			
05-May-23	TB-03	Water															x		
LBW co A	UTHORISATION		ATORY RECEIPT	6	6	6	6	6	6	6	6	6	6	6	6	1	1	0	22
Requested by: TO'Leary Date\time requested:		Received by: Date\time received:	2 3:38pm							Add	ditional	Comm	ents						
05-May-23		05/8	53139PM				Apr	lvsis or	ner musi	e 23030	31 BWS a	nte the	nitrite o	nolysis i	s recues	led.			
Signature		Signature:	4	Analysis as per quote 230303LBWS. Note that nitritle analysis is requested.															

#986883 7.7°C Parfinal 7.0°C on 100

SAMPLE REGISTER & CHAIN OF CUSTODY

Project Title: Riverlea Dewatering GME
Job Number: 23 1445 - 91

Project manager: Annabel Geitz

Emaii: annabel.geitz@lbwco.com.au

Phone: 8331 2417

Send results to: results@lbwco.com.au Send invoice to: finance@lbwco.com.au Primary Lab: Eurofins

Lab Quote Ref: Price Book 2017-2018

Secondary lab: Envirolab

COC Reference: (sample delivery group)

231445-01_COC_**207305**

Sample Details 1	Sample Details 2	Sample Custody - Step 1
SLMW01-Q1	SLMW02-Q1	Relingished by:
LBW Job#: 231445-01	LBW Job#: 231445-01	Gaetano Garfi
Matrix: Water	Matrix: Water Date: . 65 /05/2023	Date/Time Relinquished:
Date: . 05 /05/2023	Dale	
SLMW01-P	SLMW05-Q1	5/5/23 3.20pm
LBW Job#: 231445-01	LBW Job#: 231445-01	Signature:
Matrix: Water Date: . 🐠 /05/2023	Matrix: Water Date: .05 /05/2023	_ Goel Good
	Daile	- The That
SLMW05-P	6628-23298	Courier and consignment number:
LBW Job#: 231445-01	LBW Job#: 231445-01	Couler and consignment notices.
Matrix: Water Date: 65 /05/2023	Matrix: Water Date: . 65 /05/2023	Received by:
Balo. 19 7 1	Dale	Paremal
RINSE-3	TB-03	iaermai
231445	231445-01	Date/Time Received:
05 05 20 23	05 05 2023	
m2 (02 (20 C2	02/02/1013	05/05 3:30PM
		Signature:
		agnoros.
		Sample Custody - Step 2 Reiingished by:
		Reilingished by: 7.7°C +8.3°C
		Date/Time Relinquished:
		Der 1 CL
		Signature:
		# 986883.
		# 986883 Parpural 9
		Courier and consignment number:
		Received by:
		Date/Time Received:
		Signature:
		Page_1_ of

LBW co Pty Ltd 184 Magill Road Norwood SA 5069

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: TESS O'LEARY

Report 986883-W

Project name Riverlea Dewatering Assessment

Project ID 231445-01
Received Date May 05, 2023

Client Sample ID			SLMW01-P	SLMW01-Q1	SLMW05-P	SLMW05-Q1
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- My0014584	M23- My0014585	M23- My0014586	M23- My0014587
Date Sampled			May 05, 2023	May 05, 2023	May 05, 2023	May 05, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	104	96	101	101
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Organochlorine Pesticides						
Chlordanes - Total	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
4.4'-DDD	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
4.4'-DDE	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
4.4'-DDT	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
a-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Aldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
b-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
d-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Dieldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan I	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan II	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan sulphate	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002

Client Sample ID			SLMW01-P	SLMW01-Q1	SLMW05-P	SLMW05-Q1
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- My0014584	M23- My0014585	M23- My0014586	M23- My0014587
Date Sampled			May 05, 2023	May 05, 2023	May 05, 2023	May 05, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Endrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin aldehyde	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin ketone	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
g-HCH (Lindane)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Heptachlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Heptachlor epoxide	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hexachlorobenzene	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Methoxychlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Toxaphene	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Dibutylchlorendate (surr.)	1	%	125	98	81	113
Tetrachloro-m-xylene (surr.)	1	%	102	84	73	95
to the second of		1 /2				
Ammonia (as N)	0.01	mg/L	0.12	0.13	0.08	0.09
Biochemical Oxygen Demand (BOD-5 Day)	5	mg/L	< 5	< 5	< 5	< 5
Chromium (hexavalent)	0.005	mg/L	< 0.005	< 0.005	0.012	0.005
Cyanide (total)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Nitrate & Nitrite (as N)	0.05	mg/L	19	25	0.54	1.2
Nitrate (as N)	0.02	mg/L	17	24	0.54	1.0
Nitrite (as N)	0.02	mg/L	1.6	1.1	< 0.02	0.22
Organic Nitrogen (as N)*	0.2	mg/L	1.58	3.07	0.92	0.61
pH (at 25 °C)	0.1	pH Units	8.1	8.0	8.1	7.8
Phenolics (total)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Phosphate total (as P)	0.01	mg/L	0.03	0.04	0.02	0.02
Phosphorus reactive (as P)	0.01	mg/L	< 0.01	0.07	0.14	0.01
Sulphate (as S)	5	mg/L	250	220	240	370
Sulphide (as S)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Sulphite (as S)	0.5	mg/L	^{G01} < 2.5	^{G01} < 2.5	^{G01} < 2.5	^{G01} < 2.5
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	4600	4700	4500	6000
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	1.7	3.2	1.0	0.7
Total Nitrogen (as N)*	0.2	mg/L	20.7	28.2	1.54	1.9
Total Suspended Solids Dried at 103 °C to 105 °C	5	mg/L	20	15	7.2	31
Heavy Metals						
Aluminium (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Arsenic (filtered)	0.001	mg/L	0.001	< 0.001	< 0.001	< 0.001
Barium (filtered)	0.02	mg/L	0.04	0.03	0.02	0.03
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Boron (filtered)	0.05	mg/L	3.1	1.0	2.1	3.1
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium	0.001	mg/L	0.002	< 0.001	0.008	0.012
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.003
Copper (filtered)	0.001	mg/L	0.002	0.002	0.002	0.002
Iron (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Manganese (filtered)	0.005	mg/L	0.055	0.14	0.007	0.16
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001

Client Sample ID Sample Matrix			SLMW01-P Water	SLMW01-Q1 Water	SLMW05-P Water	SLMW05-Q1 Water
Eurofins Sample No.			M23- My0014584	M23- My0014585	M23- My0014586	M23- My0014587
Date Sampled			May 05, 2023	May 05, 2023	May 05, 2023	May 05, 2023
Test/Reference	LOR	Unit				
Heavy Metals						
Nickel (filtered)	0.001	mg/L	0.019	0.005	0.005	0.025
Selenium (filtered)	0.001	mg/L	0.012	0.006	0.034	0.025
Silver (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Tin (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Zinc (filtered)	0.005	mg/L	0.008	0.010	< 0.005	0.009

Client Sample ID			SLMW02-Q1	6628-23298	Rinse-3	TB-03
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- My0014588	M23- My0014589	M23- My0014590	M23- My0014591
Date Sampled			May 05, 2023	May 05, 2023	May 05, 2023	May 05, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	-	-
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	-	-
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	-	-
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	-	-
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	-	-
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	-	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	-	-
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	-	-
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	-	-
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	-	-
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	-	-
ВТЕХ						
Benzene	0.001	mg/L	< 0.001	< 0.001	-	-
Toluene	0.001	mg/L	< 0.001	< 0.001	-	-
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	-	-
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	-	-
o-Xylene	0.001	mg/L	< 0.001	< 0.001	-	-
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	-	-
4-Bromofluorobenzene (surr.)	1	%	101	99	-	-
Total Recoverable Hydrocarbons - 2013 NEPN	l Fractions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	-	-
Organochlorine Pesticides						
Chlordanes - Total	0.002	mg/L	< 0.002	< 0.002	-	-
4.4'-DDD	0.0002	mg/L	< 0.0002	< 0.0002	-	-
4.4'-DDE	0.0002	mg/L	< 0.0002	< 0.0002	-	-
4.4'-DDT	0.0002	mg/L	< 0.0002	< 0.0002	-	-
a-HCH	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Aldrin	0.0002	mg/L	< 0.0002	< 0.0002	-	-
b-HCH	0.0002	mg/L	< 0.0002	< 0.0002	-	-
d-HCH	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Dieldrin	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Endosulfan I	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Endosulfan II	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Endosulfan sulphate	0.0002	mg/L	< 0.0002	< 0.0002	_	_

Report Number: 986883-W

0				1	I	1
Client Sample ID			SLMW02-Q1	6628-23298	Rinse-3	TB-03
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- My0014588	M23- My0014589	M23- My0014590	M23- My0014591
Date Sampled			May 05, 2023	May 05, 2023	May 05, 2023	May 05, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Endrin	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Endrin aldehyde	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Endrin ketone	0.0002	mg/L	< 0.0002	< 0.0002	_	-
g-HCH (Lindane)	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Heptachlor	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Heptachlor epoxide	0.0002	mg/L	< 0.0002	< 0.0002	_	-
Hexachlorobenzene	0.0002	mg/L	< 0.0002	< 0.0002	_	-
Methoxychlor	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Toxaphene	0.005	mg/L	< 0.005	< 0.005	-	-
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	-	-
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	-	-
Dibutylchlorendate (surr.)	1	%	101	88	-	-
Tetrachloro-m-xylene (surr.)	1	%	80	67	-	-
	•	•				
Ammonia (as N)	0.01	mg/L	0.09	0.16	-	-
Biochemical Oxygen Demand (BOD-5 Day)	5	mg/L	< 5	< 5	-	-
Chromium (hexavalent)	0.005	mg/L	< 0.005	< 0.005	-	-
Cyanide (total)	0.005	mg/L	< 0.005	< 0.005	-	-
Nitrate & Nitrite (as N)	0.05	mg/L	17	< 0.05	-	-
Nitrate (as N)	0.02	mg/L	16	< 0.02	-	-
Nitrite (as N)	0.02	mg/L	1.1	< 0.02	-	-
Organic Nitrogen (as N)*	0.2	mg/L	3.61	3.64	-	-
pH (at 25 °C)	0.1	pH Units	7.9	7.6	-	-
Phenolics (total)	0.05	mg/L	< 0.05	< 0.05	-	-
Phosphate total (as P)	0.01	mg/L	0.08	0.11	-	-
Phosphorus reactive (as P)	0.01	mg/L	0.02	0.01	-	-
Sulphate (as S)	5	mg/L	190	290	-	-
Sulphide (as S)	0.1	mg/L	< 0.1	0.1	-	-
Sulphite (as S)	0.5	mg/L	^{G01} < 2.5	^{G01} < 2.5	-	-
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	4900	5100	-	-
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	3.7	3.8	-	-
Total Nitrogen (as N)*	0.2	mg/L	20.7	3.8	-	-
Total Suspended Solids Dried at 103 °C to 105 °C	5	mg/L	< 5	10	-	-
Heavy Metals						
Aluminium (filtered)	0.05	mg/L	< 0.05	< 0.05	-	-
Arsenic	0.001	mg/L	-	-	< 0.001	-
Arsenic (filtered)	0.001	mg/L	< 0.001	0.003	-	-
Barium (filtered)	0.02	mg/L	0.05	0.04	-	-
Beryllium	0.001	mg/L	-	-	< 0.001	-
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	-	-
Boron	0.05	mg/L	-	-	< 0.05	-
Boron (filtered)	0.05	mg/L	2.4	0.50	-	-
Cadmium	0.0002	mg/L	-	-	< 0.0002	-
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Chromium	0.001	mg/L	0.002	0.016	< 0.001	-
Cobalt	0.001	mg/L	-	-	< 0.001	-
Cobalt (filtered)	0.001	mg/L	0.001	0.002	-	-

Client Sample ID			SLMW02-Q1	6628-23298	Rinse-3	TB-03
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- My0014588	M23- My0014589	M23- My0014590	M23- My0014591
Date Sampled			May 05, 2023	May 05, 2023	May 05, 2023	May 05, 2023
Test/Reference	LOR	Unit				
Heavy Metals						
Copper	0.001	mg/L	-	-	< 0.001	-
Copper (filtered)	0.001	mg/L	0.002	< 0.001	-	-
Iron (filtered)	0.05	mg/L	< 0.05	0.33	-	-
Lead	0.001	mg/L	-	-	< 0.001	-
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	-	-
Manganese	0.005	mg/L	-	-	< 0.005	-
Manganese (filtered)	0.005	mg/L	0.077	0.42	-	-
Mercury	0.0001	mg/L	-	-	< 0.0001	-
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	-	-
Nickel	0.001	mg/L	-	-	< 0.001	-
Nickel (filtered)	0.001	mg/L	0.027	0.025	-	-
Selenium	0.001	mg/L	-	-	< 0.001	-
Selenium (filtered)	0.001	mg/L	0.007	< 0.001	-	-
Silver (filtered)	0.005	mg/L	< 0.005	< 0.005	-	-
Tin (filtered)	0.005	mg/L	< 0.005	< 0.005	-	-
Zinc	0.005	mg/L	-	-	< 0.005	-
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005	-	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B6A (filtered metals) Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	May 08, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Melbourne	May 08, 2023	7 Days
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	May 08, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40		,,	, -
BTEX	Melbourne	May 08, 2023	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH		, ,	,
Chromium (hexavalent)	Melbourne	May 08, 2023	28 Days
- Method: LTM-INO-4100 Hexavalent Chromium by Spectrometric detection		,	•
NEPM 2013 Metals : Metals M12 (filtered)	Melbourne	May 08, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Total Recoverable Hydrocarbons	Melbourne	May 08, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Organochlorine Pesticides	Melbourne	May 08, 2023	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)			
Biochemical Oxygen Demand (BOD-5 Day)	Melbourne	May 08, 2023	2 Days
- Method: LTM-INO-4010 Biochemical Oxygen Demand (BOD5) in Water			
Cyanide (total)	Melbourne	May 08, 2023	14 Days
- Method: LTM-INO-4020 Total Free WAD Cyanide by CFA			
pH (at 25 °C)	Melbourne	May 08, 2023	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE			
Phenolics (total)	Melbourne	May 08, 2023	7 Days
- Method: LTM-INO-4050 Total Phenolics in Waters and solids by CFA			
Sulphate (as S)	Melbourne	May 08, 2023	28 Days
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
Sulphide (as S)	Melbourne	May 09, 2023	7 Days
- Method: LTM-INO-4011 Suphide			
Sulphite (as S)	Melbourne	May 08, 2023	28 Days
- Method: LTM-INO-4240 Sulfite & Thiosulfate in Water			
Total Suspended Solids Dried at 103 °C to 105 °C	Melbourne	May 08, 2023	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Heavy Metals (filtered)	Melbourne	May 08, 2023	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)	Melbourne	May 10, 2023	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS		, ,	,
Heavy Metals	Melbourne	May 08, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			•
Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P			
Ammonia (as N)	Melbourne	May 08, 2023	28 Days
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA			
Nitrate & Nitrite (as N)	Melbourne	May 08, 2023	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Nitrate (as N)	Melbourne	May 08, 2023	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Nitrite (as N)	Melbourne	May 08, 2023	2 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Organic Nitrogen (as N)*	Melbourne	May 05, 2023	7 Days
- Method: APHA 4500 Organic Nitrogen (N)			
Phosphate total (as P)	Melbourne	May 08, 2023	28 Days

- Method: LTM-INO-4170 Total Dissolved Solids in Water

Environment Testing

Description	Testing Site	Extracted	Holding Time
- Method: LTM-INO-4040 Phosphate by CFA			
Phosphorus reactive (as P)	Melbourne	May 08, 2023	2 Days
- Method: APHA 4500-P			
Total Kjeldahl Nitrogen (as N)	Melbourne	May 08, 2023	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Total Dissolved Solids Dried at 180 °C ± 2 °C	Melbourne	May 08, 2023	28 Days

Report Number: 986883-W

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Address:

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place Murarrie QLD 4172

Tel: +61 7 3902 4600

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

Perth

ABN: 91 05 0159 898

46-48 Banksia Road

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450

IANZ# 1290

35 O'Rorke Road

Tel: +64 9 526 45 51

Auckland 1061

IANZ# 1327

May 12, 2023

Auckland

Penrose,

NZBN: 9429046024954

Company Name: LBW co Pty Ltd Order No.: Received: May 5, 2023 4:10 PM

Canberra

Mitchell

ACT 2911

Tel: +61 2 6113 8091

184 Magill Road Report #: 986883 Due: Norwood Phone: 08 8331 2417 **Priority:**

5 Dav SA 5069 08 8331 2415 TESS O'LEARY Fax: **Contact Name:**

Project Name: Riverlea Dewatering Assessment

Project ID: 231445-01 **Eurofins Analytical Services Manager: Amy Meunier**

																			01111	3 A 11 G	ily tiot	11 001	71003	wana	igei . <i>r</i>
		Sa	ımple Detail			Aluminium (filtered)	Barium (filtered)	Biochemical Oxygen Demand (BOD-5 Day)	Chromium	Cyanide (total)	Iron (filtered)	pH (at 25 °C)	Phenolics (total)	Silver (filtered)	Sulphate (as S)	Sulphide (as S)	Sulphite (as S)	Tin (filtered)	Total Suspended Solids Dried at 103 °C to 105 °C	TRH C6-C10	ne Pe	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)	Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P	Eurofins Suite B6A (filtered metals)	Total Dissolved Solids Dried at 180 °C ± 2 °C
Melb	ourne Laborate	ory - NATA # 12	261 Site # 12	54		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Exte	rnal Laboratory	<i>!</i>																							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																				
1	SLMW01-P	May 05, 2023		Water	M23-My0014584	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х
2	SLMW01-Q1	May 05, 2023		Water	M23-My0014585	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	<u> </u>	Х	Х	Х
3	SLMW05-P	May 05, 2023		Water	M23-My0014586	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х		Х	<u> </u>	Х	Х	Х
4	SLMW05-Q1	May 05, 2023		Water	M23-My0014587	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х		Х	<u> </u>	Х	Х	Х
5	SLMW02-Q1	May 05, 2023		Water	M23-My0014588	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		X	<u> </u>	Х	Х	Х
6	6628-23298	May 05, 2023		Water	M23-My0014589	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	<u> </u>	Х	Х	Х
7	Rinse-3	May 05, 2023		Water	M23-My0014590																	Х	<u> </u>	<u> </u>	
8	TB-03	May 05, 2023		Water	M23-My0014591															Х					
Test	Counts					6	6	6	6	6	6	6	6	6	6	6	6	6	6	1	6	1	6	6	6

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant, Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre µg/L: micrograms per litre

ppm: parts per million ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report
CRM Certified Reference Material (ISO17034) - reported as percent recovery

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 986883-W

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
ВТЕХ					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank		1 0.000	0.000	1 466	
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	ns				
Naphthalene	mg/L	< 0.01	0.01	Pass	
Method Blank	IIIg/L	< 0.01	0.01	1 033	
Organochlorine Pesticides				Ι	
Chlordanes - Total	mg/L	< 0.002	0.002	Pass	
4.4'-DDD	mg/L	< 0.0002	0.0002	Pass	
4.4'-DDE	mg/L	< 0.0002	0.0002	Pass	
4.4'-DDT	mg/L	< 0.0002	0.0002	Pass	
a-HCH	mg/L	< 0.0002	0.0002	Pass	
Aldrin	mg/L	< 0.0002	0.0002	Pass	
b-HCH	mg/L	< 0.0002	0.0002	Pass	
d-HCH	mg/L	< 0.0002	0.0002	Pass	
Dieldrin	mg/L	< 0.0002	0.0002	Pass	
Endosulfan I	mg/L	< 0.0002	0.0002	Pass	
Endosulfan II	mg/L	< 0.0002	0.0002	Pass	
Endosulfan sulphate	mg/L	< 0.0002	0.0002	Pass	
Endrin Endrin	mg/L	< 0.0002	0.0002	Pass	
Endrin aldehyde	mg/L	< 0.0002	0.0002	Pass	
		< 0.0002	0.0002	Pass	
Endrin ketone g-HCH (Lindane)	mg/L		0.0002	Pass	
·	mg/L	< 0.0002			
Heptachlor	mg/L	< 0.0002	0.0002	Pass	
Heptachlor epoxide	mg/L	< 0.0002	0.0002	Pass	
Hexachlorobenzene	mg/L	< 0.0002	0.0002	Pass	
Methoxychlor	mg/L	< 0.0002	0.0002	Pass	
Toxaphene	mg/L	< 0.005	0.005	Pass	
Method Blank	//	1004	0.04	Dess	
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
Biochemical Oxygen Demand (BOD-5 Day)	mg/L	< 5	5	Pass	
Chromium (hexavalent)	mg/L	< 0.005	0.005	Pass	
Cyanide (total)	mg/L	< 0.005	0.005	Pass	
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Nitrate (as N)	mg/L	< 0.02	0.02	Pass	
Nitrite (as N)	mg/L	< 0.02	0.02	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Phenolics (total)	mg/L	< 0.05	0.05	Pass	
Phosphate total (as P)	mg/L	< 0.01	0.01	Pass	
Phosphorus reactive (as P)	mg/L	< 0.01	0.01	Pass	
Sulphate (as S)	mg/L	< 5	5	Pass	
Sulphide (as S)	mg/L	< 0.1	0.1	Pass	
Sulphite (as S)	mg/L	< 0.5	0.5	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	mg/L	< 10	10	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Total Suspended Solids Dried at 103 °C to 105 °C	mg/L	< 5	5	Pass	
Method Blank	,g, <u>_</u>	1,0			
Heavy Metals					
Aluminium (filtered)	mg/L	< 0.05	0.05	Pass	
Arsenic	mg/L	< 0.001	0.001	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Barium (filtered)	mg/L	< 0.02	0.02	Pass	
Beryllium	mg/L	< 0.02	0.02	Pass	
-					
Beryllium (filtered)	mg/L	< 0.001	0.001	Pass	
Boron	mg/L	< 0.05	0.05	Pass	
Boron (filtered)	mg/L	< 0.05	0.05	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Cobalt	mg/L	< 0.001	0.001	Pass	
Cobalt (filtered)	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Iron (filtered)	mg/L	< 0.05	0.05	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Manganese	mg/L	< 0.005	0.005	Pass	
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Selenium	mg/L	< 0.001	0.001	Pass	
Selenium (filtered)	mg/L	< 0.001	0.001	Pass	
Silver (filtered)	mg/L	< 0.005	0.005	Pass	
Tin (filtered)	mg/L	< 0.005	0.005	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery	, ,				
Total Recoverable Hydrocarbons					
TRH C6-C9	%	96	70-130	Pass	
TRH C10-C14	%	116	70-130	Pass	
TRH C6-C10	%	94	70-130	Pass	
TRH >C10-C16	%	120	70-130	Pass	
LCS - % Recovery		.=-	1.0.00		
BTEX					
Benzene	%	85	70-130	Pass	
Toluene	%	83	70-130	Pass	
Ethylbenzene	%	80	70-130	Pass	
LUIYIDOIIZOIO	/0	1 00	10-100	1 000	I .

Xylenes - Total* LCS - % Recovery Total Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene LCS - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-HCH Aldrin b-HCH d-HCH Dieldrin Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-HCH (Lindane) Heptachlor	% % % % % % % % % % % % % %	75 118 124 118 115 118 121 124 125		70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene LCS - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-HCH Aldrin b-HCH d-HCH Dieldrin Endosulfan I Endosulfan sulphate Endrin aldehyde Endrin ketone g-HCH (Lindane)	% % % % % % %	118 124 118 115 118 121 121 124 125		70-130 70-130 70-130 70-130	Pass Pass Pass	
Naphthalene LCS - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-HCH Aldrin b-HCH d-HCH Dieldrin Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-HCH (Lindane)	% % % % % % %	118 124 118 115 118 121 121 124 125		70-130 70-130 70-130 70-130	Pass Pass Pass	
CS - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-HCH Aldrin b-HCH d-HCH Dieldrin Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-HCH (Lindane)	% % % % % % %	118 124 118 115 118 121 121 124 125		70-130 70-130 70-130 70-130	Pass Pass Pass	
Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-HCH Aldrin b-HCH d-HCH Dieldrin Endosulfan I Endosulfan sulphate Endrin aldehyde Endrin ketone g-HCH (Lindane)	% % % % % % %	124 118 115 118 121 124 125		70-130 70-130 70-130	Pass Pass	
Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-HCH Aldrin b-HCH d-HCH Dieldrin Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-HCH (Lindane)	% % % % % % %	124 118 115 118 121 124 125		70-130 70-130 70-130	Pass Pass	
4.4'-DDD 4.4'-DDE 4.4'-DDT a-HCH Aldrin b-HCH d-HCH Dieldrin Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-HCH (Lindane)	% % % % % % %	124 118 115 118 121 124 125		70-130 70-130 70-130	Pass Pass	
4.4'-DDE 4.4'-DDT a-HCH Aldrin b-HCH d-HCH Dieldrin Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-HCH (Lindane)	% % % % % %	118 115 118 121 124 125		70-130 70-130	Pass	,
4.4'-DDT a-HCH Aldrin b-HCH d-HCH Dieldrin Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-HCH (Lindane)	% % % % % %	115 118 121 124 125		70-130		
a-HCH Aldrin b-HCH d-HCH Dieldrin Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-HCH (Lindane)	% % % % %	118 121 124 125			_	
Aldrin b-HCH d-HCH Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-HCH (Lindane)	% % % %	121 124 125		70-130	Pass	
b-HCH d-HCH Dieldrin Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-HCH (Lindane)	% % %	124 125		70-100	Pass	
d-HCH Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-HCH (Lindane)	% % %	125		70-130	Pass	
Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-HCH (Lindane)	% %			70-130	Pass	
Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-HCH (Lindane)	%	440		70-130	Pass	
Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-HCH (Lindane)		118		70-130	Pass	
Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-HCH (Lindane)	%	118		70-130	Pass	
Endrin Endrin aldehyde Endrin ketone g-HCH (Lindane)		121		70-130	Pass	
Endrin aldehyde Endrin ketone g-HCH (Lindane)	%	116		70-130	Pass	
Endrin ketone g-HCH (Lindane)	%	123		70-130	Pass	
g-HCH (Lindane)	%	106		70-130	Pass	
	%	113		70-130	Pass	
Heptachlor	%	120		70-130	Pass	
	%	125		70-130	Pass	
Heptachlor epoxide	%	123		70-130	Pass	
Hexachlorobenzene	%	113		70-130	Pass	
Methoxychlor	%	115		70-130	Pass	
LCS - % Recovery						
Ammonia (as N)	%	105		70-130	Pass	
Biochemical Oxygen Demand (BOD-5 Day)	%	94		85-115	Pass	
Chromium (hexavalent)	%	97		70-130	Pass	
Cyanide (total)	%	100		70-130	Pass	
Nitrate & Nitrite (as N)	%	119		70-130	Pass	
Nitrite (as N)	%	110		70-130	Pass	
Phenolics (total)	%	115		70-130	Pass	
Phosphate total (as P)	%	106		70-130	Pass	
Phosphorus reactive (as P)	%	81		70-130	Pass	
Sulphate (as S)	%	112		70-130	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	%	98		70-130	Pass	
Total Kjeldahl Nitrogen (as N)	%	128		70-130	Pass	
Total Suspended Solids Dried at 103 °C to 105 °C	%	99		70-130	Pass	
LCS - % Recovery						
Heavy Metals						
Aluminium (filtered)	%	98		80-120	Pass	
Arsenic (filtered)	%	95		80-120	Pass	
Boron	%	116		80-120	Pass	
Boron (filtered)	%	81		80-120	Pass	
Cadmium (filtered)	%	97		80-120	Pass	
Chromium	%	97		80-120	Pass	
Cobalt (filtered)	%	99		80-120	Pass	
Copper (filtered)	%	100		80-120	Pass	
Iron (filtered)	%	99		80-120	Pass	
Lead (filtered)	%	99		80-120	Pass	
Manganese (filtered) Mercury (filtered)	%	100	1	80-120	Pass	,

Т	est		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Nickel (filtered)			%	100	80-120	Pass	
Selenium (filtered)			%	95	80-120	Pass	
Silver (filtered)			%	94	80-120	Pass	
Tin (filtered)			%	95	80-120	Pass	
Zinc (filtered)			%	96	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	1	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarb	ons			Result 1			
TRH C10-C14	M23-My0018535	NCP	%	120	70-130	Pass	
TRH >C10-C16	M23-My0018535	NCP	%	124	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
Chlordanes - Total	M23-My0023293	NCP	%	79	70-130	Pass	
4.4'-DDD	M23-My0023293	NCP	%	89	70-130	Pass	
4.4'-DDE	M23-My0023293		%	70	70-130	Pass	
4.4'-DDT	M23-My0023293		%	76	70-130	Pass	
a-HCH	M23-My0023293		%	80	70-130	Pass	
Aldrin	M23-My0023293		%	82	70-130	Pass	
b-HCH	M23-My0023293		%	83	70-130	Pass	
d-HCH	M23-My0023293		%	82	70-130	Pass	
Dieldrin	M23-My0023293	NCP	%	81	70-130	Pass	
Endosulfan I	M23-My0023293	NCP	%	82	70-130	Pass	
Endosulfan II	M23-My0023293	NCP	%	78	70-130	Pass	
Endosulfan sulphate	M23-My0023293	NCP	%	74	70-130	Pass	
Endrin	M23-My0023293		%	83	70-130	Pass	
Endrin aldehyde	M23-My0023293		%	71	70-130	Pass	
Endrin ketone	M23-My0023293		%	75	70-130	Pass	
g-HCH (Lindane)	M23-My0023293	NCP	%	81	70-130	Pass	
Heptachlor	M23-My0023293	NCP	%	87	70-130	Pass	
Heptachlor epoxide	M23-My0023293	NCP	%	83	70-130	Pass	
Hexachlorobenzene	M23-My0023293	NCP	%	74	70-130	Pass	
Methoxychlor	M23-My0023293	NCP	<u>%</u>	75	70-130	Pass	
Spike - % Recovery	WZ3-WY00Z3Z93	INCF	/0	13	10-130	Fass	
Spike - % Recovery				Popult 1		Т	
Phosphate total (as P)	B23-My0007982	NCP	%	Result 1 87	70 120	Pass	
	<u> </u>	NCP	%	93	70-130	1	
Total Kjeldahl Nitrogen (as N)	M23-My0013797	INCP	70	93	70-130	Pass	
Spike - % Recovery				Dogult 1		T	
Heavy Metals	M22 My0049467	NCP	0/	Result 1	75 405	Door	
Aluminium (filtered)	M23-My0018467		%	105	75-125	Pass	
Arsenic (filtered)	M23-My0018467	NCP	%	95	75-125	Pass	
Barium (filtered)	B23-My0020861	NCP	%	80	75-125	Pass	
Beryllium (filtered)	M23-My0018467	NCP	%	102	75-125	Pass	
Boron (filtered)	M23-My0022183		%	108	75-125	Pass	
Characterists	B23-My0020861	NCP	%	89	75-125	Pass	
Chromium	M23-My0026657	NCP	%	96	75-125	Pass	-
Cobalt (filtered)	M23-My0018467	NCP	%	95	75-125	Pass	-
Copper (filtered)	M23-My0018467	NCP	%	93	75-125	Pass	200
Iron (filtered)	M23-My0018467	NCP	%	74	75-125	Fail	Q08
Lead (filtered)	M23-My0018467	NCP	%	97	75-125	Pass	-
Manganese (filtered)	M23-My0018467	NCP	%	94	75-125	Pass	-
Mercury (filtered)	M23-My0018467	NCP	%	102	75-125	Pass	
Nickel (filtered)	M23-My0018467	NCP	%	90	75-125	Pass	
Selenium (filtered)	M23-My0018467	NCP	%	94	75-125	Pass	<u> </u>
Silver (filtered)	M23-My0018467	NCP	%	89	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Tin (filtered)	M23-My0018467	NCP	%	77			75-125	Pass	
Zinc (filtered)	M23-My0018467	NCP	%	95			75-125	Pass	
Spike - % Recovery									
				Result 1					
Nitrite (as N)	M23-My0016033	NCP	%	108			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Boron	M23-My0014756	NCP	%	104			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate Total Recoverable Hydrocar	bons			Result 1	Result 2	RPD			
TRH C6-C9	M23-My0011725	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	N23-My0017006	NCP	mg/L	0.95	0.82	15	30%	Pass	
TRH C15-C28	N23-My0017006	NCP	mg/L	1.2	1.1	8.4	30%	Pass	
TRH C29-C36	N23-My0017006	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C6-C10	M23-My0011725	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16	N23-My0017006	NCP	mg/L	0.61	0.55	10	30%	Pass	
TRH >C16-C34	N23-My0017006	NCP	mg/L	1.1	1.0	8.6	30%	Pass	
TRH >C34-C40	N23-My0017006	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate	, , , , , , , , , , , , , , , , , , , ,	_	<u> </u>	-					
BTEX				Result 1	Result 2	RPD			
Benzene	M23-My0011725	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	M23-My0011725	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	M23-My0011725	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	M23-My0011725	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	M23-My0011725	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	M23-My0011725	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocar	bons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M23-My0011725	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	B23-My0014390	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
4.4'-DDD	B23-My0014390	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDE	B23-My0014390	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDT	B23-My0014390	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
a-HCH	B23-My0014390	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Aldrin	B23-My0014390	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
b-HCH	B23-My0014390	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
d-HCH	B23-My0014390	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Dieldrin	B23-My0014390	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan I	B23-My0014390	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan II	B23-My0014390	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan sulphate	B23-My0014390	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin	B23-My0014390	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin aldehyde	B23-My0014390	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin ketone	B23-My0014390	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
g-HCH (Lindane)	B23-My0014390	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor	B23-My0014390	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor epoxide	B23-My0014390	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Hexachlorobenzene	B23-My0014390	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Methoxychlor	B23-My0014390	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Toxaphene	B23-My0014390	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Dumlingto									
Duplicate				D. audi 4	D 11 0	DDD			
0 11 (4 4 1)	1400 14 0040000	NOD	,	Result 1	Result 2	RPD	000/	+	
Cyanide (total)	M23-My0010238	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Phosphate total (as P)	M23-My0030930	NCP	mg/L	0.08	0.04	18	30%	Pass	
Sulphate (as S)	M23-My0014584	CP	mg/L	250	200	21	30%	Pass	
Sulphide (as S)	M23-My0015553	NCP	mg/L	0.4	0.4	<1	30%	Pass	
Sulphite (as S)	M23-My0012404	NCP	mg/L	< 2.5	< 2.5	<1	30%	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	M23-My0016048	NCP	mg/L	4000	4200	6.5	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Aluminium (filtered)	M23-My0018467	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Arsenic (filtered)	M23-My0018467	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Barium (filtered)	M23-My0018467	NCP	mg/L	0.20	0.20	<1	30%	Pass	
Beryllium (filtered)	M23-My0018467	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Boron (filtered)	M23-My0022183	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Cadmium (filtered)	M23-My0018467	NCP	mg/L	0.12	0.12	1.8	30%	Pass	
Chromium	M23-My0026657	NCP	mg/L	0.002	0.002	<1	30%	Pass	
Cobalt (filtered)	M23-My0018467	NCP	mg/L	0.014	0.015	3.1	30%	Pass	
Copper (filtered)	M23-My0018467	NCP	mg/L	0.002	0.002	1.3	30%	Pass	
Iron (filtered)	M23-My0018467	NCP	mg/L	2.7	2.7	1.5	30%	Pass	
Lead (filtered)	M23-My0018467	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese (filtered)	M23-My0018467	NCP	mg/L	0.015	0.015	1.4	30%	Pass	
Mercury (filtered)	M23-My0018467	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	M23-My0018467	NCP	mg/L	0.036	0.036	1.6	30%	Pass	
Selenium (filtered)	M23-My0018467	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Silver (filtered)	M23-My0018467	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Tin (filtered)	M23-My0018467	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc (filtered)	M23-My0018467	NCP	mg/L	0.013	0.013	1.8	30%	Pass	
Duplicate			· · · · · · · · · · · ·	0,0,0	0.000	119	33.73		
				Result 1	Result 2	RPD			
Total Kjeldahl Nitrogen (as N)	M23-My0014585	CP	mg/L	3.2	3.1	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Chromium (hexavalent)	M23-My0014587	CP	mg/L	0.005	0.009	54	30%	Fail	Q15
Duplicate									
				Result 1	Result 2	RPD			
Ammonia (as N)	M23-My0014588	CP	mg/L	0.09	0.11	13	30%	Pass	
Chromium (hexavalent)	M23-My0014588	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Nitrate & Nitrite (as N)	M23-My0014588	CP	mg/L	17	17	3.2	30%	Pass	
Nitrate (as N)	M23-My0014588	CP	mg/L	16	15	3.6	30%	Pass	
Nitrite (as N)	M23-My0014588	CP	mg/L	1.1	1.2	3.3	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Biochemical Oxygen Demand (BOD-5 Day)	M23-My0014589	СР	mg/L	< 5	< 5	<1	30%	Pass	
Duplicate		-						1.00	
Heavy Metals					Result 2	RPD			
				Result 1					

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

G01 The LORs have been raised due to matrix interference

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed

all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix

Q08

The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report. Q15

Authorised by:

N02

Catherine Wilson Analytical Services Manager Emily Rosenberg Senior Analyst-Metal Joseph Edouard Senior Analyst-Organic Joseph Edouard Senior Analyst-Volatile Mary Makarios Senior Analyst-Inorganic Mary Makarios Senior Analyst-Metal

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

OLD

22

Date Sampled

08-May-23

08-May-23

08-May-23

08-May-23

LABORATORY TESTING ORDER

Project Title :	Riverlea Saltwater Lakes GME
Job Number:	231445-01
Project Manager:	Tess O'Leary
Email:	tess.oleay@lbwco.com.au
Phone:	08 8331 2417
Results to:	results@lbwco.com.qu, lbwco@esda1.com.qu
Invoice to:	finance albwca.com.au

LBW co's COC REFERENCE (sample delivery group)

231445-01_COC_20230508

Sample Matrix

Water

Water

Water

Water

SAMPLE DETAILS

Sample ID

6628-21445

SLMW04-P

RINSE-4

TB-04

Primary Laboratory:	Eurofins
Laboratory Quote Ref:	230303LBWS
Secondary Laboratory:	AIR
secondary raporatory:	ALS
Laboratory Quote Ref:	ADBQ-001-18_LBWco_SO

Turnaround Required Standard (5 Day) CHEMICAL TESTING REQUIRED Phenolics (fotal) - Spectrophotometric fechnique Additional Informatio (plus additional metals) Sulfate as 5 Suffide as S BOD 5 Day wiffle as S MT3 TDS TSS х х х х х х х Х х Х х х х Х х х х Х х Х х Х х х х

quested by:	Received by: Pallmal	Additional Comments
O'Leary	racquiag	
te\time requested:	Date\time received:	
-May-23	08/05 2:30PM	Analysis as per quote 2303031BWS. Note that nitrite analysis is requested.
nat@e	Signature:	

2 2

2 2 2 2

LABORATORY RECEIPT

#987308
Parfural Page 1 of 1

LBW co AUTHORISATION

SAMPLE REGISTER & CHAIN OF CUSTODY

Project Title: Riverlea Saltwater Lakes GME

Job Number: 231445-01 Project manager: Tess O'Leary

Email: tess.oleary@lbwco.com.au

Phone: 8331 2417

Send results to: results@lbwco.com.au
Send invoice to: finance@lbwco.com.au

Primary Lab: Eurofins Lab Quote Ref: 230303LBWS

Secondary lab: ALS

ADBQ-001-18_LBWco_SO

COC Reference: (sample delivery group)

231445-01_COC_20230508

Sample Custody - Step 1 Sample Details 1 Sample Details 2 Relinaished by: 6628-21445 SLMW04-P LBW Job#: 231445-01 LBW Job#: 231445-01 Gaetano Garfi Matrix: Water Matrix: Water Date: 08 /05/2023 Date: **QS** /05/2023 TB-04 231445-01 RINSE - 4 231445-01 08/05/2023 Courier and consignment number: Received by: Date/Time Received: Signature: Sample Custody - Step Relinqished by: Date/Time Relinquished: Signature: Courier and consignment number: Received by: Date/Time Received: Signature: Page 1 of

LBW co Pty Ltd 184 Magill Road Norwood SA 5069

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: TESS O'LEARY

Report 987308-W

Project name Riverlea Saltwater Lakes GME

Project ID 231445-01
Received Date May 08, 2023

Client Sample ID			6628-21445	SLMW04-P	RINSE-4	TB-04
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- My0018154	M23- My0018155	M23- My0018156	M23- My0018157
Date Sampled			May 08, 2023	May 08, 2023	May 08, 2023	May 08, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	·					
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	-	-
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	-	-
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	-	-
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	-	-
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	-	-
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	-	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	-	-
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	-	-
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	-	-
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	-	-
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	-	-
BTEX		-				
Benzene	0.001	mg/L	< 0.001	< 0.001	-	-
Toluene	0.001	mg/L	< 0.001	< 0.001	-	-
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	-	-
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	-	-
o-Xylene	0.001	mg/L	< 0.001	< 0.001	-	-
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	-	-
4-Bromofluorobenzene (surr.)	1	%	118	120	-	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	-				
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	-	-
Organochlorine Pesticides						
Chlordanes - Total	0.002	mg/L	< 0.002	< 0.002	-	-
4.4'-DDD	0.0002	mg/L	< 0.0002	< 0.0002	-	-
4.4'-DDE	0.0002	mg/L	< 0.0002	< 0.0002	-	-
4.4'-DDT	0.0002	mg/L	< 0.0002	< 0.0002	-	-
a-HCH	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Aldrin	0.0002	mg/L	< 0.0002	< 0.0002	-	-
b-HCH	0.0002	mg/L	< 0.0002	< 0.0002	-	-
d-HCH	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Dieldrin	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Endosulfan I	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Endosulfan II	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Endosulfan sulphate	0.0002	mg/L	< 0.0002	< 0.0002	-	-

Client Comple ID			2000 04445	01 1010 1 0		TD 04
Client Sample ID			6628-21445	SLMW04-P	RINSE-4	TB-04
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- My0018154	M23- My0018155	M23- My0018156	M23- My0018157
Date Sampled			May 08, 2023	May 08, 2023	May 08, 2023	May 08, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Endrin	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Endrin aldehyde	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Endrin ketone	0.0002	mg/L	< 0.0002	< 0.0002	-	-
g-HCH (Lindane)	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Heptachlor	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Heptachlor epoxide	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Hexachlorobenzene	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Methoxychlor	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Toxaphene	0.005	mg/L	< 0.005	< 0.005	-	-
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	-	-
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	-	-
Dibutylchlorendate (surr.)	1	%	109	129	-	-
Tetrachloro-m-xylene (surr.)	1	%	96	130	-	-
Ammonia (as N)	0.01	mg/L	0.04	0.13	-	-
Biochemical Oxygen Demand (BOD-5 Day)	5	mg/L	8.1	< 5	-	-
Chromium (hexavalent)	0.005	mg/L	< 0.005	< 0.005	-	-
Cyanide (total)	0.005	mg/L	< 0.005	< 0.005	-	-
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	18	-	-
Nitrate (as N)	0.02	mg/L	< 0.02	18	-	-
Nitrite (as N)	0.02	mg/L	< 0.02	0.06	-	-
Organic Nitrogen (as N)*	0.2	mg/L	0.56	< 0.2	-	-
pH (at 25 °C)	0.1	pH Units	8.2	8.2	-	-
Phenolics (total)	0.05	mg/L	< 0.05	< 0.05	-	-
Phosphate total (as P)	0.01	mg/L	< 0.01	< 0.01	-	-
Phosphorus reactive (as P)	0.01	mg/L	< 0.01	0.03	-	-
Sulphate (as S)	5	mg/L	47	160	-	-
Sulphide (as S)	0.1	mg/L	< 0.1	< 0.1	-	-
Sulphite (as S)	0.5	mg/L	< 1	< 1	-	-
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	7400	3800	-	-
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.6	< 0.2	-	-
Total Nitrogen (as N)*	0.2	mg/L	0.6	18	-	-
Total Suspended Solids Dried at 103 °C to 105 °C	5	mg/L	70	240	-	-
Heavy Metals						
Aluminium (filtered)	0.05	mg/L	< 0.05	< 0.05	-	-
Arsenic (filtered)	0.001	mg/L	0.001	< 0.001	< 0.001	-
Barium (filtered)	0.02	mg/L	< 0.02	0.03	-	-
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Boron (filtered)	0.05	mg/L	0.55	5.4	< 0.05	-
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Chromium	0.001	mg/L	0.005	0.036	-	-
Chromium (filtered)	0.001	mg/L	-	-	< 0.001	-
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Copper (filtered)	0.001	mg/L	< 0.001	0.002	< 0.001	-
Iron (filtered)	0.05	mg/L	0.40	< 0.05	-	-
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Manganese (filtered)	0.005	mg/L	1.3	0.007	< 0.005	-

Client Sample ID			6628-21445	SLMW04-P	RINSE-4	TB-04
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- My0018154	M23- My0018155	M23- My0018156	M23- My0018157
Date Sampled			May 08, 2023	May 08, 2023	May 08, 2023	May 08, 2023
Test/Reference	LOR	Unit				
Heavy Metals						
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	-
Nickel (filtered)	0.001	mg/L	< 0.001	0.002	< 0.001	-
Selenium (filtered)	0.001	mg/L	< 0.001	0.030	< 0.001	-
Silver (filtered)	0.005	mg/L	< 0.005	< 0.005	-	-
Tin (filtered)	0.005	mg/L	< 0.005	< 0.005	-	-
Zinc (filtered)	0.005	mg/L	< 0.005	0.013	< 0.005	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B6A (filtered metals)			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Melbourne	May 09, 2023	7 Days
Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Melbourne	May 09, 2023	7 Days
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	May 09, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40	Webburne	Way 05, 2025	1 Days
BTEX	Melbourne	May 09, 2023	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH	Webburne	Way 00, 2020	14 Days
Chromium (hexavalent)	Melbourne	May 09, 2023	28 Days
Method: LTM-INO-4100 Hexavalent Chromium by Spectrometric detection	Molocumo	May 00, 2020	20 Dayo
NEPM 2013 Metals : Metals M12 (filtered)	Melbourne	May 10, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS	Molocumo	May 10, 2020	20 Dayo
Total Recoverable Hydrocarbons	Melbourne	May 09, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40	Molocumo	May 00, 2020	, Dayo
Organochlorine Pesticides	Melbourne	May 09, 2023	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)	Webburne	Way 00, 2020	7 Days
Biochemical Oxygen Demand (BOD-5 Day)	Melbourne	May 09, 2023	2 Days
- Method: LTM-INO-4010 Biochemical Oxygen Demand (BOD5) in Water	Molocumo	May 00, 2020	2 Dayo
Cyanide (total)	Melbourne	May 09, 2023	14 Days
- Method: LTM-INO-4020 Total Free WAD Cyanide by CFA	Molocumo	May 00, 2020	11 Days
pH (at 25 °C)	Melbourne	May 09, 2023	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE	Molecumo	May 00, 2020	o i iodio
Phenolics (total)	Melbourne	May 09, 2023	7 Days
- Method: LTM-INO-4050 Total Phenolics in Waters and solids by CFA		, 55, 252	, .
Sulphate (as S)	Melbourne	May 09, 2023	28 Days
- Method: LTM-INO-4110 Sulfate by Discrete Analyser		., ,	, .
Sulphide (as S)	Melbourne	May 10, 2023	7 Days
- Method: LTM-INO-4011 Suphide		, ,	•
Sulphite (as S)	Melbourne	May 09, 2023	28 Days
- Method: LTM-INO-4240 Sulfite & Thiosulfate in Water			•
Total Suspended Solids Dried at 103 °C to 105 °C	Melbourne	May 09, 2023	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Heavy Metals (filtered)	Melbourne	May 10, 2023	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
NEPM 2013 Filtered Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)	Melbourne	May 09, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Heavy Metals	Melbourne	May 10, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P			
Ammonia (as N)	Melbourne	May 09, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Nitrate & Nitrite (as N)	Melbourne	May 09, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Nitrate (as N)	Melbourne	May 09, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Nitrite (as N)	Melbourne	May 09, 2023	2 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Organic Nitrogen (as N)*	Melbourne	May 08, 2023	7 Days
- Method: APHA 4500 Organic Nitrogen (N)			
Phosphate total (as P)	Melbourne	May 09, 2023	28 Days

Description	Testing Site	Extracted	Holding Time
- Method: LTM-INO-4040 Phosphate by CFA			
Phosphorus reactive (as P)	Melbourne	May 09, 2023	2 Days
- Method: APHA 4500-P			
Total Kjeldahl Nitrogen (as N)	Melbourne	May 09, 2023	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Total Dissolved Solids Dried at 180 °C ± 2 °C	Melbourne	May 09, 2023	28 Days

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Address:

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Canberra Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place Mitchell Murarrie ACT 2911 QLD 4172

Newcastle 1/2 Frost Drive Tel: +61 2 4968 8448 Tel: +61 7 3902 4600

Mayfield West NSW 2304 NATA# 1261 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

Perth

35 O'Rorke Road

Tel: +64 9 526 45 51

Auckland 1061

IANZ# 1327

Auckland

Penrose,

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Company Name: LBW co Pty Ltd Order No.: Received: May 8, 2023 3:05 PM

Tel: +61 2 6113 8091

184 Magill Road Report #: 987308 Due: May 15, 2023 Phone: 08 8331 2417 **Priority:** 5 Dav

Norwood SA 5069 08 8331 2415 TESS O'LEARY Fax: **Contact Name:**

Project Name: Riverlea Saltwater Lakes GME

Project ID: 231445-01 **Eurofins Analytical Services Manager: Amy Meunier**

														.90												
Sample Detail Melbourne Laboratory - NATA # 1261 Site # 1254 External Laboratory				Aluminium (filtered)	Barium (filtered)	Biochemical Oxygen Demand (BOD-5 Day)	Chromium	Cyanide (total)	Iron (filtered)	pH (at 25 °C)	Phenolics (total)	Silver (filtered)	Sulphate (as S)	Sulphide (as S)	Sulphite (as S)	Tin (filtered)	Total Suspended Solids Dried at 103 °C to 105 °C	TRH C6-C10	Organochlorine Pesticides	NEPM 2013 Metals : Metals M13 filtered	Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P	Eurofins Suite B6A (filtered metals)	Total Dissolved Solids Dried at 180 °C ± 2 °C			
Melk	ourne Laborate	ory - NATA # 12	261 Site # 12	254		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Exte	rnal Laboratory	<i>'</i> .																								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																					
1	6628-21445	May 08, 2023		Water	M23-My0018154	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х	
2	SLMW04-P	May 08, 2023		Water	M23-My0018155	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х		Х		Х	Х	Х	
3	RINSE-4	May 08, 2023		Water	M23-My0018156																	Х	↓	<u> </u>	igsquare	
4	TB-04	May 08, 2023		Water	M23-My0018157															Х				<u> </u>		
Test	Counts					2	2	2	2	2	2	2	2	2	2	2	2	2	2	1	2	1	2	2	2	

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre µg/L: micrograms per litre

ppm: parts per million ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report
CRM Certified Reference Material (ISO17034) - reported as percent recovery

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
ВТЕХ					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank	IIIg/L	< 0.005	0.003	1 433	
Total Recoverable Hydrocarbons - 2013 NEPM Fracti	one			Π	
Naphthalene	mg/L	< 0.01	0.01	Pass	
Method Blank	IIIg/L	< 0.01	0.01	Fass	
Organochlorine Pesticides					
Chlordanes - Total	mg/L	< 0.002	0.002	Pass	
4.4'-DDD	mg/L	< 0.0002	0.0002	Pass	
4.4'-DDE	mg/L	< 0.0002	0.0002	Pass	
4.4'-DDT	mg/L	< 0.0002	0.0002	Pass	
a-HCH	mg/L	< 0.0002	0.0002	Pass	
Aldrin	mg/L	< 0.0002	0.0002	Pass	
b-HCH	mg/L	< 0.0002	0.0002	Pass	
d-HCH	mg/L	< 0.0002	0.0002	Pass	
Dieldrin		< 0.0002	0.0002	Pass	
Endosulfan I	mg/L	< 0.0002	0.0002	Pass	
Endosulfan II	mg/L	< 0.0002	0.0002	Pass	
Endosulfan sulphate	mg/L				
	mg/L	< 0.0002	0.0002	Pass	
Endrin	mg/L	< 0.0002	0.0002	Pass	
Endrin aldehyde	mg/L	< 0.0002	0.0002	Pass	
Endrin ketone	mg/L	< 0.0002	0.0002	Pass	
g-HCH (Lindane)	mg/L	< 0.0002	0.0002	Pass	
Heptachlor	mg/L	< 0.0002	0.0002	Pass	
Heptachlor epoxide	mg/L	< 0.0002	0.0002	Pass	
Hexachlorobenzene	mg/L	< 0.0002	0.0002	Pass	
Methoxychlor	mg/L	< 0.0002	0.0002	Pass	
Toxaphene	mg/L	< 0.005	0.005	Pass	
Method Blank		0.04		D.	
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
Biochemical Oxygen Demand (BOD-5 Day)	mg/L	< 5	5	Pass	
Chromium (hexavalent)	mg/L	< 0.005	0.005	Pass	
Cyanide (total)	mg/L	< 0.005	0.005	Pass	
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Nitrate (as N)	mg/L	< 0.02	0.02	Pass	
Nitrite (as N)	mg/L	< 0.02	0.02	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Phenolics (total)	mg/L	< 0.05	0.05	Pass	
Phosphorus reactive (as P)	mg/L	< 0.01	0.01	Pass	
Sulphate (as S)	mg/L	< 5	5	Pass	
Sulphide (as S)	mg/L	< 0.1	0.1	Pass	
Sulphite (as S)	mg/L	< 0.5	0.5	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	mg/L	< 10	10	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Method Blank	1 1119/1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.2	1 455	
Heavy Metals					
Aluminium (filtered)	mg/L	< 0.05	0.05	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Barium (filtered)	mg/L	< 0.02	0.02	Pass	
Beryllium (filtered)	mg/L	< 0.02	0.001	Pass	
Boron (filtered)		< 0.05	0.001	Pass	
·	mg/L		0.0002	Pass	
Cadmium (filtered)	mg/L	< 0.0002			
Chromium Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Cobalt (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Iron (filtered)	mg/L	< 0.05	0.05	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	-
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	<u> </u>
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Selenium (filtered)	mg/L	< 0.001	0.001	Pass	
Silver (filtered)	mg/L	< 0.005	0.005	Pass	
Tin (filtered)	mg/L	< 0.005	0.005	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons					
TRH C6-C9	%	93	70-130	Pass	
TRH C10-C14	%	104	70-130	Pass	
TRH C6-C10	%	92	70-130	Pass	
TRH >C10-C16	%	100	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	81	70-130	Pass	
Toluene	%	80	70-130	Pass	
Ethylbenzene	%	79	70-130	Pass	
m&p-Xylenes	%	81	70-130	Pass	
Xylenes - Total*	%	82	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	89	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
Chlordanes - Total	%	86	70-130	Pass	
4.4'-DDD	%	76	70-130	Pass	
4.4'-DDE	%	80	70-130	Pass	
4.4'-DDT	%	73	70-130	Pass	
a-HCH	%	89	70-130	Pass	
Aldrin	%	89	70-130	Pass	
b-HCH	%	90	70-130	Pass	
d-HCH	%				
u-11011	70	91	70-130	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Dieldrin			%	89	70-130	Pass	
Endosulfan I	%	85	70-130	Pass			
Endosulfan II	%	86	70-130	Pass			
Endosulfan sulphate			%	80	70-130	Pass	
Endrin			%	90	70-130	Pass	
Endrin aldehyde			%	81	70-130	Pass	
Endrin ketone			%	79	70-130	Pass	
g-HCH (Lindane)			%	88	70-130	Pass	
Heptachlor			%	95	70-130	Pass	
Heptachlor epoxide			%	91	70-130	Pass	
Hexachlorobenzene			%	83	70-130	Pass	
Methoxychlor			%	71	70-130	Pass	
LCS - % Recovery							
Ammonia (as N)			%	116	70-130	Pass	
Chromium (hexavalent)			%	91	70-130	Pass	
Cyanide (total)			%	108	70-130	Pass	
Nitrate & Nitrite (as N)			%	123	70-130	Pass	
Nitrite (as N)			%	104	70-130	Pass	
Phenolics (total)			%	93	70-130	Pass	
Phosphate total (as P)			%	101	70-130	Pass	
Phosphorus reactive (as P)			%	110	70-130	Pass	
Sulphate (as S)			%	109	70-130	Pass	
Total Dissolved Solids Dried at 180	°C + 2 °C		%	121	70-130	Pass	
	C ± Z · C		%	107	70-130	Pass	
Total Kjeldahl Nitrogen (as N) Total Suspended Solids Dried at 10	12 °C to 105 °C		%	100	70-130	Pass	
	13 C 10 105 C		70	100	70-130	Fass	
LCS - % Recovery							
Heavy Metals			0/	404	00.400	Dana	
Aluminium (filtered)			%	104	80-120	Pass	
Arsenic (filtered)			%	97	80-120	Pass	
Boron (filtered)			%	118	80-120	Pass	
Cadmium (filtered)			%	98	80-120	Pass	
Chromium			%	99	80-120	Pass	
Chromium (filtered)			%	103	80-120	Pass	
Cobalt (filtered)			%	99	80-120	Pass	
Copper (filtered)			%	99	80-120	Pass	
Iron (filtered)			%	104	80-120	Pass	
Lead (filtered)			%	103	80-120	Pass	
Manganese (filtered)			%	99	80-120	Pass	
Mercury (filtered)			%	101	80-120	Pass	
Nickel (filtered)			%	100	80-120	Pass	
Selenium (filtered)			%	96	80-120	Pass	
Silver (filtered)			%	98	80-120	Pass	
Tin (filtered)			%	92	80-120	Pass	
Zinc (filtered)			%	98	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbons				Result 1			
TRH C10-C14	M23-My0026235	NCP	%	87	70-130	Pass	
TRH >C10-C16	M23-My0026235	NCP	%	89	70-130	Pass	
Spike - % Recovery							
				Result 1			
Organochlorine Pesticides							
Chlordanes - Total	M23-My0023293	NCP	%	79	 70-130	Pass	
_ -	M23-My0023293 M23-My0023293		% %	79 89	70-130 70-130	Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
4.4'-DDT	M23-My0023293	NCP	%	76			70-130	Pass	
a-HCH	M23-My0023293	NCP	%	80			70-130	Pass	
Aldrin	M23-My0023293	NCP	%	82			70-130	Pass	
b-HCH	M23-My0023293	NCP	%	83			70-130	Pass	
d-HCH	M23-My0023293	NCP	%	82			70-130	Pass	
Dieldrin	M23-My0023293	NCP	%	81			70-130	Pass	
Endosulfan I	M23-My0023293	NCP	%	82			70-130	Pass	
Endosulfan II	M23-My0023293	NCP	%	78			70-130	Pass	
Endosulfan sulphate	M23-My0023293	NCP	%	74			70-130	Pass	
Endrin	M23-My0023293	NCP	%	83			70-130	Pass	
Endrin aldehyde	M23-My0023293	NCP	%	71			70-130	Pass	
Endrin ketone	M23-My0023293	NCP	%	75			70-130	Pass	
g-HCH (Lindane)	M23-My0023293	NCP	%	81			70-130	Pass	
Heptachlor	M23-My0023293	NCP	%	87			70-130	Pass	
Heptachlor epoxide	M23-My0023293	NCP	%	83			70-130	Pass	
Hexachlorobenzene	M23-My0023293	NCP	%	74			70-130	Pass	
Methoxychlor	M23-My0023293	NCP	%	75			70-130	Pass	
Spike - % Recovery	<u>.</u>		,,,				10.00		
opins 70 Necestery				Result 1			T		
Nitrite (as N)	M23-My0018154	СР	%	124			70-130	Pass	
Total Kjeldahl Nitrogen (as N)	M23-My0022654	NCP	%	103			70-130	Pass	
Spike - % Recovery	WZO WYOOZZOO+	1401	70	100			70 130	1 433	
Heavy Metals				Result 1					
Aluminium (filtered)	B23-My0020861	NCP	%	98			75-125	Pass	
Arsenic (filtered)	B23-My0020861	NCP	//	89			75-125	Pass	
Barium (filtered)	B23-My0020861	NCP	<u> </u>	80			75-125	Pass	
Beryllium (filtered)	B23-My0020861	NCP	%	98			75-125 75-125	Pass	
		NCP	%				1		
Boron (filtered)	M23-My0027694	NCP	<u>%</u> %	107 89			75-125	Pass	
Cadmium (filtered)	B23-My0020861	1					75-125	Pass	
Chromium	M23-My0015290	NCP	%	89			75-125	Pass	
Cobalt (filtered)	B23-My0020861	NCP	%	90			75-125	Pass	
Copper (filtered)	B23-My0020861	NCP	%	89			75-125	Pass	
Iron (filtered)	B23-My0020861	NCP	%	95			75-125	Pass	
Lead (filtered)	B23-My0020861	NCP	%	91			75-125	Pass	
Manganese (filtered)	M23-My0018467	NCP	%	94			75-125	Pass	
Mercury (filtered)	B23-My0020861	NCP	%	92			75-125	Pass	
Nickel (filtered)	B23-My0020861	NCP	%	89			75-125	Pass	
Selenium (filtered)	B23-My0020861	NCP	%	91			75-125	Pass	
Silver (filtered)	B23-My0020861	NCP	%	85			75-125	Pass	
Tin (filtered)	B23-My0020861	NCP	%	77			75-125	Pass	
Zinc (filtered)	B23-My0020861	NCP	%	90			75-125	Pass	
Spike - % Recovery				1 _					
				Result 1					
Phosphate total (as P)	M23-My0018155	CP	%	98			70-130	Pass	
Spike - % Recovery				ı			I		
Heavy Metals				Result 1					
Chromium (filtered)	M23-My0018317	NCP	%	106			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbon	<u> </u>	, ,		Result 1	Result 2	RPD			
TRH C10-C14	M23-My0026226	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	M23-My0026226	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	M23-My0026226	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C10-C16	M23-My0026226	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH >C16-C34	M23-My0026226	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	M23-My0026226	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	M23-My0029385	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
4.4'-DDD	M23-My0029385	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDE	M23-My0029385	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDT	M23-My0029385	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
а-НСН	M23-My0029385	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Aldrin	M23-My0029385	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
b-HCH	M23-My0029385	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
d-HCH	M23-My0029385	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Dieldrin	M23-My0029385	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan I	M23-My0029385	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan II	M23-My0029385	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan sulphate	M23-My0029385	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin	M23-My0029385	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin aldehyde	M23-My0029385	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin ketone	M23-My0029385	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
g-HCH (Lindane)	M23-My0029385	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor	M23-My0029385	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor epoxide	M23-My0029385	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Hexachlorobenzene	M23-My0029385	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Methoxychlor	M23-My0029385	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Toxaphene	M23-My0029385	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate				<u> </u>	1			ı	
	T			Result 1	Result 2	RPD			
Ammonia (as N)	B23-Ap0051597	NCP	mg/L	54	53	<1	30%	Pass	
Biochemical Oxygen Demand (BOD-5 Day)	N23-My0017663	NCP	ma/l	< 5	< 5	<1	30%	Pass	
Chromium (hexavalent)	M23-My0017603	CP	mg/L mg/L	< 0.005	< 0.005	<1	30%	Pass	
Cyanide (total)	M23-My0010238	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Nitrate & Nitrite (as N)	M23-My0015850	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Nitrate (as N)	M23-My0015850	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Nitrite (as N)	M23-My0015850	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Phosphate total (as P)	M23-My0018154	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Sulphate (as S)	M23-My0018154	CP	mg/L	47	48	1.8	30%	Pass	
Sulphide (as S)	M23-My0014371	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Sulphite (as S)	M23-My0012404	NCP	mg/L	< 2.5	< 2.5	<1	30%	Pass	
Total Dissolved Solids Dried at 180		1101	mg/L	\ 2.0	\ 2.0		0070	1 455	
°C ± 2 °C	M23-My0029197	NCP	mg/L	910	880	3.1	30%	Pass	
Total Kjeldahl Nitrogen (as N)	M23-My0014351	NCP	mg/L	2.0	2.1	2.0	30%	Pass	
Total Suspended Solids Dried at 103 °C to 105 °C	M23-My0029197	NCP	mg/L	100	64	46	30%	Fail	Q15
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Aluminium (filtered)	B23-My0020861	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Arsenic (filtered)	B23-My0020861	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Barium (filtered)	B23-My0020861	NCP	mg/L	0.06	0.06	<1	30%	Pass	
Beryllium (filtered)	B23-My0020861	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Boron (filtered)	M23-My0027694		mg/L	< 0.05	< 0.05	<1	30%	Pass	
Cadmium (filtered)	B23-My0020861	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	M23-My0015290		mg/L	< 0.001	< 0.001	<1	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Cobalt (filtered)	B23-My0020861	NCP	mg/L	0.005	0.005	<1	30%	Pass	
Copper (filtered)	B23-My0020861	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Iron (filtered)	B23-My0020861	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Lead (filtered)	B23-My0020861	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese (filtered)	B23-My0020861	NCP	mg/L	4.8	4.8	<1	30%	Pass	
Mercury (filtered)	B23-My0020861	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	B23-My0020861	NCP	mg/L	0.005	0.005	1.1	30%	Pass	
Selenium (filtered)	B23-My0020861	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Silver (filtered)	B23-My0020861	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Tin (filtered)	B23-My0020861	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc (filtered)	B23-My0020861	NCP	mg/L	0.011	0.011	4.8	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Sulphate (as S)	M23-My0018155	CP	mg/L	160	170	5.4	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Chromium (filtered)	M23-My0018317	NCP	mg/L	0.008	0.008	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

N02

Amy Meunier Analytical Services Manager Carroll Lee Senior Analyst-Volatile Edward Lee Senior Analyst-Organic **Emily Rosenberg** Senior Analyst-Metal Joseph Edouard Senior Analyst-Organic Mary Makarios Senior Analyst-Inorganic Mary Makarios Senior Analyst-Metal

Managing Director

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Project Name Riverlea Assessn		81445-01 verlea Saltwater Lakes Dewatering ssessment 023-10-31-Eurofins-AB 11		aboratory estination Lab ab Quote No ab Contact	Eurofins Q01470 Amy Me amymeu		com	Repor Primar Contac Second Contac	t resu	/co Laboratory lts@lbwco.co O'Leary oleary@lbwco	m.au	Pur Org Bill	ling rchase Order# g to be Billed To ention	LBWo finan	
URNAROUND REPECIAL INSTRUC AMPLED BY: LBV	TIONS: -		Biochemical Oxygen Demand (BOD-5	Day) Cyanide (total)	Eurofins Suite B1	Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3,	Total P, Reactive P Eurofins Suite B6A	Metals M13	Organic TRH C6-C10	Organochlorine Pesticides	pH (at 25 °C)	Phenolics (total)	Sulphate (as SO4)	Ногр	COMMENTS
SLMW12-A	Water	31/10/2023 01:04PM		_	_	✓ ✓		~	0 1			Δ.	Ñ	I	
SLMW12-B	Water	31/10/2023 02:28PM		√		1	1			√	✓	✓	✓		
SLMW12-Q2	Na	31/10/2023 03:00PM	· ·				-			✓	✓	✓	✓		
Dup-1	Water	31/10/2023 03:00PM		- /		√	· •			✓	1	✓	1		
RINSE1	Water	31/10/2023 04:47PM		· ·	1	✓	1			✓	✓	✓			
TB1	Water	31/10/2023 04:47PM			•			✓							
									√	48000					

LSPECS Lab Submission

FIELD ID MATRIX DATE	=	0	al Dissolv ds Dried E 2°C	Total Suspended Solids Dried at 1 °C to 105 °C			COMMENTS
MAIRIA DATE	Sulphide	Sulphite	Total Dissolved Solids Dried at °C ± 2 °C	Total Solids °C to			Ного
SLMW12-A Water 31/10/2023 01:0	4PM 🗸	1	1	7			I I
SLMW12-B Water 31/10/2023 02:2	8PM ✓	1	1				
SLMW12-Q2 Na 31/10/2023 03:0	OPM 🗸	1	1				
Dup-1 Water 31/10/2023 03:0	OPM 🗸	√	1	√			
RINSE1 Water 31/10/2023 04:4	7PM						
TL1 Water 31/10/2023 04:4	7PM	.,					
Hand Over	inquished		Received		D.F. 11		
# of Delivery Boxes 1 Signature			veceiven		Relinquished	Received	e-Request Sent
6-1-1	onio Brita						Name -
Con Note - Org -	onio Brito						Org -
	10/2023 04:46P						Date -

SAMPLE REGISTER & CHAIN OF CUSTODY

Project Title: Riverlea Saltwater Lakes Dewatering

Job Number: 221408

Project manager: Tess O'Leary Email: tess.oleary@lbwco.com.au Phone: 8331 2417 Send results to: results@lbwco.com.au Send invoice to: finance@lbwco.com.au

Lab Quote Ref: Price Book 2017-2018 Primary Lab: Eurofins

Secondary lab: ALS

ADBQ-001-18_LBWco_SO

COC Reference: (sample delivery group)

221445-01_COC_ 2 @25103

Page__ of 16:45 GPM retoute Berto Sample Custody - Step 2 Sample Custody - Step 1 Courier and consignment number: Date/Time Relinquished: Date/Time Relinquished: Date/Time Received: Date/Time Receip 3 Relinqished by: Courier and c Received by: Signature: Signature: Signature: Signature: 31-10-23 Project number 231445-01 Matrix: Water Project number 231445-01 Matrix: Water
Date 31-10-12 Sample Details 2 DUP-1 SLMW12-B 31-10water Date Project number 231445-01 Date 31-10-23 Matrix: Water Date 31-10-23 Project number 231445-01 Project number 231445-01 Date 31/70/23 Matrix: Water Matrix: Water Sample Details 1 Rinse-1 SLMW12-C SLMW12-A

Tyrone Gowans

Tess O Leary <tess.oleary@lbwco.com.au> Tuesday, 31 October 2023 5:53 PM From: Sent:

#AU_CAU001_EnviroSampleVic; Amy Meunier Attachments: **Subject:** ij

Testing Order for Water Samples - LBWco ref 231445-01

LSPECS - Lab Request has been Sent; 231445-01_LTO_231031.pdf

Incoming Transit Categories:

CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins. Do not click on links or open attachments unless you recognise the sender and are certain that the content is safe.

Hi Amy

Please see attached testing order for water samples dropped with Parimal this afternoon. Please use quote 230303LBWS. Testing order also sent as an eCOC, reference 2023-10-31-Eurofins-AB.

Thanks

Tess O'Leary

Senior Environmental Advisor | Team Leader

The last 15 years wouldn't have been possible without our fabulous team, our valued clients, our trusted suppliers, and our support network. We wouldn't be LBWco without you all - thank you!

Ģ

Tyrone Gowans

From: Tess O Leary <tess.oleary@lbwco.com.au>
Sent: Wednesday, 1 November 2023 4:36 PM
To: #AU_CAU001_EnviroSampleVic; Amy Meunier

Subject: RE: Eurofins Sample Receipt Advice - Report 1040188 : Site RIVERLEA SALTWATER

LAKES DEWATERING ASSESSMENT (231445-01)

Attachments: 1040188_summary.pdf; 1040188_COC.pdf

Follow Up Flag: Follow up Flag Status: Flagged

CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins. Do not click on links or open attachments unless you recognise the sender and are certain that the content is safe.

Hi Amy

Could sample SLMW12-C please be allocated for the same analysis as SLMW12-A? Apologies, there was a mix up between the sample ID on the bottle and in the eCOC.

Thanks

Tess

Tess O'Leary

Senior Environmental Advisor | Team Leader

08 8331 2417 0405 480 106 www.lbwco.com.au

From: EnviroSampleVic@eurofins.com <EnviroSampleVic@eurofins.com>

Sent: Wednesday, November 1, 2023 3:41 PM **To:** Tess O Leary < tess.oleary@lbwco.com.au>

Cc: Results < results@lbwco.com.au>; lbwco@esdat.com.au

Subject: Eurofins Sample Receipt Advice - Report 1040188 : Site RIVERLEA SALTWATER LAKES DEWATERING

ASSESSMENT (231445-01)

Dear Valued Client,

Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chain-of-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested

LBW co Pty Ltd 184 Magill Road Norwood SA 5069

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Page 1 of 16

Report Number: 1040188-W-V2

Attention: TESS O'LEARY

Report 1040188-W-V2

Project name RIVERLEA SALTWATER LAKES DEWATERING ASSESSMENT

Project ID 231445-01

Received Date Nov 01, 2023

Client Sample ID			SLMW12-A	SLMW12-B	DUP-1	RINSE1
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- No0001794	M23- No0001795	M23- No0001796	M23- No0001797
•						
Date Sampled			Oct 31, 2023	Oct 31, 2023	Oct 31, 2023	Oct 31, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	1	Г				
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	110	110	109	100
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Organochlorine Pesticides						
Chlordanes - Total	0.002	mg/L	< 0.002	< 0.002	< 0.002	-
4.4'-DDD	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
4.4'-DDE	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
4.4'-DDT	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
a-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Aldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
b-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
d-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Dieldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Endosulfan I	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Endosulfan II	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Endosulfan sulphate	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-

Client Sample ID			SLMW12-A	SLMW12-B	DUP-1	RINSE1
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- No0001794	M23- No0001795	M23- No0001796	M23- No0001797
Date Sampled			Oct 31, 2023	Oct 31, 2023	Oct 31, 2023	Oct 31, 2023
Test/Reference	LOR	Unit		, , , , , , , ,	, , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,
Organochlorine Pesticides						
Endrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	_
Endrin aldehyde	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	
Endrin ketone	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
g-HCH (Lindane)	0.0002	mg/L	< 0.0002	< 0.0002		-
,					< 0.0002	-
Heptachlor appyide	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Heptachlor epoxide	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Hexachlorobenzene Mark and the second to second the second to second the second to second to second the second to se	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Methoxychlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Toxaphene	0.005	mg/L	< 0.005	< 0.005	< 0.005	-
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	-
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	-
Dibutylchlorendate (surr.)	1	%	83	75	58	-
Tetrachloro-m-xylene (surr.)	1	%	50	95	68	-
Ammonia (as N)	0.01	mg/L	0.04	0.04	0.03	-
Biochemical Oxygen Demand (BOD-5 Day)	5	mg/L	< 5	< 5	< 5	_
Chromium (hexavalent)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Cyanide (total)	0.005	mg/L	< 0.005	< 0.005	< 0.005	-
Nitrate & Nitrite (as N)	0.05	mg/L	1.6	1.7	2.5	_
Nitrate (as N)	0.02	mg/L	1.6	1.7	2.5	_
Nitrite (as N)	0.02	mg/L	< 0.02	0.08	0.06	_
Organic Nitrogen (as N)*	0.02	mg/L	0.96	0.66	0.47	_
pH (at 25 °C)	0.2	pH Units		7.9	7.8	_
Phenolics (total)	0.05	mg/L	< 0.05	< 0.05	< 0.05	_
Phosphorus reactive (as P)	0.03	mg/L	< 0.03	< 0.03	< 0.03	_
Sulphate (as SO4)	5	mg/L	1000	1100	1200	
	0.1					-
Sulphide (as S)		mg/L	< 0.1	< 0.1	< 0.1	-
Sulphite (as S)	0.5	mg/L	< 50	< 5	< 5	-
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	4800	7300	4000	-
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	1.0	0.7	0.5	-
Total Nitrogen (as N)*	0.2	mg/L	2.6	2.4	3.0	-
Total Suspended Solids Dried at 103 °C to 105 °C	5	mg/L	1300	550	280	-
Phosphate total (as P)	0.01	mg/L	0.01	< 0.01	< 0.01	-
Heavy Metals						
Aluminium (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05	-
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Barium (filtered)	0.02	mg/L	0.03	0.03	0.02	-
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Boron (filtered)	0.05	mg/L	7.5	8.3	7.4	< 0.05
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	0.003	0.002	0.002	-
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.001	0.002	0.002	0.035
Iron (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05	-
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.069
Manganese (filtered)	0.005	mg/L	< 0.005	0.014	0.018	< 0.005
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001

Page 2 of 16

Client Sample ID			SLMW12-A	SLMW12-B	DUP-1	RINSE1
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- No0001794	M23- No0001795	M23- No0001796	M23- No0001797
Date Sampled			Oct 31, 2023	Oct 31, 2023	Oct 31, 2023	Oct 31, 2023
Test/Reference	LOR	Unit				
Heavy Metals						
Nickel (filtered)	0.001	mg/L	< 0.001	0.002	0.025	0.027
Selenium (filtered)	0.001	mg/L	0.058	0.051	0.065	< 0.001
Silver (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	-
Tin (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	-
Zinc (filtered)	0.005	mg/L	0.005	0.011	0.014	0.24

Client Sample ID			TB1	SLMW12-C
Sample Matrix			Water	Water
Eurofins Sample No.			M23- No0001798	M23- No0001799
Date Sampled			Oct 31, 2023	Oct 31, 2023
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons	'			
TRH C6-C9	0.02	mg/L	-	< 0.02
TRH C10-C14	0.05	mg/L	-	< 0.05
TRH C15-C28	0.1	mg/L	-	< 0.1
TRH C29-C36	0.1	mg/L	-	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	-	< 0.1
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	-	< 0.02
TRH >C10-C16	0.05	mg/L	-	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	-	< 0.05
TRH >C16-C34	0.1	mg/L	-	< 0.1
TRH >C34-C40	0.1	mg/L	-	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	-	< 0.1
BTEX				
Benzene	0.001	mg/L	-	< 0.001
Toluene	0.001	mg/L	-	< 0.001
Ethylbenzene	0.001	mg/L	-	< 0.001
m&p-Xylenes	0.002	mg/L	-	< 0.002
o-Xylene	0.001	mg/L	-	< 0.001
Xylenes - Total*	0.003	mg/L	-	< 0.003
4-Bromofluorobenzene (surr.)	1	%	-	110
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.01	mg/L	-	< 0.01
Organochlorine Pesticides		-		
Chlordanes - Total	0.002	mg/L	-	< 0.002
4.4'-DDD	0.0002	mg/L	-	< 0.0002
4.4'-DDE	0.0002	mg/L	-	< 0.0002
4.4'-DDT	0.0002	mg/L	-	< 0.0002
a-HCH	0.0002	mg/L	-	< 0.0002
Aldrin	0.0002	mg/L	-	< 0.0002
b-HCH	0.0002	mg/L	-	< 0.0002
d-HCH	0.0002	mg/L	-	< 0.0002
Dieldrin	0.0002	mg/L	-	< 0.0002
Endosulfan I	0.0002	mg/L	-	< 0.0002
Endosulfan II	0.0002	mg/L	-	< 0.0002
Endosulfan sulphate	0.0002	mg/L	-	< 0.0002

Page 3 of 16

Client Sample ID			TB1	SLMW12-C
Sample Matrix			Water	Water
Eurofins Sample No.			M23- No0001798	M23- No0001799
Date Sampled			Oct 31, 2023	Oct 31, 2023
Test/Reference	LOR	Unit		
Organochlorine Pesticides				
Endrin	0.0002	mg/L	_	< 0.0002
Endrin aldehyde	0.0002	mg/L	_	< 0.0002
Endrin ketone	0.0002	mg/L	_	< 0.0002
g-HCH (Lindane)	0.0002	mg/L	_	< 0.0002
Heptachlor	0.0002	mg/L	_	< 0.0002
Heptachlor epoxide	0.0002	mg/L	_	< 0.0002
Hexachlorobenzene	0.0002	mg/L	-	< 0.0002
Methoxychlor	0.0002	mg/L	_	< 0.0002
Toxaphene	0.005	mg/L	-	< 0.005
Aldrin and Dieldrin (Total)*	0.0002	mg/L	-	< 0.0002
DDT + DDE + DDD (Total)*	0.0002	mg/L	-	< 0.0002
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	-	< 0.002
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	_	< 0.002
Dibutylchlorendate (surr.)	1	%	_	50
Tetrachloro-m-xylene (surr.)	1	%	-	60
roducinore in xylene (cam.)	'	,,,		
Ammonia (as N)	0.01	mg/L	-	0.03
Biochemical Oxygen Demand (BOD-5 Day)	5	mg/L	-	< 5
Chromium (hexavalent)	0.005	mg/L	_	< 0.005
Cyanide (total)	0.005	mg/L	_	< 0.005
Nitrate & Nitrite (as N)	0.05	mg/L	_	2.5
Nitrate (as N)	0.02	mg/L	_	2.5
Nitrite (as N)	0.02	mg/L	_	0.06
Organic Nitrogen (as N)*	0.2	mg/L	_	0.37
pH (at 25 °C)	0.1	pH Units	_	8.3
Phenolics (total)	0.05	mg/L	_	< 0.05
Phosphorus reactive (as P)	0.01	mg/L	_	< 0.01
Sulphate (as SO4)	5	mg/L	_	1300
Sulphide (as S)	0.1	mg/L	_	< 0.1
Sulphite (as S)	0.5	mg/L	-	< 5
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	_	8200
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	_	0.4
Total Nitrogen (as N)*	0.2	mg/L	_	2.9
Total Suspended Solids Dried at 103 °C to 105 °C	5	mg/L	_	240
Phosphate total (as P)	0.01	mg/L	_	0.01
Heavy Metals	0.01	iiig/L		0.01
Aluminium (filtered)	0.05	mg/L	-	< 0.05
Arsenic (filtered)	0.001	mg/L	-	< 0.001
Barium (filtered)	0.02	mg/L	-	0.02
Beryllium (filtered)	0.001	mg/L	-	< 0.001
Boron (filtered)	0.05	mg/L	-	7.6
Cadmium (filtered)	0.0002	mg/L	-	< 0.0002
Chromium (filtered)	0.001	mg/L	-	0.002
Cobalt (filtered)	0.001	mg/L	-	< 0.002
Copper (filtered)	0.001	mg/L	-	0.002
Iron (filtered)	0.05	mg/L	_	< 0.05
Lead (filtered)	0.001	mg/L	-	< 0.001
Manganese (filtered)	0.001	mg/L	-	0.018
Mercury (filtered)	0.0001	mg/L	-	< 0.0001

Page 4 of 16

Client Sample ID			TB1	SLMW12-C
Sample Matrix			Water	Water
Eurofins Sample No.			M23- No0001798	M23- No0001799
Date Sampled			Oct 31, 2023	Oct 31, 2023
Test/Reference	LOR	Unit		
Heavy Metals				
Nickel (filtered)	0.001	mg/L	-	0.025
Selenium (filtered)	0.001	mg/L	=	0.065
Silver (filtered)	0.005	mg/L	=	< 0.005
Tin (filtered)	0.005	mg/L	-	< 0.005
Zinc (filtered)	0.005	mg/L	-	0.014

Page 5 of 16

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B6A (filtered metals) Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Nov 03, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40		,	,
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Nov 03, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40	NA - III	N00, 0000	7.0
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Nov 03, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40	Malhauraa	Nov.02, 2022	14 Days
BTEX	Melbourne	Nov 03, 2023	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH Chromium (hexavalent)	Melbourne	Nov 03, 2023	29 Dave
,	Webbuille	1100 03, 2023	28 Days
 - Method: LTM-INO-4100 Hexavalent Chromium by Spectrometric detection NEPM 2013 Metals: Metals M12 (filtered) 	Melbourne	Nov 03, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Total Recoverable Hydrocarbons	Melbourne	Nov 03, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Organochlorine Pesticides	Melbourne	Nov 03, 2023	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)			
Biochemical Oxygen Demand (BOD-5 Day)	Melbourne	Nov 03, 2023	2 Days
- Method: LTM-INO-4010 Biochemical Oxygen Demand (BOD5) in Water			
Cyanide (total)	Melbourne	Nov 03, 2023	14 Days
- Method: LTM-INO-4020 Total Free WAD Cyanide by CFA			
pH (at 25 °C)	Melbourne	Nov 03, 2023	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE			
Phenolics (total)	Melbourne	Nov 03, 2023	7 Days
- Method: LTM-INO-4050 Total Phenolics in Waters and solids by CFA			
Sulphate (as SO4)	Melbourne	Nov 03, 2023	28 Days
- Method: LTM-INO-4270 Anions by Ion Chromatography			
Sulphide (as S)	Melbourne	Nov 10, 2023	7 Days
- Method: LTM-INO-4011 Suphide		N 44 0000	00 B
Sulphite (as S)	Melbourne	Nov 14, 2023	28 Days
- Method: LTM-INO-4240 Sulfite & Thiosulfate in Water	Maille access	N00, 0000	7.0
Total Suspended Solids Dried at 103 °C to 105 °C	Melbourne	Nov 03, 2023	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry	Malharma	Nav. 40, 2022	00 Davis
Phosphate total (as P)	Melbourne	Nov 13, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS	Molhourno	Nov. 1.4, 2022	190 Days
Heavy Metals (filtered)	Melbourne	Nov 14, 2023	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P			
Ammonia (as N)	Melbourne	Nov 03, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser	Weibourne	1407 03, 2023	20 Days
Nitrate & Nitrite (as N)	Melbourne	Nov 03, 2023	28 Days
Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser	Webbume	1407 03, 2023	20 Days
Nitrate (as N)	Melbourne	Nov 03, 2023	28 Days
Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser	Webbume	1407 03, 2023	20 Days
Nitrite (as N)	Melbourne	Nov 03, 2023	2 Days
Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser	Weibourne	1407 00, 2020	2 Days
Organic Nitrogen (as N)*	Melbourne	Nov 01, 2023	7 Days
- Method: APHA 4500 Organic Nitrogen (N)			. = =, =
Phosphorus reactive (as P)	Melbourne	Nov 03, 2023	2 Days
- Method: APHA 4500-P		,	y -
Total Kjeldahl Nitrogen (as N)	Melbourne	Nov 03, 2023	28 Days
, , ,		, -	•

Description	Testing Site	Extracted	Holding Time
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Total Dissolved Solids Dried at 180 °C ± 2 °C	Melbourne	Nov 03, 2023	28 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			
Mobil Metals : Metals M15	Melbourne	Nov 03, 2023	28 Days

Page 7 of 16

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 179 Magowar Road Girraween NSW 2145 NATA# 1261

Site# 18217

Canberra

Mitchell

ACT 2911

Site# 25466

Phone:

Fax:

Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie QLD 4172 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 NATA# 1261

Site# 20794

08 8331 2415

Newcastle Mayfield West NSW 2304 Tel: +61 2 4968 8448 Site# 25079 & 25289

ABN: 91 05 0159 898

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Company Name:

Address:

LBW co Pty Ltd

184 Magill Road

Norwood SA 5069

RIVERLEA SALTWATER LAKES DEWATERING ASSESSMENT

Project Name: Project ID:

231445-01

231445-01 Received: Nov 1, 2023 5:53 AM Order No.: Report #:

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

46-48 Banksia Road

Tel: +61 8 6253 4444

1040188 Due: Nov 9, 2023 08 8331 2417 **Priority:** 5 Day

> TESS O'LEARY **Contact Name:**

Eurofins Analytical Services Manager: Amy Meunier

	Sample Detail Melbourne Laboratory - NATA # 1261 Site # 1254				Biochemical Oxygen Demand (BOD-5 Day)	Cyanide (total)	pH (at 25 °C)	Phenolics (total)	Phosphate total (as P)	Sulphate (as SO4)	Sulphide (as S)	Sulphite (as S)	Total Suspended Solids Dried at 103 °C to 105 °C	TRH C6-C10	Organochlorine Pesticides	NEPM 2013 Metals : Metals M13 filtered	Eurofins Suite B1	Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P	Eurofins Suite B6A (filtered metals)	Total Dissolved Solids Dried at 180 °C ± 2 °C	
			61 Site # 12	54		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	rnal Laboratory										-						-				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																
1	SLMW12-A	Oct 31, 2023	1:04PM	Water	M23-No0001794	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х			Х	Х	Х
2	SLMW12-B	Oct 31, 2023	2:28PM	Water	M23-No0001795	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х			Х	Х	Х
3	DUP-1	Oct 31, 2023	3:00PM	Water	M23-No0001796	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х			Х	Х	Х
4	RINSE1	Oct 31, 2023	4:47PM	Water	M23-No0001797												Х	Х			
5	TB1	Oct 31, 2023	4:47PM	Water	M23-No0001798										Х						
6	SLMW12-C	Oct 31, 2023		Water	M23-No0001799	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х			Х	Х	Х
Test	Counts					4	4	4	4	4	4	4	4	4	1	4	1	1	4	4	4

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil/sediment/solid results are reported on a dry weight basis unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion unless otherwise stated.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling; therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is 7 days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre μg/L: micrograms per litre

ppm: parts per million ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA WA DWER

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30%; however the following acceptance quidelines are equally

applicable: Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries above the QC limit designated in QSM 5.4, where no positive PFAS results have been reported, have been reviewed, and no data was affected

QC Data General Comments

- Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Eurofins Environment Testing 6 Monterey Road, Dandenong South, Victoria, Australia 3175 Page 9 of 16 ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 1040188-W-V2

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
втех					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank	111g/ L	1 0.000	0.000	1 466	
Total Recoverable Hydrocarbons - 2013 NEPM Fi	ractions				
Naphthalene	mg/L	< 0.01	0.01	Pass	
Method Blank	IIIg/L	V 0.01	0.01	1 433	
Organochlorine Pesticides					
Chlordanes - Total	ma/l	< 0.002	0.002	Pass	
4.4'-DDD	mg/L mg/L	< 0.002	0.002	Pass	
4.4'-DDE		< 0.0002	0.0002	Pass	
4.4'-DDT	mg/L		0.0002		
	mg/L	< 0.0002		Pass	
a-HCH	mg/L	< 0.0002	0.0002	Pass	
Aldrin	mg/L	< 0.0002	0.0002	Pass	
b-HCH	mg/L	< 0.0002	0.0002	Pass	
d-HCH	mg/L	< 0.0002	0.0002	Pass	
Dieldrin	mg/L	< 0.0002	0.0002	Pass	
Endosulfan I	mg/L	< 0.0002	0.0002	Pass	
Endosulfan II	mg/L	< 0.0002	0.0002	Pass	
Endosulfan sulphate	mg/L	< 0.0002	0.0002	Pass	
Endrin	mg/L	< 0.0002	0.0002	Pass	
Endrin aldehyde	mg/L	< 0.0002	0.0002	Pass	
Endrin ketone	mg/L	< 0.0002	0.0002	Pass	
g-HCH (Lindane)	mg/L	< 0.0002	0.0002	Pass	
Heptachlor	mg/L	< 0.0002	0.0002	Pass	
Heptachlor epoxide	mg/L	< 0.0002	0.0002	Pass	
Hexachlorobenzene	mg/L	< 0.0002	0.0002	Pass	
Methoxychlor	mg/L	< 0.0002	0.0002	Pass	
Toxaphene	mg/L	< 0.005	0.005	Pass	
Method Blank					
Biochemical Oxygen Demand (BOD-5 Day)	mg/L	< 5	5	Pass	
Chromium (hexavalent)	mg/L	< 0.005	0.005	Pass	
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Nitrite (as N)	mg/L	< 0.02	0.02	Pass	
Phenolics (total)	mg/L	< 0.05	0.05	Pass	
Phosphorus reactive (as P)	mg/L	< 0.01	0.01	Pass	
Sulphate (as SO4)	mg/L	< 5	5	Pass	

Page 10 of 16

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Sulphide (as S)	mg/L	< 0.1	0.1	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	mg/L	< 10	10	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Phosphate total (as P)	mg/L	< 0.01	0.01	Pass	
Method Blank					
Heavy Metals					
Aluminium (filtered)	mg/L	< 0.05	0.05	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Barium (filtered)	mg/L	< 0.02	0.02	Pass	
Beryllium (filtered)	mg/L	< 0.001	0.001	Pass	
Boron (filtered)	mg/L	< 0.05	0.05	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Cobalt (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Iron (filtered)	mg/L	< 0.05	0.05	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Selenium (filtered)	mg/L	< 0.001	0.001	Pass	
Silver (filtered)	mg/L	< 0.005	0.005	Pass	
Tin (filtered)	mg/L	< 0.005	0.005	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery		T T			
Total Recoverable Hydrocarbons					
TRH C6-C9	%	98	70-130	Pass	
TRH C10-C14	%	130	70-130	Pass	
TRH C6-C10	%	96	70-130	Pass	
TRH >C10-C16	%	120	70-130	Pass	
LCS - % Recovery		T T			
BTEX				_	
Benzene	%	78	70-130	Pass	
Toluene	%	79	70-130	Pass	
Ethylbenzene	%	81	70-130	Pass	
m&p-Xylenes	%	84	70-130	Pass	
Xylenes - Total*	%	84	70-130	Pass	
LCS - % Recovery	_				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions		00	70.400	Dana	
Naphthalene	%	82	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides Chlordanes - Total	0/	07	70 420	Doco	
4.4'-DDD	%	97	70-130	Pass	
	%	92	70-130	Pass	
4.4'-DDE	%		70-130	Pass	
4.4'-DDT	%	104	70-130	Pass	
a-HCH Aldrin	% %	107 120	70-130 70-130	Pass Pass	
b-HCH	%	120	70-130	Pass	
d-HCH	%	111	70-130	Pass	
Dieldrin	%	104	70-130	Pass	
Endosulfan I	%	112	70-130	Pass	
Endosulfan II	%	109	70-130	Pass	

Page 11 of 16

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endrin			%	112		70-130	Pass	
Endrin aldehyde			%	96		70-130	Pass	
Endrin ketone			%	110		70-130	Pass	
g-HCH (Lindane)			%	115		70-130	Pass	
Heptachlor			%	124		70-130	Pass	
Heptachlor epoxide			%	89		70-130	Pass	
Hexachlorobenzene			%	109		70-130	Pass	
Methoxychlor			%	104		70-130	Pass	
LCS - % Recovery				-				
Ammonia (as N)			%	101		70-130	Pass	
Biochemical Oxygen Demand (BOD	-5 Day)		%	88		85-115	Pass	
Chromium (hexavalent)	O Day)		%	112		70-130	Pass	
Nitrate & Nitrite (as N)			%	107		70-130	Pass	
Nitrite (as N)			%	99		70-130	Pass	
Phenolics (total)			%			70-130		
Phenolics (total) Phosphorus reactive (as P)			%	105 92		70-130	Pass	
							Pass	
Sulphate (as SO4)	00 - 0.00		%	107		70-130	Pass	
Total Dissolved Solids Dried at 180	-0 ± 2 °C		%	112		70-130	Pass	
Total Kjeldahl Nitrogen (as N)			%	104		70-130	Pass	
Total Suspended Solids Dried at 10	3 °C to 105 °C		%	91		70-130	Pass	
Phosphate total (as P)			%	93		70-130	Pass	
LCS - % Recovery				T	1			
Heavy Metals								
Arsenic (filtered)			% %	103		80-120	Pass	
Boron (filtered)				104		80-120	Pass	
Cadmium (filtered)				102		80-120	Pass	
Cobalt (filtered)				104		80-120	Pass	
Copper (filtered)	Copper (filtered)					80-120	Pass	
Lead (filtered)			%	100		80-120	Pass	
Manganese (filtered)			%	104		80-120	Pass	
Mercury (filtered)			%	101		80-120	Pass	
Nickel (filtered)			%	104		80-120	Pass	
Selenium (filtered)			%	102		80-120	Pass	
Zinc (filtered)			%	103		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons				Result 1				
TRH C6-C9	M23-No0002208	NCP	%	97		70-130	Pass	
TRH C10-C14	M23-No0004088	NCP	%	119		70-130	Pass	
TRH C6-C10	M23-No0002208	NCP	%	93		70-130	Pass	
TRH >C10-C16	M23-No0004088		%	121		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	M23-No0002208	NCP	%	76		70-130	Pass	
Toluene	M23-No0002208		%	78		70-130	Pass	
Ethylbenzene	M23-No0002208	NCP	%	79		70-130	Pass	
	M23-N00002208	NCP	%	82		70-130	Pass	
m&p-Xylenes	M23-No0002208		%	82			Pass	
o-Xylene						70-130		
Xylenes - Total*	M23-No0002208	NCP	%	82		70-130	Pass	
Spike - % Recovery	2042 NEDM 5	lan-		Descrit 4				
Total Recoverable Hydrocarbons -			0/	Result 1		70.400	D	
Naphthalene	M23-No0002208	NCP	%	77		70-130	Pass	
Spike - % Recovery								
Organochlorine Pesticides				Result 1				<u> </u>

Page 12 of 16

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Chlordanes - Total	B23-No0001765	NCP	%	95			70-130	Pass	
4.4'-DDD	B23-No0001765	NCP	%	71			70-130	Pass	
4.4'-DDE	B23-No0001765	NCP	%	84			70-130	Pass	
4.4'-DDT	B23-No0001765	NCP	%	94			70-130	Pass	
a-HCH	B23-No0001765	NCP	%	73			70-130	Pass	
Aldrin	B23-No0001765	NCP	%	77			70-130	Pass	
b-HCH	B23-No0001765	NCP	%	80			70-130	Pass	
d-HCH	B23-No0001765	NCP	%	90			70-130	Pass	
Dieldrin	B23-No0001765	NCP	%	97			70-130	Pass	
Endosulfan I	B23-No0001765	NCP	%	72			70-130	Pass	
Endosulfan II	B23-No0001765	NCP	%	72			70-130	Pass	
Endosulfan sulphate	B23-No0001765	NCP	%	91			70-130	Pass	
Endrin	B23-No0001765	NCP	%	81			70-130	Pass	
Endrin aldehyde	B23-No0001765	NCP	%	76			70-130	Pass	
Endrin ketone	B23-No0001765	NCP	%	77			70-130	Pass	
g-HCH (Lindane)	B23-No0001765	NCP	%	80			70-130	Pass	
Heptachlor	B23-No0001765	NCP	%	90			70-130	Pass	
Heptachlor epoxide	B23-No0001765	NCP	%	101			70-130	Pass	
Hexachlorobenzene	B23-No0001765	NCP	%	85			70-130	Pass	
Methoxychlor	B23-No0001765	NCP	// //////////////////////////////////	95			70-130	Pass	
Spike - % Recovery	B23 140000 1703	1401	70	1 33			70 130	1 433	
Opine - 70 Necovery				Result 1					
Chromium (hexavalent)	M23-No0001385	NCP	%	102			70-130	Pass	
Nitrate & Nitrite (as N)	M23-No0005808	NCP	%	101			70-130	Pass	
Nitrite (as N)	M23-No0005808	NCP	%	86			70-130	Pass	
Total Kjeldahl Nitrogen (as N)	M23-No0000649	NCP	%	84			70-130	Pass	
Phosphate total (as P)	M23-No0008511	NCP	%	98			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic (filtered)	M23-No0002207	NCP	%	105			75-125	Pass	
Beryllium (filtered)	M23-No0002207	NCP	%	107			75-125	Pass	
Boron (filtered)	M23-No0001418	NCP	%	110			75-125	Pass	
Cadmium (filtered)	M23-No0002207	NCP	%	104			75-125	Pass	
Cobalt (filtered)	M23-No0002207	NCP	%	104			75-125	Pass	
Copper (filtered)	M23-No0002207	NCP	%	101			75-125	Pass	
Lead (filtered)	M23-No0002207	NCP	%	101			75-125	Pass	
Manganese (filtered)	M23-No0002207	NCP	%	88			75-125	Pass	
Mercury (filtered)	M23-No0002207	NCP	%	99			75-125	Pass	
Nickel (filtered)	M23-No0002207	NCP	%	104			75-125	Pass	
Selenium (filtered)	M23-No0002207	NCP	%	105			75-125	Pass	
Zinc (filtered)	M23-No0002207	NCP	%	97			75-125	Pass	
Spike - % Recovery	1		,,,	<u> </u>			.0 120	. 430	
				Result 1					
Phenolics (total)	M23-No0001795	СР	%	89			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									3333
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	M23-No0002207	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	M23-No0005789	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	M23-No0005789	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	M23-No0005789	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C6-C10	M23-No0002207	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
	11120 1100002201								
TRH >C10-C16	M23-No0005780	NCP	ma/l	< 0.05	< 0.05	<i>-</i> 1	30%	Pass	l
TRH >C10-C16 TRH >C16-C34	M23-No0005789 M23-No0005789	NCP NCP	mg/L mg/L	< 0.05 < 0.1	< 0.05 < 0.1	<1 <1	30% 30%	Pass Pass	

Page 13 of 16

5									
Duplicate				D. 11.1	D	DDC			
BTEX				Result 1	Result 2	RPD	222/	+	
Benzene	M23-No0002207	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	M23-No0002207	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	M23-No0002207	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	M23-No0002207	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	M23-No0002207	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	M23-No0002207	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate Total Recoverable Hydrocarbons	2042 NEDM Front	iono		Dogult 1	Result 2	DDD			
•	M23-No0002207	NCP	mg/L	Result 1 < 0.01	< 0.01	RPD <1	30%	Pass	
Naphthalene Duplicate	W23-N00002207	NCP	I mg/L	< 0.01	< 0.01	<1	30%	Pass	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	M23-No0009170	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
4.4'-DDD	M23-No0009170	NCP		< 0.002	< 0.002	<u> </u>	30%	Pass	
4.4'-DDE			mg/L			<u> </u>		1	
	M23-No0009170	NCP	mg/L	< 0.0002	< 0.0002		30%	Pass	
4.4'-DDT	M23-No0009170	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
a-HCH	M23-No0009170	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Aldrin	M23-No0009170	NCP NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
b-HCH			mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
d-HCH	M23-No0009170	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Dieldrin	M23-No0009170	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan I	M23-No0009170	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan II	M23-No0009170	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan sulphate	M23-No0009170	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin	M23-No0009170	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin aldehyde	M23-No0009170	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin ketone	M23-No0009170	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
g-HCH (Lindane)	M23-No0009170	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor	M23-No0009170	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor epoxide	M23-No0009170	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Hexachlorobenzene	M23-No0009170	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Methoxychlor	M23-No0009170	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Toxaphene	M23-No0009170	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate				D 1/4					
A	M00 N- 0005040	NOD		Result 1	Result 2	RPD	000/	D	
Ammonia (as N)	M23-No0005813	NCP	mg/L	0.03	0.04	18	30%	Pass	
Biochemical Oxygen Demand (BOD-5 Day)	M23-No0001981	NCP	mg/L	10	10	<1	30%	Pass	
Chromium (hexavalent)	M23-No0001362	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Cyanide (total)	M23-No0005806	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Nitrate & Nitrite (as N)	M23-No0005813	NCP	mg/L	18	18	2.1	30%	Pass	
Nitrite (as N)	M23-No0005813	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
pH (at 25 °C)	M23-No0001794	CP	pH Units	8.5	8.4	pass	30%	Pass	
Phenolics (total)	M23-No0001794	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Total Kjeldahl Nitrogen (as N)	M23-No0001794	CP	mg/L	1.0	1.2	21	30%	Pass	
Total Suspended Solids Dried at		<u> </u>	y, <u>-</u>						
103 °C to 105 °C	M23-No0005892	NCP	mg/L	310	290	7.1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	M23-No0002207	NCP	mg/L	0.003	0.003	1.5	30%	Pass	
Beryllium (filtered)	M23-No0002207	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Boron (filtered)	M23-No0005812	NCP	mg/L	1.9	1.9	1.0	30%	Pass	
Cadmium (filtered)	M23-No0002207	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Cobalt (filtered)	M23-No0002207	NCP	mg/L	0.008	0.008	1.5	30%	Pass	
Copper (filtered)	M23-No0002207	NCP	mg/L	0.040	0.039	1.2	30%	Pass	
Lead (filtered)	M23-No0002207	NCP				4.1	30%	. —	

Page 14 of 16

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Manganese (filtered)	M23-No0002207	NCP	mg/L	0.19	0.19	2.4	30%	Pass	
Mercury (filtered)	M23-No0002207	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	M23-No0002207	NCP	mg/L	0.012	0.012	1.7	30%	Pass	
Selenium (filtered)	M23-No0002207	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc (filtered)	M23-No0002207	NCP	mg/L	0.12	0.12	1.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Sulphate (as SO4)	M23-No0001795	CP	mg/L	1100	1200	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Sulphate (as SO4)	M23-No0001796	СР	mg/L	1200	1200	2.2	30%	Pass	

Page 15 of 16

Comments

This report has been revised (V2) to include additional metals results (AI, Ba, Cr, Fe, Ag, Sn) for all samples, per COC.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Authorised by:

N02

Amy Meunier Analytical Services Manager Caitlin Breeze Senior Analyst-Inorganic Edward Lee Senior Analyst-Organic Emily Rosenberg Senior Analyst-Metal Harry Bacalis Senior Analyst-Volatile Mary Makarios Senior Analyst-Inorganic Mary Makarios Senior Analyst-Metal

Glenn Jackson **Managing Director**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Project ID Project Name	LBWco 231445- Riverlea	01 Saltwater Lakes Dewate	De	stination Lab	Eurofins			Report Primary	LBWc	o Laboratory		Billi Pur	ng chase Order #	23144	45-01
	Assessm		Lai	Quote No	Q01470			Contact results@lbwco.com.au Secondary Tess O'Leary Contact tess.oleary@lbwco.com.au			Org to be Billed LBW			Wco	
SDG/COC#	2023-11-	-01-Eurofins-AB	Lai	Contact		Receipt Melb (0					Bill '		financ	ce@lbwco.com.a	
Request / Versio	n 1/1				envirosa	mplevic@eurofi	ins.com	Contact	tess.o	leary@lbwco	.com.au	Atte	ention	Tess C	D'Leary
TURNAROUND R SPECIAL INSTRUCT SAMPLED BY: LB	CTIONS: -		Biochemical Oxygen Demand (BOD-5	Cyanide (total)	Eurofins Suite B1	Suite B1 TKN, NO O3, NH3,	Total P., Reactive P Eurofins Suite B6A	Metals M13	Organic TRH C6-C10	Organochlorine Pesticides	pH (at 25 °C)	Phenolics (total)	Sulphate (as SO4)	Ногр	COMMENTS
		Large A Manager			Ш			2	0 L	0 4	0.	Δ.	Ŋ	I	- defendance na down-
SMLW07-Q1	Water	01/11/2023 09·14AM	./	./		,				2			8		
	Water Water	01/11/2023 09:14AM 01/11/2023 09:54AM	1	√		1	√			V	✓	✓	✓		
SLMW06-Q1	Water	01/11/2023 09:54AM	1	✓		✓	1			1	/	V	/	************	
	Water Water	01/11/2023 09:54AM 01/11/2023 11:03AM	V	✓		1	1	W or representation becomes the second		1	1	✓ ✓	✓ ✓	*	
SLMW06-Q1 SLMW05-Q1	Water Water Water	01/11/2023 09:54AM 01/11/2023 11:03AM 01/11/2023 11:43AM	1	\ \ \ \		1	√ √ √			<i>y y y</i>	\ \ \ \	✓ ✓ ✓	<i>y y y</i>	-facilities (Control of the Control	
SLMW06-Q1 SLMW05-Q1 SLMW05-P	Water Water Water Water	01/11/2023 09:54AM 01/11/2023 11:03AM 01/11/2023 11:43AM 01/11/2023 12:45PM	\ \frac{1}{4}	\frac{1}{1}		\frac{1}{4}	\frac{1}{4}	war oo oo dhahaa haadhaa ahaa		\frac{1}{2}	<i>y y y y y</i>	\ \ \ \	<i>y y y y</i>	- decomposition to the	
SLMW06-Q1 SLMW05-Q1 SLMW05-P SLMW02-Q1 SLMW03-Q1	Water Water Water Water	01/11/2023 09:54AM 01/11/2023 11:03AM 01/11/2023 11:43AM 01/11/2023 12:45PM 01/11/2023 01:58PM	\frac{1}{1}	\frac{1}{\sqrt{1}}		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\frac{1}{4}	V ** *********************************		<i>J J J J J J J J J J</i>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \	\frac{1}{4}		
SLMW06-Q1 SLMW05-Q1 SLMW05-P SLMW02-Q1	Water Water Water Water Water	01/11/2023 09:54AM 01/11/2023 11:03AM 01/11/2023 11:43AM 01/11/2023 12:45PM 01/11/2023 01:58PM 01/11/2023 02:47PM	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}}		\frac{1}{4}	\frac{1}{\sqrt{1}}	To the state of th		\frac{1}{4}	\frac{1}{3} \tag{7} \t	\ \ \ \ \ \	\frac{1}{\sqrt{1}}		
SLMW06-Q1 SLMW05-Q1 SLMW05-P SLMW02-Q1 SLMW03-Q1 SLMW01-Q1	Water Water Water Water Water	01/11/2023 09:54AM 01/11/2023 11:03AM 01/11/2023 11:43AM 01/11/2023 12:45PM 01/11/2023 01:58PM	\frac{1}{1}	\frac{1}{\sqrt{1}}	√	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\frac{1}{4}	√		<i>J J J J J J J J J J</i>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \	\frac{1}{4}	de contraction de la contracti	

1040740 2/11/23

Turnaround Reque Special Instruction Sampled by: LBWco	NS: -		phide (as S)	ulphite (as SO3)	al Dissolved ids Dried at 180 ± 2°C	al Suspended ids Dried at 10. to 105 °C		C	
FIELD ID	MATRIX	DATE	Sulp	Sulp	Total Solid °C ±	Total Solid		H0L	
SMLW07-Q1	Water	01/11/2023 09:14AM	√	✓	✓	✓			
SLMW06-Q1	Water	01/11/2023 09:54AM	✓	✓	√	✓			
SLMW05-Q1	Water	01/11/2023 11:03AM	√	✓	✓	✓			
SLMW05-P	Water	01/11/2023 11:43AM	✓	1	1	1			
SLMW02-Q1	Water	01/11/2023 12:45PM	✓	✓	✓	√			
SLMW03-Q1	Water	01/11/2023 01:58PM	✓	1	1	/			
SLMW01-Q1	Water	01/11/2023 02:47PM	1	√	1				
SLMW01-P	Water	01/11/2023 03:26PM	1	1	1	1			
RINSE2	Water	01/11/2023 05:57PM		- AV					
TB1	Water	01/11/2023 05:58PM							

Hand Over			Relinquished	Received	Relinquished	Received	e-Request Sent
# of Delivery B	oxes -	Signature					Name -
Cooled	yes	Name	Antonio Brito	Tyrone			Org -
Con Note	-	Org	-				Date -
		Date	01/11/2023 08:00AM	2/11/23 M-30Am			
				10.60			
				icE			

#1040740

Tyrone Gowans

From: Tess O Leary <tess.oleary@lbwco.com.au>

Sent: Thursday, 2 November 2023 8:26 AM

Amy Meunier; #AU_CAU001_EnviroSampleVic

Subject: Attachments: 231445-01_LTO_231101.pdf; LSPECS - Lab Request has been Sent eCOC for Water Samples - LBWco Ref 231445-01

Follow Up Flag: Follow up

Flag Status: Completed

Categories: Incoming Transit

Do not click on links or open attachments unless you recognise the sender and are certain that the CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins.

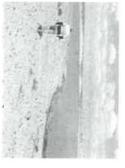
content is safe.

Hi Amy

queries. Please see attached testing order for water samples sent to Melbourne overnight. Let me know if there are any

This one was also sent to the lab via eCOC as SDG 2023-11-01-Eurofins-AB.

Thanks


Tocc

Tess O'Leary

Senior Environmental Advisor | Team Leader

The last 15 years wouldn't have been possible without our fabulous team, our valued clients, our trusted suppliers, and our support network. We wouldn't be LBWco without you all - thank you!

27/1/2 27/20201#

184 Magill Road, Norwood SA 5067 PO Box 225 Stepney SA 5069 P: 08 8331 2417 F: 08 8331 2415

SAMPLE REGISTER & CHAIN OF CUSTODY

Project Title: Riverlea Saltwater Lakes Dewatering Job Number: 231445-01

Project manager: Tess O'Leary

Email: tess.oleary@lbwco.com.au

Phone: 8331 2417

Send results to: results@lbwco.com.au

Send invoice to: finance@lbwco.com.au

Primary Lab: Eurofins Lab Quote Ref: 230303LBWS

Secondary lab: ALS

COC Reference: (sample delivery group) ADBQ-001-18_LBWco_SO

231445-01_COC_ 20231101

				TB-01 1-11-23	SLMW03-Q1 Project number 231445-01 Matrix: Water Date 1-11-23	SLMW01-Q1 Project number 231445-01 Matrix: Water Date 1-11 - 2 3	Project number 231445-01 Matrix: Water Date 1-4-23	SLMW05-Q1 Project number 231445-01 Matrix: Water Date 1-11-73	SLMW07-Q1 Project number 231445-01 Matrix: Water Date 1 1 2 3	Sample Details 1
					SLMW01-P Project number 231445-01 Matrix: Water Date	SLMW02-Q1 Project number 231445-01 Matrix: Water Date /- //-23	Rinse-2 Project number 231445-01 Matrix: Water Date /-//-23	SLMW05-P Project number 231445-01 Matrix: Water Date -(1-2)	SLMW06-Q1 Project number 231445-01 Matrix: Water Date 1-11 -23	Sample Details 2
Signature:	Received by: ## 1040740 Date/Time Received:	Courier and consignment number:	Date/Time Relinquished: Signature:	Sample Custody - Step 2 Relingished by:	Signature:	Date/Time Received:	Courier and consignment number: Received by:	Signature: 1 -01-223	Relingished by: Autouio Buito Date/Time Relinguished:	Sample Custody - Step 1

Page of

Tyrone Gowans

From: Tess O Leary <tess.oleary@lbwco.com.au>
Sent: Thursday, 16 November 2023 12:47 PM
To: Amy Meunier; #AU_CAU001_EnviroSampleVic

Subject: RE: Eurofins Test Results, Invoice - Report 1040740 : Site RIVERLEA SALTWATER LAKES

DEWATERING ASSESSMENT (231445-01)

Attachments: 1040740_COC.pdf; 1040740-W_report.pdf

Follow Up Flag: Follow up Flag Status: Flagged

CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins. Do not click on links or open attachments unless you recognise the sender and are certain that the content is safe.

Hi Amy

There are some sample IDs that seem to have gotten mixed up between the COC and this lab report. The sample IDs should start with SLMW, whereas for most of these samples they have been reported as SMLW. Could you ask the lab to update the IDs and reissue, please? Also sample SLMW05-Q3 should be SLMW05-Q1.

Apologies for not seeing this on the SRA.

Thanks

Tess

Tess O'Leary

Senior Environmental Advisor | Team Leader

08 8331 2417 0405 480 106 www.lbwco.com.au

From: AmyMeunier@eurofins.com < AmyMeunier@eurofins.com >

Sent: Tuesday, November 14, 2023 4:58 PM **To:** Tess O Leary <tess.oleary@lbwco.com.au>

Cc: Results < results@lbwco.com.au >; lbwco@esdat.com.au

Subject: Eurofins Test Results, Invoice - Report 1040740: Site RIVERLEA SALTWATER LAKES DEWATERING ASSESSMENT

(231445-01)

Hi Tess,

LBW co Pty Ltd 184 Magill Road Norwood SA 5069

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Page 1 of 17

Report Number: 1040740-W-V2

Attention: TESS O'LEARY

Report 1040740-W-V2

Project name RIVERLEA SALTWATER LAKES DEWATERING ASSESSMENT

Project ID 231445-01

Received Date Nov 02, 2023

Client Sample ID			SLMW07-Q1	SLMW06-Q2	SLMW05-Q1	SLMW05-P
Sample Matrix			Water	Water	Water	Water
			M23-	M23-	M23-	M23-
Eurofins Sample No.			No0005806	No0005807	No0005808	No0005809
Date Sampled			Nov 01, 2023	Nov 01, 2023	Nov 01, 2023	Nov 01, 2023
Test/Reference	LOR	Unit				
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	98	100	99	99
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Total Recoverable Hydrocarbons						
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Organochlorine Pesticides						
Chlordanes - Total	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
4.4'-DDD	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
4.4'-DDE	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
4.4'-DDT	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
a-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Aldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
b-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
d-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Dieldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan I	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan II	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan sulphate	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002

Client Sample ID			SLMW07-Q1	SLMW06-Q2	SLMW05-Q1	SLMW05-P
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- No0005806	M23- No0005807	M23- No0005808	M23- No0005809
Date Sampled			Nov 01, 2023	Nov 01, 2023	Nov 01, 2023	Nov 01, 2023
Test/Reference	LOR	Unit		, , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,
Organochlorine Pesticides	LOIN	Offic				
Endrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin aldehyde	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin ketone	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
g-HCH (Lindane)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Heptachlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Heptachlor epoxide	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hexachlorobenzene	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Methoxychlor	0.0002	mg/L	< 0.0002 < 0.005	< 0.0002 < 0.005	< 0.0002	< 0.0002
Toxaphene		mg/L			< 0.005	< 0.005
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Vic EPA IMPG 621 OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Dibutylchlorendate (surr.)	1 1	%	82	81	59	75
Tetrachloro-m-xylene (surr.)	1	%	54	58	84	53
Ammonia (as N)	0.01	mg/L	0.05	0.06	0.07	0.14
Biochemical Oxygen Demand (BOD-5 Day)	5	mg/L	< 5	< 5	< 5	< 5
Chromium (hexavalent)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Cyanide (total)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Nitrate & Nitrite (as N)	0.05	mg/L	1.9	1.2	1.4	0.54
Nitrate (as N)	0.02	mg/L	1.9	1.2	1.4	0.54
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Organic Nitrogen (as N)*	0.2	mg/L	< 0.2	< 0.2	0.23	< 0.2
pH (at 25 °C)	0.1	pH Units	8.5	8.5	8.3	8.4
Phenolics (total)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Phosphorus reactive (as P)	0.01	mg/L	0.07	0.01	< 0.01	< 0.01
Sulphate (as SO4)	5	mg/L	980	800	1200	830
Sulphide (as S)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Sulphite (as SO3)	0.5	mg/L	< 25	< 12.5	< 2.5	< 2.5
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	10000	1400	6800	860
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	< 0.2	0.2	0.3	< 0.2
Total Nitrogen (as N)*	0.2	mg/L	1.9	1.4	1.7	0.5
Total Suspended Solids Dried at 103 °C to 105 °C	5	mg/L	1100	350	98	65
Phosphate total (as P)	0.01	mg/L	0.09	0.02	< 0.01	< 0.01
Heavy Metals						
Aluminium (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Arsenic (filtered)	0.001	mg/L	0.001	< 0.001	< 0.001	< 0.001
Barium (filtered)	0.02	mg/L	0.04	0.03	0.03	0.03
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Boron (filtered)	0.05	mg/L	7.0	5.3	3.1	3.6
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	0.002	0.008	0.008
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.001	0.001	< 0.001	0.001
Iron (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Manganese (filtered)	0.005	mg/L	< 0.005	< 0.005	0.021	< 0.005
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001

Page 2 of 17

Client Sample ID			SLMW07-Q1	SLMW06-Q2	SLMW05-Q1	SLMW05-P
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- No0005806	M23- No0005807	M23- No0005808	M23- No0005809
Date Sampled			Nov 01, 2023	Nov 01, 2023	Nov 01, 2023	Nov 01, 2023
Test/Reference	LOR	Unit				
Heavy Metals						
Nickel (filtered)	0.001	mg/L	< 0.001	0.001	0.011	0.001
Selenium (filtered)	0.001	mg/L	0.075	0.021	0.029	0.054
Silver (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Tin (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Zinc (filtered)	0.005	mg/L	< 0.005	0.006	0.008	0.008

Client Sample ID			SLMW02-Q1	SLMW03-Q1	SLMW01-Q1	SLMW01-P
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- No0005810	M23- No0005811	M23- No0005812	M23- No0005813
Date Sampled			Nov 01, 2023	Nov 01, 2023	Nov 01, 2023	Nov 01, 2023
Test/Reference	LOR	Unit				
ВТЕХ	'					
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	102	101	100	102
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Total Recoverable Hydrocarbons	•					
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	0.3	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	0.3	< 0.1	< 0.1
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	0.2	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	0.2	< 0.1	< 0.1
Organochlorine Pesticides						
Chlordanes - Total	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
4.4'-DDD	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
4.4'-DDE	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
4.4'-DDT	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
а-НСН	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Aldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
ь-нсн	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
d-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Dieldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan I	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan II	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan sulphate	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002

Page 3 of 17

Client Sample ID			SLMW02-Q1	SLMW03-Q1	SLMW01-Q1	SLMW01-P
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- No0005810	M23- No0005811	M23- No0005812	M23- No0005813
Date Sampled			Nov 01, 2023	Nov 01, 2023	Nov 01, 2023	Nov 01, 2023
Test/Reference	LOR	Unit		,	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,
Organochlorine Pesticides	LOIK	Offic				
Endrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin aldehyde	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin ketone	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
g-HCH (Lindane)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Heptachlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Heptachlor epoxide	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hexachlorobenzene	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Methoxychlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Toxaphene	0.0002	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Vic EPA IWRG 621 OCP (Total)*	0.0002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Dibutylchlorendate (surr.)	1	%	91	58	80	93
Tetrachloro-m-xylene (surr.)	1	%	83	69	93	106
rendement in Agreeme (ed.i.i.)		,,,				
Ammonia (as N)	0.01	mg/L	0.11	0.12	0.06	0.03
Biochemical Oxygen Demand (BOD-5 Day)	5	mg/L	< 5	< 5	< 5	< 5
Chromium (hexavalent)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Cyanide (total)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Nitrate & Nitrite (as N)	0.05	mg/L	18	0.24	19	18
Nitrate (as N)	0.02	mg/L	18	0.24	19	18
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02	0.08	< 0.02
Organic Nitrogen (as N)*	0.2	mg/L	0.59	< 0.2	0.74	3.17
pH (at 25 °C)	0.1	pH Units	8.3	8.3	8.2	8.5
Phenolics (total)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Phosphorus reactive (as P)	0.01	mg/L	< 0.01	0.01	< 0.01	< 0.01
Sulphate (as SO4)	5	mg/L	600	1300	710	630
Sulphide (as S)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Sulphite (as SO3)	0.5	mg/L	< 12.5	< 12.5	< 2.5	< 2.5
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	2100	1300	5500	1700
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.7	< 0.2	0.8	3.2
Total Nitrogen (as N)*	0.2	mg/L	19	0.2	20	21
Total Suspended Solids Dried at 103 °C to 105 °C	5	mg/L	130	700	110	72
Phosphate total (as P)	0.01	mg/L	0.02	0.01	< 0.01	0.02
Heavy Metals		1				
Aluminium (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.001
Barium (filtered)	0.02	mg/L	0.06	0.03	0.03	0.04
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Boron (filtered)	0.05	mg/L	2.4	3.7	1.9	2.6
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Iron (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Manganese (filtered) Mercury (filtered)	0.005	mg/L mg/L	0.039 < 0.0001	0.015 < 0.0001	0.093	0.009 < 0.0001

Client Sample ID			SLMW02-Q1	SLMW03-Q1	SLMW01-Q1	SLMW01-P
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- No0005810	M23- No0005811	M23- No0005812	M23- No0005813
Date Sampled			Nov 01, 2023	Nov 01, 2023	Nov 01, 2023	Nov 01, 2023
Test/Reference	LOR	Unit				
Heavy Metals						
Nickel (filtered)	0.001	mg/L	0.008	0.010	0.008	0.007
Selenium (filtered)	0.001	mg/L	0.008	0.002	0.008	0.015
Silver (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Tin (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Zinc (filtered)	0.005	mg/L	0.007	0.006	0.007	0.005

Client Sample ID			RINSE-2	TB-1
Sample Matrix			Water	Water
Francisco Comunic No			M23-	M23-
Eurofins Sample No.			No0005814	No0005815
Date Sampled			Nov 01, 2023	Nov 01, 2023
Test/Reference	LOR	Unit		
BTEX	1	T		
Benzene	0.001	mg/L	< 0.001	-
Toluene	0.001	mg/L	< 0.001	-
Ethylbenzene	0.001	mg/L	< 0.001	-
m&p-Xylenes	0.002	mg/L	< 0.002	-
o-Xylene	0.001	mg/L	< 0.001	-
Xylenes - Total*	0.003	mg/L	< 0.003	-
4-Bromofluorobenzene (surr.)	1	%	100	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.01	mg/L	< 0.01	-
Total Recoverable Hydrocarbons				
TRH C6-C9	0.02	mg/L	< 0.02	-
TRH C10-C14	0.05	mg/L	< 0.05	-
TRH C15-C28	0.1	mg/L	< 0.1	-
TRH C29-C36	0.1	mg/L	< 0.1	-
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	-
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	-
TRH >C10-C16	0.05	mg/L	< 0.05	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	-
TRH >C16-C34	0.1	mg/L	< 0.1	-
TRH >C34-C40	0.1	mg/L	< 0.1	-
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	-
Chromium (hexavalent)	0.005	mg/L	< 0.005	-
Heavy Metals	·			
Arsenic (filtered)	0.001	mg/L	< 0.001	-
Beryllium (filtered)	0.001	mg/L	< 0.001	-
Boron (filtered)	0.05	mg/L	< 0.5	-
Cadmium (filtered)	0.0002	mg/L	< 0.0002	-
Cobalt (filtered)	0.001	mg/L	< 0.001	-
Copper (filtered)	0.001	mg/L	0.002	-
Lead (filtered)	0.001	mg/L	< 0.001	-
Manganese (filtered)	0.005	mg/L	< 0.005	-
Mercury (filtered)	0.0001	mg/L	< 0.0001	-
Nickel (filtered)	0.001	mg/L	0.002	_

Page 5 of 17

Client Sample ID			RINSE-2	TB-1
Sample Matrix			Water	Water
Eurofins Sample No.			M23- No0005814	M23- No0005815
Date Sampled			Nov 01, 2023	Nov 01, 2023
Test/Reference	LOR	Unit		
Heavy Metals				
Selenium (filtered)	0.001	mg/L	< 0.001	-
Zinc (filtered)	0.005	mg/L	0.009	-

Page 6 of 17

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B6A (filtered metals) BTEX	Melbourne	Nov 03, 2023	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH	A4 11	N 00 0000	7.5
Total Recoverable Hydrocarbons	Melbourne	Nov 03, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40 Total Pacayarable Hydrogarbans 1000 NEPM Fractions	Melbourne	Nov 06, 2023	7 Dave
Total Recoverable Hydrocarbons - 1999 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Meibourne	NOV 00, 2023	7 Days
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Nov 03, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40	Weibourie	1400 00, 2020	7 Days
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Nov 06, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40	Weibourne	1400 00, 2020	7 Days
Chromium (hexavalent)	Melbourne	Nov 06, 2023	28 Days
- Method: LTM-INO-4100 Hexavalent Chromium by Spectrometric detection		. 101 00, 2020	20 20,0
NEPM 2013 Metals : Metals M12 (filtered)	Melbourne	Nov 03, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Organochlorine Pesticides	Melbourne	Nov 03, 2023	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)		,	•
Biochemical Oxygen Demand (BOD-5 Day)	Melbourne	Nov 03, 2023	2 Days
- Method: LTM-INO-4010 Biochemical Oxygen Demand (BOD5) in Water			·
Cyanide (total)	Melbourne	Nov 03, 2023	14 Days
- Method: LTM-INO-4020 Total Free WAD Cyanide by CFA			•
pH (at 25 °C)	Melbourne	Nov 03, 2023	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE			
Phenolics (total)	Melbourne	Nov 03, 2023	7 Days
- Method: LTM-INO-4050 Total Phenolics in Waters and solids by CFA			
Sulphate (as SO4)	Melbourne	Nov 03, 2023	28 Days
- Method: LTM-INO-4270 Anions by Ion Chromatography			
Sulphide (as S)	Melbourne	Nov 13, 2023	7 Days
- Method: LTM-INO-4011 Suphide			
Sulphite (as SO3)	Melbourne	Nov 03, 2023	2 Days
- Method: LTM-INO-4240 Sulfite & Thiosulfate in Water			
Total Suspended Solids Dried at 103 °C to 105 °C	Melbourne	Nov 03, 2023	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Phosphate total (as P)	Melbourne	Nov 14, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Heavy Metals (filtered)	Melbourne	Nov 16, 2023	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P			
Ammonia (as N)	Melbourne	Nov 03, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Nitrate & Nitrite (as N)	Melbourne	Nov 03, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser	NA - II	N00, 0000	00 D
Nitrate (as N)	Melbourne	Nov 03, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser	Malhaurna	Nov.02, 2022	2 Dave
Nitrite (as N)	Melbourne	Nov 03, 2023	2 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser Organic Nitrogen (oc. NI)*	Molhourno	Nov.02. 2022	7 Dava
Organic Nitrogen (as N)*	Melbourne	Nov 02, 2023	7 Days
- Method: APHA 4500 Organic Nitrogen (N) Phosphorus reactive (as P)	Melbourne	Nov 03, 2023	2 Dave
Phosphorus reactive (as P) - Method: APHA 4500-P	MEIDOUITIE	1100 03, 2023	2 Days
Total Kjeldahl Nitrogen (as N)	Melbourne	Nov 03, 2023	28 Days
Total Tyoldani Milogon (as M)	MICIDOUITIE	1404 00, 2020	20 Days

Description	Testing Site	Extracted	Holding Time
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Total Dissolved Solids Dried at 180 °C ± 2 °C	Melbourne	Nov 03, 2023	28 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			
Mobil Metals : Metals M15	Melbourne	Nov 06, 2023	28 Days

Page 8 of 17

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 179 Magowar Road Girraween NSW 2145

NATA# 1261

Site# 18217

Canberra Mitchell ACT 2911

Order No.:

Report #:

Phone:

Fax:

NATA# 1261

Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289

08 8331 2417

08 8331 2415

Site# 20794

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Company Name:

Project Name:

Project ID:

Address:

LBW co Pty Ltd

184 Magill Road Norwood

SA 5069

RIVERLEA SALTWATER LAKES DEWATERING ASSESSMENT

231445-01

231445-01 Received: Nov 2, 2023 11:30 AM 1040740

Due: Nov 10, 2023 **Priority:** 5 Day

TESS O'LEARY **Contact Name:**

Eurofins Analytical Services Manager: Amy Meunier

		Sa	ımple Detail			Biochemical Oxygen Demand (BOD-5 Day)	Cyanide (total)	HOLD	рН (at 25 °C)	Phenolics (total)	Sulphate (as SO4)	Sulphide (as S)	Sulphite (as SO3)	Total Suspended Solids Dried at 103 °C to 105 °C	TRH C6-C10	Organochlorine Pesticides	NEPM 2013 Metals : Metals M13 filtered	Eurofins Suite B1	Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P	Eurofins Suite B6A (filtered metals)	Total Dissolved Solids Dried at 180 °C ± 2 °C
Melb	ourne Laborato	ory - NATA # 12	261 Site # 12	54		Χ	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х
Exte	rnal Laboratory		1	1																<u> </u>	
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																
1	SMLW07-Q1	Nov 01, 2023	9:14AM	Water	M23-No0005806	Х	Х		Х	Х	Х	Х	Х	Х		Х			Х	Х	Х
2	SMLW06-Q2	Nov 01, 2023	9:54AM	Water	M23-No0005807	Χ	Х		Х	Х	Х	Х	Х	Х		Х			Х	Х	Х
3	SMLW05-Q3	Nov 01, 2023	11:03AM	Water	M23-No0005808	Χ	Х		Х	Х	Х	Х	Х	Х		Х			Х	Х	Х
4	SLMW05-P	Nov 01, 2023	11:43AM	Water	M23-No0005809	Χ	Х		Х	Х	Х	Х	Х	Χ		Х			Х	Х	Х
5	SMLW02-Q1	Nov 01, 2023	12:45PM	Water	M23-No0005810	Χ	Х		Х	Х	Х	Х	Х	Х		Х			Х	Х	Х
6	SMLW03-Q1	Nov 01, 2023	1:58PM	Water	M23-No0005811	Χ	Х		Х	Х	Х	X	Х	Χ		Х			Х	Х	Х
7	SMLW01-Q1	Nov 01, 2023	2:47PM	Water	M23-No0005812	Χ	Х		Х	Х	Х	Х	Х	Х		Х			Х	Х	Х
8	SMLW01-P	Nov 01, 2023	3:26PM	Water	M23-No0005813	Χ	Х		Х	Х	Х	Х	Х	Х		Х			Х	Х	Х
9	RINSE-2	Nov 01, 2023	5:57PM	Water	M23-No0005814												Х	Х			
10	TB-1	Nov 01, 2023	5:58PM	Water	M23-No0005815										Х					<u> </u>	
11	DUP2	Nov 01, 2023		Water	M23-No0005816			Х												<u> </u>	
Test	Counts					8	8	1	8	8	8	8	8	8	1	8	1	1	8	8	8

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil/sediment/solid results are reported on a dry weight basis unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion unless otherwise stated.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling; therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is 7 days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre μg/L: micrograms per litre

ppm: parts per million ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

Client Parent - QC was performed on samples pertaining to this report CP CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA WA DWER

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30%; however the following acceptance quidelines are equally

applicable: Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries above the QC limit designated in QSM 5.4, where no positive PFAS results have been reported, have been reviewed, and no data was affected

QC Data General Comments

- Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Page 10 of 17 Eurofins Environment Testing 6 Monterey Road, Dandenong South, Victoria, Australia 3175 ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 1040740-W-V2

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions				
Naphthalene	mg/L	< 0.01	0.01	Pass	
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank		V 0.1	0.1	1 433	
Organochlorine Pesticides					
Chlordanes - Total	mg/L	< 0.002	0.002	Pass	
4.4'-DDD	mg/L	< 0.002	0.002	Pass	
4.4'-DDE	mg/L	< 0.0002	0.0002	Pass	
4.4'-DDT	mg/L	< 0.0002	0.0002	Pass	
a-HCH	mg/L	< 0.0002	0.0002	Pass	
Aldrin	mg/L	< 0.0002	0.0002	Pass	
b-HCH	mg/L	< 0.0002	0.0002	Pass	
d-HCH	mg/L	< 0.0002	0.0002	Pass	
Dieldrin		< 0.0002	0.0002	Pass	
Endosulfan I	mg/L	< 0.0002	0.0002	Pass	
Endosulfan II	mg/L	< 0.0002	0.0002	Pass	
	mg/L			Pass	
Endosulfan sulphate	mg/L	< 0.0002 < 0.0002	0.0002		
Endrin Clabbudo	mg/L		0.0002	Pass	
Endrin aldehyde	mg/L	< 0.0002	0.0002	Pass	
Endrin ketone	mg/L	< 0.0002	0.0002	Pass	
g-HCH (Lindane)	mg/L	< 0.0002	0.0002	Pass	
Heptachlor	mg/L	< 0.0002	0.0002	Pass	
Heptachlor epoxide	mg/L	< 0.0002	0.0002	Pass	
Hexachlorobenzene	mg/L	< 0.0002	0.0002	Pass	
Methoxychlor	mg/L	< 0.0002	0.0002	Pass	
Toxaphene	mg/L	< 0.005	0.005	Pass	
Method Blank		-	T -		
Biochemical Oxygen Demand (BOD-5 Day)	mg/L	< 5	5	Pass	
Chromium (hexavalent)	mg/L	< 0.005	0.005	Pass	
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Nitrite (as N)	mg/L	-0.00008	0.02	Pass	
Phenolics (total)	mg/L	< 0.05	0.05	Pass	
Phosphorus reactive (as P)	mg/L	< 0.01	0.01	Pass	
Sulphate (as SO4)	mg/L	< 5	5	Pass	

Page 11 of 17

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Sulphide (as S)	mg/L	< 0.1	0.1	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	mg/L	< 10	10	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Total Suspended Solids Dried at 103 °C to 105 °C	mg/L	< 5	5	Pass	
Phosphate total (as P)	mg/L	< 0.01	0.01	Pass	
Method Blank					
Heavy Metals					
Aluminium (filtered)	mg/L	< 0.05	0.05	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Barium (filtered)	mg/L	< 0.02	0.02	Pass	
Beryllium (filtered)	mg/L	< 0.001	0.001	Pass	
Boron (filtered)	mg/L	< 0.05	0.05	Pass	
Cadmium (filtered)		< 0.002	0.0002	Pass	
, , , , , , , , , , , , , , , , , , ,	mg/L				
Chromium (filtered) Cobalt (filtered)	mg/L	< 0.001	0.001	Pass	
	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Iron (filtered)	mg/L	< 0.05	0.05	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Selenium (filtered)	mg/L	< 0.001	0.001	Pass	
Silver (filtered)	mg/L	< 0.005	0.005	Pass	
Tin (filtered)	mg/L	< 0.005	0.005	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	80	70-130	Pass	
Toluene	%	78	70-130	Pass	
Ethylbenzene	%	77	70-130	Pass	
m&p-Xylenes	%	77	70-130	Pass	
Xylenes - Total*	%	77	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	 S				
Naphthalene	%	79	70-130	Pass	
LCS - % Recovery			· · · · · · · · · · · · · · · · · · ·	•	
Total Recoverable Hydrocarbons					
TRH C6-C9	%	95	70-130	Pass	
TRH C10-C14	%	107	70-130	Pass	
TRH C6-C10	%	90	70-130	Pass	
TRH >C10-C16	%	99	70-130	Pass	
LCS - % Recovery	,,		10.00	1 400	
Organochlorine Pesticides		I			
Chlordanes - Total	%	97	70-130	Pass	
4.4'-DDD	% %	89	70-130	Pass	
4.4'-DDE	%	86	70-130	Pass	
4.4'-DDE 4.4'-DDT	%	94	70-130	Pass	
a-HCH	%	93	70-130	Pass	
Aldrin	%	92	70-130	Pass	
b-HCH	%	96	70-130	Pass	
d-HCH	%	96	70-130	Pass	
Dieldrin	%	84	70-130	Pass	
Endosulfan I	%	92	70-130	Pass	
Endosulfan II	%	85	70-130	Pass	

Page 12 of 17

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate			%	91		70-130	Pass	
Endrin			%	101		70-130	Pass	
Endrin aldehyde			%	81		70-130	Pass	
Endrin ketone			%	86		70-130	Pass	
g-HCH (Lindane)			%	94		70-130	Pass	
Heptachlor			%	105		70-130	Pass	
Heptachlor epoxide			%	98		70-130	Pass	
Hexachlorobenzene			%	93		70-130	Pass	
Methoxychlor			%	98		70-130	Pass	
LCS - % Recovery				•				
Ammonia (as N)			%	107		70-130	Pass	
Biochemical Oxygen Demand (BOD	-5 Day)		%	87		85-115	Pass	
Chromium (hexavalent)	,		%	112		70-130	Pass	
Nitrate & Nitrite (as N)			%	107		70-130	Pass	
Nitrite (as N)			%	98		70-130	Pass	
Phenolics (total)			%	102		70-130	Pass	
Phosphorus reactive (as P)			%	92		70-130	Pass	
Sulphate (as SO4)			%	115		70-130	Pass	
Total Dissolved Solids Dried at 180 °	°C + 2 °C			82				
	UIZ U		% %	84		70-130 70-130	Pass Pass	
Total Kjeldahl Nitrogen (as N)	0 0 to 405 00							
Total Suspended Solids Dried at 103	3 °C to 105 °C		%	84		70-130	Pass	
Phosphate total (as P)			%	93		70-130	Pass	
LCS - % Recovery				T	T T	T	Ι	
Heavy Metals				100			_	
Arsenic (filtered)			%	100		80-120	Pass	
Boron (filtered)			%	103		80-120	Pass	
Cadmium (filtered)			%	91		80-120	Pass	
Cobalt (filtered)			%	98		80-120	Pass	
Copper (filtered)			%	93		80-120	Pass	
Lead (filtered)			%	82		80-120	Pass	
Manganese (filtered)			%	101		80-120	Pass	
Mercury (filtered)			%	97		80-120	Pass	
Nickel (filtered)			%	95		80-120	Pass	
Selenium (filtered)			%	92		80-120	Pass	
Zinc (filtered)			%	97		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
BTEX			•	Result 1				
Benzene	M23-No0001282	NCP	%	86		70-130	Pass	
Toluene	M23-No0001282	NCP	%	86		70-130	Pass	
Ethylbenzene	M23-No0001282	NCP	%	85		70-130	Pass	
m&p-Xylenes	M23-No0001282	NCP	%	85		70-130	Pass	
o-Xylene	M23-No0001282	NCP	%	85		70-130	Pass	
Xylenes - Total*	M23-No0001282	NCP	%	85		70-130	Pass	
Spike - % Recovery								
				Result 1				
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions			1	1		
•	2013 NEPM Fract M23-No0001282	NCP	%	88		70-130	Pass	l
Total Recoverable Hydrocarbons - Naphthalene			%	88		70-130	Pass	
Total Recoverable Hydrocarbons - Naphthalene Spike - % Recovery			%			70-130	Pass	
Total Recoverable Hydrocarbons - Naphthalene Spike - % Recovery Total Recoverable Hydrocarbons	M23-No0001282	NCP		Result 1				
Total Recoverable Hydrocarbons - Naphthalene Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9	M23-No0001282 M23-No0001282	NCP NCP	%	Result 1		70-130	Pass	
Total Recoverable Hydrocarbons - Naphthalene Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14	M23-No0001282 M23-No0001282 M23-No0010251	NCP NCP NCP	% %	Result 1 106 116		70-130 70-130	Pass Pass	
Total Recoverable Hydrocarbons - Naphthalene Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9	M23-No0001282 M23-No0001282	NCP NCP	%	Result 1		70-130	Pass	

Page 13 of 17

Test	Lab Sample ID	QA Source	Units	Result 1	-	Acceptance Limits	Pass Limits	Qualifying Code
Organochlorine Pesticides				Result 1				
Chlordanes - Total	M23-Oc0074478	NCP	%	105		70-130	Pass	
4.4'-DDD	M23-Oc0074478	NCP	%	104		70-130	Pass	
4.4'-DDE	M23-Oc0074478	NCP	%	103		70-130	Pass	
4.4'-DDT	M23-Oc0074478	NCP	%	115		70-130	Pass	
a-HCH	M23-Oc0074478	NCP	%	110		70-130	Pass	
Aldrin	M23-Oc0074478	NCP	%	102		70-130	Pass	
b-HCH	M23-Oc0074478	NCP	%	118		70-130	Pass	
d-HCH	M23-Oc0074478	NCP	%	120		70-130	Pass	
Dieldrin	M23-Oc0074478	NCP	%	97		70-130	Pass	
Endosulfan I	M23-Oc0074478	NCP	%	98		70-130	Pass	
Endosulfan II	M23-Oc0074478	NCP	%	112		70-130	Pass	
Endosulfan sulphate	M23-Oc0074478	NCP	%	106		70-130	Pass	
Endrin	M23-Oc0074478	NCP	%	126		70-130	Pass	
Endrin aldehyde	M23-Oc0074478	NCP	%	102		70-130	Pass	
Endrin ketone	M23-Oc0074478	NCP	%	93		70-130	Pass	
g-HCH (Lindane)	M23-Oc0074478	NCP	%	115		70-130	Pass	
Heptachlor	M23-Oc0074478	NCP	%	121		70-130	Pass	
Heptachlor epoxide	M23-Oc0074478	NCP	%	109		70-130	Pass	
Hexachlorobenzene	M23-Oc0074478	NCP	%	116		70-130	Pass	
Methoxychlor	M23-Oc0074478	NCP	%	109		70-130	Pass	
Spike - % Recovery								
•				Result 1				
Chromium (hexavalent)	M23-No0002208	NCP	%	96		70-130	Pass	
Phosphate total (as P)	M23-No0008511	NCP	%	98		70-130	Pass	
Spike - % Recovery								
Heavy Metals				Result 1				
Boron (filtered)	M23-No0005794	NCP	%	104		75-125	Pass	
Spike - % Recovery								
•				Result 1				
Total Kjeldahl Nitrogen (as N)	M23-No0005807	СР	%	88		70-130	Pass	
Spike - % Recovery								
•				Result 1				
Nitrate & Nitrite (as N)	M23-No0005808	СР	%	101		70-130	Pass	
Nitrite (as N)	M23-No0005808		%	86		70-130	Pass	
Spike - % Recovery								
Heavy Metals				Result 1				
Aluminium (filtered)	M23-No0005812	СР	%	102		75-125	Pass	
Arsenic (filtered)	M23-No0005812		%	104		75-125	Pass	
Barium (filtered)	M23-No0005812	СР	%	104		75-125	Pass	
Beryllium (filtered)	M23-No0005812	СР	%	92		75-125	Pass	
Cadmium (filtered)	M23-No0005812	CP	%	89		75-125	Pass	
Chromium (filtered)	M23-No0005812	CP	%	97		75-125	Pass	
Cobalt (filtered)	M23-No0005812		%	94		75-125	Pass	
Copper (filtered)	M23-No0005812		%	88		75-125	Pass	
Iron (filtered)	M23-No0005812		%	88		75-125	Pass	
Lead (filtered)	M23-No0005812		%	80		75-125	Pass	
Manganese (filtered)	M23-No0005812		%	89		75-125	Pass	
Mercury (filtered)	M23-No0005812	CP	%	99		75-125	Pass	
Nickel (filtered)	M23-No0005812	CP	%	89		75-125	Pass	
Selenium (filtered)	M23-No0005812	CP	%	94		75-125	Pass	
Tin (filtered)	M23-No0005812		%	99		75-125	Pass	
Zinc (filtered)	M23-No0005812		<u> </u>	91		75-125	Pass	
EITO TIILOTOUT	1 10120 1100000012		/0	1 01		10 120	1 433	

Page 14 of 17

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
				Result 1					
Phenolics (total)	M23-No0005813	СР	%	111			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	M23-Oc0074113	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	M23-Oc0074113	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	M23-Oc0074113	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	M23-Oc0074113	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	M23-Oc0074113	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	M23-Oc0074113	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate				•					
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M23-Oc0074113	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	M23-Oc0074113	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C6-C10	M23-Oc0074113	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate			J						
•				Result 1	Result 2	RPD			
Cyanide (total)	M23-No0005806	СР	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Total Dissolved Solids Dried at 180			-						
°C ± 2 °C	M23-No0005874	NCP	mg/L	2900	2900	1.0	30%	Pass	
Duplicate				D 11.4		DDD	T		
Bis showing Common Domest	I			Result 1	Result 2	RPD			
Biochemical Oxygen Demand (BOD-5 Day)	M23-No0005807	СР	mg/L	< 5	< 5	<1	30%	Pass	
Duplicate				T			T		
	T			Result 1	Result 2	RPD			
Sulphate (as SO4)	M23-No0005808	CP	mg/L	1200	1200	<1	30%	Pass	
Duplicate				1	1		T		
	T	1		Result 1	Result 2	RPD			
Sulphide (as S)	M23-No0005809	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate					1				
Total Recoverable Hydrocarbons	T	1		Result 1	Result 2	RPD			
TRH C10-C14	M23-No0005810	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	M23-No0005810	CP	mg/L	< 0.1	0.2	140	30%	Fail	Q15
TRH C29-C36	M23-No0005810	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C10-C16	M23-No0005810	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	M23-No0005810	CP	mg/L	< 0.1	0.2	150	30%	Fail	Q15
TRH >C34-C40	M23-No0005810	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides	T			Result 1	Result 2	RPD			
Chlordanes - Total	M23-No0005810		mg/L	< 0.002	< 0.002	<1	30%	Pass	
4.4'-DDD	M23-No0005810	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDE	M23-No0005810	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDT	M23-No0005810	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
a-HCH	M23-No0005810	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Aldrin	M23-No0005810	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
b-HCH	M23-No0005810	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
d-HCH	M23-No0005810	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Dieldrin	M23-No0005810	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan I	M23-No0005810	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan II	M23-No0005810	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	

Page 15 of 17

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Endosulfan sulphate	M23-No0005810	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin	M23-No0005810	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin aldehyde	M23-No0005810	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin ketone	M23-No0005810	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
g-HCH (Lindane)	M23-No0005810	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor	M23-No0005810	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor epoxide	M23-No0005810	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Hexachlorobenzene	M23-No0005810	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Methoxychlor	M23-No0005810	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Toxaphene	M23-No0005810	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate		<u> </u>	<u> </u>					1 333	
				Result 1	Result 2	RPD			
Total Kjeldahl Nitrogen (as N)	M23-No0005810	СР	mg/L	0.7	0.7	1.8	30%	Pass	
Duplicate			, <u> </u>		•				
•				Result 1	Result 2	RPD			
Chromium (hexavalent)	M23-No0005812	СР	mg/L	< 0.005	< 0.005	<1	30%	Pass	
pH (at 25 °C)	M23-No0005812	СР	pH Units	8.2	8.1	pass	30%	Pass	
Phenolics (total)	M23-No0005812	СР	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Sulphite (as SO3)	M23-No0005812	СР	mg/L	< 2.5	< 2.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Aluminium (filtered)	M23-No0005812	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Arsenic (filtered)	M23-No0005812	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Barium (filtered)	M23-No0005812	CP	mg/L	0.03	0.03	6.1	30%	Pass	
Beryllium (filtered)	M23-No0005812	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Boron (filtered)	M23-No0005812	CP	mg/L	1.9	1.9	1.0	30%	Pass	
Cadmium (filtered)	M23-No0005812	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	M23-No0005812	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt (filtered)	M23-No0005812	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	M23-No0005812	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Iron (filtered)	M23-No0005812	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Lead (filtered)	M23-No0005812	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese (filtered)	M23-No0005812	CP	mg/L	0.093	0.093	<1	30%	Pass	
Mercury (filtered)	M23-No0005812	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	M23-No0005812	CP	mg/L	0.008	0.008	1.5	30%	Pass	
Selenium (filtered)	M23-No0005812	CP	mg/L	0.008	0.007	8.7	30%	Pass	
Silver (filtered)	M23-No0005812	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Tin (filtered)	M23-No0005812	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc (filtered)	M23-No0005812	CP	mg/L	0.007	0.007	3.1	30%	Pass	
Duplicate									
			1	Result 1	Result 2	RPD			
Ammonia (as N)	M23-No0005813	CP	mg/L	0.03	0.04	18	30%	Pass	
Nitrate & Nitrite (as N)	M23-No0005813	CP	mg/L	18	18	2.1	30%	Pass	
Nitrite (as N)	M23-No0005813	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	

Page 16 of 17

Comments

This report has been revised (V2) to include additional metals results per COC and to correct sample names from SMLW to SLMW, per client request, TOL, 16/11/23.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

N02

Amy Meunier Analytical Services Manager Caitlin Breeze Senior Analyst-Inorganic Caitlin Breeze Senior Analyst-Metal Edward Lee Senior Analyst-Organic Emily Rosenbera Senior Analyst-Metal Harry Bacalis Senior Analyst-Volatile Joseph Edouard Senior Analyst-Organic Mary Makarios Senior Analyst-Inorganic Mary Makarios Senior Analyst-Metal

Glenn Jackson **Managing Director**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Company	LBWco		La	boratory				Report T				D:III			
Project ID	231445-		D	estination Lab	Eurofins			Primary		(aa laht	. 5 11	Billi	•		
Project Name		Saltwater Lakes Dewate	arina	b Quote No	Q01470			Contact		'co Laboratory Its@lbwco.cor			chase Order #		
SDG/COC#	Assessm	-02-Eurofins-AB	La	b Contact		Receipt Melb	(03 8564 5000		Secondary Tess O'Leary			Org to be Billed		LBWc	
Request / Version		-UZ-EUROTINS-AB				Sample Receipt Melb (03 8564 5000) envirosamplevic@eurofins.com			tess.oleary@lbwco.com.au		Bill To Attention		finance@lbwco.com.au		
request/ versit	JII 1/1								1020.	ordary @ 15 Wee	.com.aa	Atte	ention	Tess (O'Leary
Turnaround R Special Instru Sampled by: LB	CTIONS: -	Days	Biochemical Oxygen Demand (BOD-5	Day) Cyanide (total)	Eurofins Suite B1	Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3.	Rea S Su	Metals M13	inic C6-C10	Organochlorine Pesticides	ıt 25 °C)	olics (total)	ate (as 504)		COMMENTS
IELD ID	MATRIX	DATE	Bioc Dem	Cyan	Euro	Eurofins Total N, NO2, NC	Total P, Eurofins	Meta	Organic TRH C6-	Orgai	pH (at	Phenolics	Sulphate	Ногр	
SLMW10-C	Water	02/11/2023 08:43AM	✓	✓		✓	1			1	1	1	· /	-	
SLMW10-B	Water	02/11/2023 09:20AM	✓	✓		1	√			1	1	1	y		11 /
SLMW10-A	Water	02/11/2023 10:30AM	✓	✓		√	1		· · · · · · · · · · · · · · · · · · ·	1	J		<u> </u>	-	- M
SLMW11-C	Water	02/11/2023 11:14AM	✓	✓		✓	1			1	1	1	1		
SLMW11-B	Water	02/11/2023 11:54AM	✓	✓		✓	1			1	1	1	<i>y</i>		11
SLMW13-C	Water	02/11/2023 12:54PM ·	✓	✓		V	√			-	1				
SLMW13-B	Water	02/11/2023 01:25PM	✓	✓		1	1			1	1	1	1		(0,0)
SLMW13-A	Water	02/11/2023 01:58PM	1	√		1	1			· ·			√		7)
SLMW04-P	Water	02/11/2023 02:51PM	1	1		1	1			,	1	· ·	✓		- X -
RINSE-3	Water	02/11/2023 04:39PM			J		<u> </u>	1		V	√	✓.	1		$\sqrt{\lambda}$
TB-3	Water	02/11/2023 04:39PM			•			•	,						`
				M major mp				-	✓						

LSPECS Lab Submission

TURNAROUND REQUES' SPECIAL INSTRUCTIONS SAMPLED BY: LBWCO T	S: -		hide (as S)	nite (as SO3)	Total Dissolved Solids Dried at 180 °C ± 2 °C	Suspended 5 Dried at 103 105 °C			Comments
FIELD ID	MATRIX	DATE	Sulphide	Sulphite	Total Solida °C ±	Total Si Solids I			010
SLMW10-C	Water	02/11/2023 08:43AM	√	1		√ ·			ĭ
SLMW10-B	Water	02/11/2023 09:20AM	✓	1		1			
SLMW10-A	Water	02/11/2023 10:30AM	✓	1	1	4			
SLMW11-C	Water	02/11/2023 11:14AM	1			1			
SLMW11-B	Water	02/11/2023 11:54AM	1	1					
SLMW13-C	Water	02/11/2023 12:54PM	1	1	1	1			
SLMW13-B	Water	02/11/2023 01:25PM		1	1	√			
SLMW13-A	Water	02/11/2023 01:58PM	1		V	√		mgl	
SLMW04-P	Water	02/11/2023 02:51PM		1	√	√			att-additional and some control of all the control
RINSE-3	Water	02/11/2023 04:39PM		•	V	✓			
TB-3	Water	02/11/2023 04:39PM							
and Over		Relinqu	ished		Donatasad				
of Delivery Boxes -		Signature			Received		Relinquished	Received	e-Request Sent
poled no		Name Antonio I	Brito						Name -
on Note -		Org _	5110						Org -
		Date 02/11/20	23 08:12AM	4					Date -

Tyrone Gowans

Sent: From: Tess O Leary <tess.oleary@lbwco.com.au>

Thursday, 2 November 2023 5:40 PM

Subject: eCOC for LBWco ref 231445-01 Amy Meunier; #AU_CAU001_EnviroSampleVic

Attachments: LSPECS - Lab Request has been Sent; 231445-01_LTO_231102.pdf

Categories: Incoming Transit

Do not click on links or open attachments unless you recognise the sender and are certain that the CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins.

Morning Amy

Please see attached testing order for samples dropped with Parimal this afternoon.

Note quote 230303LBWS (Q01470). Also sent via eCOC as 2023-11-02-Eurofins-AB.

Any queries, please let me know.

Thanks!

Tess O'Leary

Senior Environmental Advisor | Team Leader

The last 15 years wouldn't have been possible without our fabulous team, our valued clients, our trusted suppliers, and our support network. We wouldn't be LBWco without you all - thank you!

SAMPLE REGISTER & CHAIN OF CUSTODY

Project Title: Riverlea Saltwater Lakes Dewatering Job Number: 231445-01

Project manager: Tess O'Leary

Email: tess.oleary@lbwco.com.au Phone: 8331 2417

Send results to: results@lbwco.com.au, lbwco@esdat.com.au

Send invoice to: finance@lbwco.com.au

Lab Quote Ref: 230303LBWS Primary Lab: Eurofins

Secondary lab: ALS

EN/111/23

COC Reference: (sample delivery group)

231445-01_COC_

Signature:		
Date/Time Received:		
Received by:		
Courier and consignment number:		
Signature:		
Date/Time Relinquished:		
-1 1		2-11-23
2		本2945-01
Relingished by:		TR-3
	2-11-23	2-11-23
	# 231445-01	#231445-01
Signature:	SLHW04-P	SLMW13-A
02 11 3:50 m	2-11-23	2-11-23
Date/Time Received:	本 231745-01	#231445-01
attura	SLMW13-13	SLMW13-C
Received by:	# 231445-01	7-11-23
Courier and consignment number:	SCHELL B	
(Carul)	2-11-23	2-11-23
Signature: NN P	# 231445-01	# 231445-01
2/11/2025	SLMW 11- c	SLHW10-A
Date/Time Relinquished:	2-11-23	2-11-23
Autoria Drito	# 231245-0	
Relinqished by:	CIMINIO-B	VINE 10-0
Sample Custody - Step 1	Sample Details 2	Sample Details 1

Page_

잌

LBW co Pty Ltd 184 Magill Road Norwood SA 5069

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Page 1 of 19

Report Number: 1041094-W-V3

Attention: TESS O'LEARY

Report 1041094-W-V3

Project name RIVERLEA SALTWATER LAKES DEWATERING ASSESSMENT

Project ID 231445-01

Received Date Nov 02, 2023

Client Sample ID			SLMW10-C	SLMW10-B	SLMW10-A	SLMW11-C
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- No0008629	M23- No0008630	M23- No0008631	M23- No0008632
Date Sampled			Nov 02, 2023	Nov 02, 2023	Nov 02, 2023	Nov 02, 2023
Test/Reference	LOR	Unit	,	,	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,
Total Recoverable Hydrocarbons	LOIT	Orne				
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
ВТЕХ						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	112	108	110	111
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Organochlorine Pesticides						
Chlordanes - Total	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
4.4'-DDD	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
4.4'-DDE	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
4.4'-DDT	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
a-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Aldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
b-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
d-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Dieldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan I	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan II	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan sulphate	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002

Client Sample ID			SLMW10-C	SLMW10-B	SLMW10-A	SLMW11-C
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- No0008629	M23- No0008630	M23- No0008631	M23- No0008632
Date Sampled			Nov 02, 2023	Nov 02, 2023	Nov 02, 2023	Nov 02, 2023
Test/Reference	LOR	Unit	, 2020	1101 02, 2020	1101 02, 2020	1101 02, 2020
Organochlorine Pesticides	LOIN	Offic				
Endrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin aldehyde	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin ketone	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
g-HCH (Lindane)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Heptachlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Heptachlor epoxide	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hexachlorobenzene	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Methoxychlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Toxaphene	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Dibutylchlorendate (surr.)	1	%	87	67	62	54
Tetrachloro-m-xylene (surr.)	1	%	92	65	64	56
Totadinoro in xytorio (darr.)		70	02			
Ammonia (as N)	0.01	mg/L	< 0.01	< 0.01	< 0.01	0.04
Biochemical Oxygen Demand (BOD-5 Day)	5	mg/L	< 5	< 5	< 5	< 5
Chromium (hexavalent)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Cyanide (total)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Nitrate & Nitrite (as N)	0.05	mg/L	10	0.47	0.25	1.3
Nitrate (as N)	0.02	mg/L	10	0.42	0.24	1.1
Nitrite (as N)	0.02	mg/L	0.20	0.05	< 0.02	0.20
Organic Nitrogen (as N)*	0.2	mg/L	1.2	< 0.2	< 0.2	0.36
pH (at 25 °C)	0.1	pH Units	8.3	7.0	8.5	8.5
Phenolics (total)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Phosphorus reactive (as P)	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Sulphate (as SO4)	5	mg/L	570	490	560	810
Sulphide (as S)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Sulphite (as SO3)	0.5	mg/L	< 12.5	< 2.5	< 2.5	< 2.5
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	1500	2600	7800	5000
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	1.2	< 0.2	< 0.2	0.4
Total Nitrogen (as N)*	0.2	mg/L	11	0.5	0.3	1.7
Total Suspended Solids Dried at 103 °C to 105 °C	5	mg/L	610	52	47	110
Phosphate total (as P)	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Heavy Metals		_				
Aluminium (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Barium (filtered)	0.02	mg/L	0.02	0.03	0.03	0.06
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Boron (filtered)	0.05	mg/L	0.8	4.8	2.9	3.0
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	0.002	< 0.001	0.001
Iron (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Manganese (filtered)	0.005	mg/L	0.052	< 0.005	< 0.005	< 0.005

Client Sample ID			SLMW10-C	SLMW10-B	SLMW10-A	SLMW11-C
Sample Matrix			Water M23-	Water M23-	Water M23-	Water M23-
Eurofins Sample No.			No0008629	No0008630	No0008631	No0008632
Date Sampled			Nov 02, 2023	Nov 02, 2023	Nov 02, 2023	Nov 02, 2023
Test/Reference	LOR	Unit				
Heavy Metals						
Nickel (filtered)	0.001	mg/L	< 0.001	0.007	< 0.001	0.010
Selenium (filtered)	0.001	mg/L	0.030	0.009	0.002	0.015
Silver (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Tin (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005

Client Sample ID			SLMW11-B	SLMW13-C	SLMW13-B	SLMW13-A
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- No0008633	M23- No0008634	M23- No0008635	M23- No0008636
Date Sampled			Nov 02, 2023	Nov 02, 2023	Nov 02, 2023	Nov 02, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	102	99	101	100
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Organochlorine Pesticides						
Chlordanes - Total	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
4.4'-DDD	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
4.4'-DDE	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
4.4'-DDT	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
а-НСН	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Aldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
b-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
d-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Dieldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan I	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan II	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan sulphate	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002

Page 3 of 19

Client Sample ID			SLMW11-B	SLMW13-C	SLMW13-B	SLMW13-A
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- No0008633	M23- No0008634	M23- No0008635	M23- No0008636
Date Sampled			Nov 02, 2023	Nov 02, 2023	Nov 02, 2023	Nov 02, 2023
Test/Reference	LOR	Unit		,	, , ,	
Organochlorine Pesticides	LOIK	OTHE				
Endrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin aldehyde	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin ketone	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
g-HCH (Lindane)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Heptachlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Heptachlor epoxide	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hexachlorobenzene	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Methoxychlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Toxaphene	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Vic EPA IWRG 621 OCP (Total)*	0.0002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Dibutylchlorendate (surr.)	1	%	56	61	111	54
Tetrachloro-m-xylene (surr.)	1	%	72	77	62	66
Tetradrilloro III Aylerie (duit.)	'	70	12	1	02	
Ammonia (as N)	0.01	mg/L	0.02	0.01	0.03	0.02
Biochemical Oxygen Demand (BOD-5 Day)	5	mg/L	< 5	< 5	< 5	< 5
Chromium (hexavalent)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Cyanide (total)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Nitrate & Nitrite (as N)	0.05	mg/L	11	2.0	11	18
Nitrate (as N)	0.02	mg/L	11	1.4	10	18
Nitrite (as N)	0.02	mg/L	0.49	0.55	0.69	< 0.02
Organic Nitrogen (as N)*	0.2	mg/L	0.98	< 0.2	< 0.2	1.08
pH (at 25 °C)	0.1	pH Units	8.2	8.1	8.3	8.2
Phenolics (total)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Phosphorus reactive (as P)	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Sulphate (as SO4)	5	mg/L	470	740	490	520
Sulphide (as S)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Sulphite (as SO3)	0.5	mg/L	< 6.5	< 2.5	< 12.5	< 2.5
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	1200	900	4500	1400
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	1.0	< 0.2	< 0.2	1.1
Total Nitrogen (as N)*	0.2	mg/L	12	2.0	11	19
Total Suspended Solids Dried at 103 °C to 105 °C	5	mg/L	340	150	84	72
Phosphate total (as P)	0.01	mg/L	0.05	0.03	0.05	0.02
Heavy Metals						
Aluminium (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Barium (filtered)	0.02	mg/L	0.03	0.04	0.05	0.03
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Boron (filtered)	0.05	mg/L	4.3	4.5	5.0	4.5
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cobalt (filtered)	0.001	mg/L	< 0.001	0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	0.004	< 0.001	0.002
Iron (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Manganese (filtered)	0.005	mg/L	0.010	0.13	0.028	0.010
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001

Client Sample ID			SLMW11-B	SLMW13-C	SLMW13-B	SLMW13-A
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- No0008633	M23- No0008634	M23- No0008635	M23- No0008636
Date Sampled			Nov 02, 2023	Nov 02, 2023	Nov 02, 2023	Nov 02, 2023
Test/Reference	LOR	Unit				
Heavy Metals						
Nickel (filtered)	0.001	mg/L	0.001	0.024	0.007	0.003
Selenium (filtered)	0.001	mg/L	0.037	0.030	0.093	0.044
Silver (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Tin (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Zinc (filtered)	0.005	mg/L	< 0.005	0.018	< 0.005	< 0.005

Client Sample ID			SLMW04-P	RINSE-3	TB-3
Sample Matrix			Water	Water	Water
Eurofins Sample No.			M23- No0008637	M23- No0008638	M23- No0008639
Date Sampled			Nov 02, 2023	Nov 02, 2023	Nov 02, 2023
Test/Reference	LOR	Unit	1101 02, 2020	1101 02, 2020	1101 02, 2020
Total Recoverable Hydrocarbons	LOIK	Offic			
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	_
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	_
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	_
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	_
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	_
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	_
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	_
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	_
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	_
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	_
BTEX	0.1	,g/ <u>_</u>	10.1	10.1	
Benzene	0.001	mg/L	< 0.001	< 0.001	-
Toluene	0.001	mg/L	< 0.001	< 0.001	_
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	_
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	_
o-Xylene	0.001	mg/L	< 0.001	< 0.001	_
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	_
4-Bromofluorobenzene (surr.)	1	%	99	106	_
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	,,,			
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	_
Organochlorine Pesticides	1 0.01	ıg/ <u>L</u>	7 0.01	1 0.01	
Chlordanes - Total	0.002	mg/L	< 0.002	_	-
4.4'-DDD	0.0002	mg/L	< 0.0002	_	-
4.4'-DDE	0.0002	mg/L	< 0.0002	_	_
4.4'-DDT	0.0002	mg/L	< 0.0002	_	_
a-HCH	0.0002	mg/L	< 0.0002	_	_
Aldrin	0.0002	mg/L	< 0.0002	_	_
b-HCH	0.0002	mg/L	< 0.0002	-	-
d-HCH	0.0002	mg/L	< 0.0002	-	-
Dieldrin	0.0002	mg/L	< 0.0002	-	-
Endosulfan I	0.0002	mg/L	< 0.0002	_	-
Endosulfan II	0.0002	mg/L	< 0.0002	_	-
Endosulfan sulphate	0.0002	mg/L	< 0.0002	-	-

Page 5 of 19

		1			
Client Sample ID			SLMW04-P	RINSE-3	TB-3
Sample Matrix			Water	Water	Water
Eurofins Sample No.			M23- No0008637	M23- No0008638	M23- No0008639
Date Sampled			Nov 02, 2023	Nov 02, 2023	Nov 02, 2023
Test/Reference	LOR	Unit			
Organochlorine Pesticides	•				
Endrin	0.0002	mg/L	< 0.0002	-	-
Endrin aldehyde	0.0002	mg/L	< 0.0002	-	-
Endrin ketone	0.0002	mg/L	< 0.0002	-	-
g-HCH (Lindane)	0.0002	mg/L	< 0.0002	-	-
Heptachlor	0.0002	mg/L	< 0.0002	-	-
Heptachlor epoxide	0.0002	mg/L	< 0.0002	-	-
Hexachlorobenzene	0.0002	mg/L	< 0.0002	-	-
Methoxychlor	0.0002	mg/L	< 0.0002	-	_
Toxaphene	0.005	mg/L	< 0.005	_	-
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	-	-
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002	-	-
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002	_	_
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002	_	-
Dibutylchlorendate (surr.)	1	%	81	_	_
Tetrachloro-m-xylene (surr.)	1	%	80	_	-
Totadonioro III xylene (bali.)	'	70	00		
Ammonia (as N)	0.01	mg/L	0.02	-	-
Biochemical Oxygen Demand (BOD-5 Day)	5	mg/L	< 5	-	-
Chromium (hexavalent)	0.005	mg/L	< 0.005	< 0.005	-
Cyanide (total)	0.005	mg/L	< 0.005	-	-
Nitrate & Nitrite (as N)	0.05	mg/L	17	-	-
Nitrate (as N)	0.02	mg/L	17	_	_
Nitrite (as N)	0.02	mg/L	< 0.02	_	-
Organic Nitrogen (as N)*	0.2	mg/L	0.68	-	-
pH (at 25 °C)	0.1	pH Units		_	_
Phenolics (total)	0.05	mg/L	< 0.05	_	-
Phosphorus reactive (as P)	0.01	mg/L	0.02	_	-
Sulphate (as SO4)	5	mg/L	480	_	-
Sulphide (as S)	0.1	mg/L	< 0.1	_	_
Sulphite (as SO3)	0.5	mg/L	< 2.5	_	_
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	1400	_	_
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.7	_	_
Total Nitrogen (as N)*	0.2	mg/L	18	_	_
Total Suspended Solids Dried at 103 °C to 105 °C	5	mg/L	69	_	-
Phosphate total (as P)	0.01	mg/L	< 0.01	_	_
Heavy Metals	1 0.0.	19, =	1 0.0 .		
Aluminium (filtered)	0.05	mg/L	< 0.05	_	-
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	-
Barium (filtered)	0.02	mg/L	0.04	-	-
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	-
Boron (filtered)	0.05	mg/L	4.4	< 0.5	-
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	-
Chromium (filtered)	0.001	mg/L	< 0.001	-	-
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001	_
Copper (filtered)	0.001	mg/L	0.003	< 0.01	-
Iron (filtered)	0.05	mg/L	< 0.05		-
Lead (filtered)	0.001	mg/L	< 0.001	< 0.01	-
Manganese (filtered)	0.005	mg/L	< 0.001	< 0.005	-
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	-

Page 6 of 19

Client Sample ID			SLMW04-P	RINSE-3	TB-3
Sample Matrix			Water	Water	Water
Eurofins Sample No.			M23- No0008637	M23- No0008638	M23- No0008639
Date Sampled			Nov 02, 2023	Nov 02, 2023	Nov 02, 2023
Test/Reference	LOR	Unit			
Heavy Metals					
Nickel (filtered)	0.001	mg/L	0.001	< 0.01	-
Selenium (filtered)	0.001	mg/L	0.038	< 0.001	-
Silver (filtered)	0.005	mg/L	< 0.005	-	-
Tin (filtered)	0.005	mg/L	< 0.005	-	-
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.05	-

Page 7 of 19

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B6A (filtered metals)			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Melbourne	Nov 06, 2023	7 Days
Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Melbourne	Nov 06, 2023	7 Days
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Nov 21, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			·
BTEX	Melbourne	Nov 06, 2023	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			•
Chromium (hexavalent)	Melbourne	Nov 06, 2023	28 Days
- Method: LTM-INO-4100 Hexavalent Chromium by Spectrometric detection			•
NEPM 2013 Metals : Metals M12 (filtered)	Melbourne	Nov 21, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			•
Total Recoverable Hydrocarbons	Melbourne	Nov 06, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40		,	,
Organochlorine Pesticides	Melbourne	Nov 06, 2023	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)		,	,
Biochemical Oxygen Demand (BOD-5 Day)	Melbourne	Nov 06, 2023	2 Days
- Method: LTM-INO-4010 Biochemical Oxygen Demand (BOD5) in Water			- 7 -
Cyanide (total)	Melbourne	Nov 06, 2023	14 Days
- Method: LTM-INO-4020 Total Free WAD Cyanide by CFA			, .
pH (at 25 °C)	Melbourne	Nov 06, 2023	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE		55, 2525	0.1.00.0
Phenolics (total)	Melbourne	Nov 06, 2023	7 Days
- Method: LTM-INO-4050 Total Phenolics in Waters and solids by CFA		55, 2525	. 24,0
Sulphate (as SO4)	Melbourne	Nov 06, 2023	28 Days
- Method: LTM-INO-4270 Anions by Ion Chromatography	Wolddanio	1101 00, 2020	20 24,0
Sulphide (as S)	Melbourne	Nov 13, 2023	7 Days
- Method: LTM-INO-4011 Suphide	Wolddanio	1107 10, 2020	, Dayo
Sulphite (as SO3)	Melbourne	Nov 06, 2023	2 Days
- Method: LTM-INO-4240 Sulfite & Thiosulfate in Water	Wolddanio	1107 00, 2020	2 Dayo
Total Suspended Solids Dried at 103 °C to 105 °C	Melbourne	Nov 06, 2023	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry	Weibourne	1407 00, 2020	7 Days
Phosphate total (as P)	Melbourne	Nov 13, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS	Wichodiffic	1407 10, 2020	20 Days
Heavy Metals (filtered)	Melbourne	Nov 16, 2023	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS	Weibourie	1407 10, 2020	100 Days
Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P			
Ammonia (as N)	Melbourne	Nov 06, 2023	28 Days
• •	Meibourne	1407 00, 2023	20 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser	Melbourne	Nov 06, 2023	28 Days
Nitrate & Nitrite (as N)	Melbourne	1100 00, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser	Malhaurna	Nov.06, 2022	20 Dave
Nitrate (as N)	Melbourne	Nov 06, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser	Malhaurna	Nov.06, 2022	2 Dave
Nitrite (as N)	Melbourne	Nov 06, 2023	2 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser	Malhaurr	Nov.02, 2002	7 Dave
Organic Nitrogen (as N)*	Melbourne	Nov 03, 2023	7 Days
- Method: APHA 4500 Organic Nitrogen (N)	Mallagrees	Na. 00 0000	0 Dec-
Phosphorus reactive (as P)	Melbourne	Nov 06, 2023	2 Days
- Method: APHA 4500-P		N 00 0000	00.5
Total Kjeldahl Nitrogen (as N)	Melbourne	Nov 06, 2023	28 Days

Description	Testing Site	Extracted	Holding Time
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Total Dissolved Solids Dried at 180 °C ± 2 °C	Melbourne	Nov 06, 2023	28 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			
Mobil Metals : Metals M15	Melbourne	Nov 06, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

Page 9 of 19

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 179 Magowar Road Girraween NSW 2145 NATA# 1261

Site# 18217

Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie QLD 4172 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261

Site# 20794

Newcastle Mayfield West NSW 2304 Tel: +61 2 4968 8448 Site# 25079 & 25289

NZBN: 9429046024954

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Company Name:

LBW co Pty Ltd

184 Magill Road

Norwood SA 5069

Order No.:

Report #: Phone: Fax:

Canberra

Mitchell

ACT 2911

NATA# 1261

Site# 25466

1041094 08 8331 2417

08 8331 2415

Received: Nov 2, 2023 3:50 PM Due: Nov 8, 2023 **Priority:** 5 Day

TESS O'LEARY **Contact Name:**

Project Name:

RIVERLEA SALTWATER LAKES DEWATERING ASSESSMENT

Project ID:

Address:

231445-01

Eurofins Analytical Services Manager: Amy Meunier

Sample Detail Melbourne Laboratory - NATA # 1261 Site # 1254			Biochemical Oxygen Demand (BOD-5 Day)	Cyanide (total)	pH (at 25 °C)	Phenolics (total)	Sulphate (as SO4)	Sulphide (as S)	Sulphite (as SO3)	Total Suspended Solids Dried at 103 °C to 105 °C	TRH C6-C10	Organochlorine Pesticides	NEPM 2013 Metals : Metals M13 filtered	Eurofins Suite B1	Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P	Eurofins Suite B6A	Total Dissolved Solids Dried at 180 °C ± 2 °C			
Melb	ourne Laborato	ory - NATA # 12	61 Site # 12	54		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Exte	rnal Laboratory	,																		
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID															
1	SLMW10-C	Nov 02, 2023		Water	M23-No0008629	Х	Х	Х	Х	Х	Х	Х	Х		Х			Х	Х	Χ
2	SLMW10-B	Nov 02, 2023		Water	M23-No0008630	Х	Х	Х	Х	Х	Х	Х	Х		Х			Х	Х	Х
3	SLMW10-A	Nov 02, 2023		Water	M23-No0008631	Х	Х	Х	Х	Х	Х	Х	Х		Х			Х	Х	Х
4	SLMW11-C	Nov 02, 2023		Water	M23-No0008632	Х	Х	Х	Х	Х	Х	Х	Х		Х			Х	Х	Х
5	SLMW11-B	Nov 02, 2023		Water	M23-No0008633	Х	Х	Х	Х	Х	Х	Х	Χ		Х			Х	Х	Х
6	SLMW13-C	Nov 02, 2023		Water	M23-No0008634	Х	Х	Х	Х	Х	Х	Х	Χ		Х			Х	Х	Х
7	SLMW13-B	Nov 02, 2023		Water	M23-No0008635	Х	Х	Х	Х	Х	Х	Х	Χ		Х			Х	Х	Х
8	SLMW13-A	Nov 02, 2023		Water	M23-No0008636	Х	Х	Х	Х	Х	Х	Х	Х		Х			Х	Х	Х
9	SLMW04-P	Nov 02, 2023		Water	M23-No0008637	Х	Х	Х	Х	Х	Х	Х	Х		Х			Х	Х	Х
10	RINSE-3	Nov 02, 2023		Water	M23-No0008638											Х	Х		<u> </u>	
11	TB-3	Nov 02, 2023		Water	M23-No0008639									Х						
Test	Counts					9	9	9	9	9	9	9	9	1	9	1	1	9	9	9

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil/sediment/solid results are reported on a dry weight basis unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion unless otherwise stated.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling; therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is 7 days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre μg/L: micrograms per litre

ppm: parts per million ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

Client Parent - QC was performed on samples pertaining to this report CP CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA WA DWER

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30%; however the following acceptance quidelines are equally

applicable: Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries above the QC limit designated in QSM 5.4, where no positive PFAS results have been reported, have been reviewed, and no data was affected

QC Data General Comments

- Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte
- For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Page 11 of 19 Eurofins Environment Testing 6 Monterey Road, Dandenong South, Victoria, Australia 3175 ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 1041094-W-V3

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
втех					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.002	Pass	
Xylenes - Total*	mg/L	< 0.003	0.001	Pass	
Method Blank	IIIg/L	< 0.000	0.000	1 433	
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	one			Π	
Naphthalene	mg/L	< 0.01	0.01	Pass	
Method Blank	IIIg/L	< 0.01	0.01	Fass	
Organochlorine Pesticides		ΙΙ			
Chlordanes - Total	mg/L	< 0.002	0.002	Pass	
4.4'-DDD	mg/L	< 0.0002	0.0002	Pass	
4.4'-DDE	mg/L	< 0.0002	0.0002	Pass	
4.4'-DDT	mg/L	< 0.0002	0.0002	Pass	
a-HCH	mg/L	< 0.0002	0.0002	Pass	
Aldrin	mg/L	< 0.0002	0.0002	Pass	
b-HCH	mg/L	< 0.0002	0.0002	Pass	
d-HCH	mg/L	< 0.0002	0.0002	Pass	
Dieldrin		< 0.0002	0.0002	Pass	
	mg/L				
Endosulfan I Endosulfan II	mg/L	< 0.0002	0.0002	Pass	
	mg/L	< 0.0002	0.0002	Pass	
Endosulfan sulphate	mg/L	< 0.0002	0.0002	Pass	
Endrin	mg/L	< 0.0002	0.0002	Pass	
Endrin aldehyde	mg/L	< 0.0002	0.0002	Pass	
Endrin ketone	mg/L	< 0.0002	0.0002	Pass	
g-HCH (Lindane)	mg/L	< 0.0002	0.0002	Pass	
Heptachlor	mg/L	< 0.0002	0.0002	Pass	
Heptachlor epoxide	mg/L	< 0.0002	0.0002	Pass	
Hexachlorobenzene	mg/L	< 0.0002	0.0002	Pass	
Methoxychlor	mg/L	< 0.0002	0.0002	Pass	
Toxaphene	mg/L	< 0.005	0.005	Pass	
Method Blank	1				
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
Biochemical Oxygen Demand (BOD-5 Day)	mg/L	< 5	5	Pass	
Chromium (hexavalent)	mg/L	< 0.005	0.005	Pass	
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Nitrite (as N)	mg/L	< 0.02	0.02	Pass	
Phenolics (total)	mg/L	< 0.05	0.05	Pass	
Phosphorus reactive (as P)	mg/L	< 0.01	0.01	Pass	

Page 12 of 19

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Sulphate (as SO4)	mg/L	< 5	5	Pass	
Sulphide (as S)	mg/L	< 0.1	0.1	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	mg/L	< 10	10	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Total Suspended Solids Dried at 103 °C to 105 °C	mg/L	< 5	5	Pass	
Phosphate total (as P)	mg/L	< 0.01	0.01	Pass	
Method Blank					
Heavy Metals					
Aluminium (filtered)	mg/L	< 0.05	0.05	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Barium (filtered)	mg/L	< 0.02	0.02	Pass	
Beryllium (filtered)	mg/L	< 0.001	0.001	Pass	
Beryllium (filtered)	mg/L	< 0.001	0.001	Pass	
Boron (filtered)	mg/L	< 0.05	0.05	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Cobalt (filtered)	mg/L	< 0.001	0.001	Pass	
Cobalt (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Iron (filtered)	mg/L	< 0.05	0.05	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Selenium (filtered)	mg/L	< 0.001	0.001	Pass	
Selenium (filtered)	mg/L	< 0.001	0.001	Pass	
Silver (filtered)	mg/L	< 0.005	0.005	Pass	
Tin (filtered)	mg/L	< 0.005	0.005	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons					
TRH C6-C9	%	95	70-130	Pass	
TRH C10-C14	%	129	70-130	Pass	
TRH C6-C10	%	92	70-130	Pass	
TRH >C10-C16	%	119	70-130	Pass	
LCS - % Recovery					
ВТЕХ					
Benzene	%	80	70-130	Pass	
Toluene	%	78	70-130	Pass	
Ethylbenzene	%	79	70-130	Pass	
m&p-Xylenes	%	83	70-130	Pass	
Xylenes - Total*	%	83	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	84	70-130	Pass	
LCS - % Recovery					

Page 13 of 19

Organichlorine Pesticides	Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
4.4*DDD	Organochlorine Pesticides								
4.4*DDE	Chlordanes - Total			%	100		70-130	Pass	
4.4-UDT	4.4'-DDD			%	103		70-130	Pass	
### Aldrin	4.4'-DDE			%	97		70-130	Pass	
Addrin	4.4'-DDT			%	119		70-130	Pass	
## 10	a-HCH			%	101		70-130	Pass	
Dieldrin	Aldrin			%	95		70-130	Pass	
Deledrin	b-HCH			%	108		70-130	Pass	
Endosulfan	d-HCH			%	107		70-130	Pass	
Endosulfan II	Dieldrin			%	92		70-130	Pass	
Endosulfan sulphate	Endosulfan I			%	99		70-130	Pass	
Endrin	Endosulfan II			%	103		70-130	Pass	
Endrin aldehyde	Endosulfan sulphate			%	109		70-130	Pass	
Endrin ketone	Endrin			%	120		70-130	Pass	
g-HCH (Lindane) % 105 70-130 Pass Heptachlor % 122 70-130 Pass Heptachlor epoxide % 106 70-130 Pass Hexachlorobenzene % 101 70-130 Pass Hexachlorobenzene % 101 70-130 Pass Methoxychlor % 129 70-130 Pass LCS - % Recovery 8 104 70-130 Pass Biochemical Oxygen Demand (BOD - 5 Day) % 104 70-130 Pass Chromium (hexavalent) % 100 70-130 Pass Nitrite (as N) % 107 70-130 Pass Nitrite (as N) % 107 70-130 Pass Phenolics (total) % 97 70-130 Pass Phosphorus reactive (as P) % 83 70-130 Pass Total Disolved Solids Dried at 180 °C ± 2 °C % 84 70-130 Pass Total Eyeld	Endrin aldehyde			%	88		70-130	Pass	
Heptachlor	Endrin ketone			%	98		70-130	Pass	
Heptachlor epoxide	g-HCH (Lindane)			%	105		70-130	Pass	
Hexachlorobenzene	Heptachlor			%	122		70-130	Pass	
Methoxychlor	Heptachlor epoxide			%	106		70-130	Pass	
CS - % Recovery	Hexachlorobenzene			%	101		70-130	Pass	
Ammonia (as N)	Methoxychlor			%	129		70-130	Pass	
Biochemical Oxygen Demand (BOD-5 Day)	LCS - % Recovery								
Chromium (hexavalent)	Ammonia (as N)			%	104		70-130	Pass	
Nitrate & Nitrite (as N)	Biochemical Oxygen Demand (BOD)-5 Day)		%	90		85-115	Pass	
Nitrite (as N)	Chromium (hexavalent)			%	100		70-130	Pass	
Phenolics (total)	Nitrate & Nitrite (as N)			%	107		70-130	Pass	
Phosphorus reactive (as P)	Nitrite (as N)			%	97		70-130	Pass	
Sulphate (as SO4)	Phenolics (total)			%	114		70-130	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	Phosphorus reactive (as P)			%	83		70-130	Pass	
Total Kjeldahl Nitrogen (as N)	Sulphate (as SO4)			%	106		70-130	Pass	
Total Suspended Solids Dried at 103 °C to 105 °C % 84 70-130 Pass	Total Dissolved Solids Dried at 180	°C ± 2 °C		%	82		70-130	Pass	
Phosphate total (as P)	Total Kjeldahl Nitrogen (as N)			%	76		70-130	Pass	
Cos - % Recovery Heavy Metals Septence Septence	Total Suspended Solids Dried at 10	3 °C to 105 °C		%	84		70-130	Pass	
Heavy Metals	Phosphate total (as P)			%	98		70-130	Pass	
Heavy Metals	LCS - % Recovery								
Boron (filtered)									
Cadmium (filtered) % 99 80-120 Pass Cobalt (filtered) % 100 80-120 Pass Copper (filtered) % 100 80-120 Pass Lead (filtered) % 93 80-120 Pass Manganese (filtered) % 100 80-120 Pass Mercury (filtered) % 91 80-120 Pass Nickel (filtered) % 100 80-120 Pass Selenium (filtered) % 101 80-120 Pass Zinc (filtered) % 100 80-120 Pass Zinc (filtered) Result 1 Acceptance Limits Pass Company Pass Company Pass Company Spike - % Recovery Result 1 Task <td>Arsenic (filtered)</td> <td></td> <td></td> <td>%</td> <td>98</td> <td></td> <td>80-120</td> <td>Pass</td> <td></td>	Arsenic (filtered)			%	98		80-120	Pass	
Cobalt (filtered) % 100 80-120 Pass Copper (filtered) % 100 80-120 Pass Lead (filtered) % 93 80-120 Pass Manganese (filtered) % 100 80-120 Pass Mercury (filtered) % 91 80-120 Pass Nickel (filtered) % 100 80-120 Pass Selenium (filtered) % 101 80-120 Pass Zinc (filtered) % 100 80-120 Pass Spike - % Recovery Result 1 Acceptance Limits Limits Total Recoverable Hydrocarbons Result 1	Boron (filtered)			%	109		80-120	Pass	
Cobalt (filtered) % 100 80-120 Pass Copper (filtered) % 100 80-120 Pass Lead (filtered) % 93 80-120 Pass Manganese (filtered) % 100 80-120 Pass Mercury (filtered) % 91 80-120 Pass Nickel (filtered) % 100 80-120 Pass Selenium (filtered) % 101 80-120 Pass Zinc (filtered) % 100 80-120 Pass Spike - % Recovery Result 1 Acceptance Limits Limits Total Recoverable Hydrocarbons Result 1							1		
Copper (filtered) % 100 80-120 Pass Lead (filtered) % 93 80-120 Pass Manganese (filtered) % 100 80-120 Pass Mercury (filtered) % 91 80-120 Pass Nickel (filtered) % 100 80-120 Pass Selenium (filtered) % 101 80-120 Pass Zinc (filtered) % 100 80-120 Pass Test Lab Sample ID QA Source Result 1 Acceptance Limits Pass Limits Spike - % Recovery Total Recoverable Hydrocarbons Result 1 70-130 Pass TRH C6-C9 M23-No0012785 NCP % 89 70-130 Pass TRH C10-C14 M23-No0012785 NCP %							1		
Manganese (filtered)	· · · · · · · · · · · · · · · · · · ·								
Manganese (filtered) % 100 80-120 Pass Mercury (filtered) % 91 80-120 Pass Nickel (filtered) % 100 80-120 Pass Selenium (filtered) % 101 80-120 Pass Zinc (filtered) % 100 80-120 Pass Test Lab Sample ID QA Source Units Result 1 Acceptance Limits Pass Limits Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 M23-N00010604 NCP % 89 70-130 Pass TRH C10-C14 M23-N00012785 NCP % 116 70-130 Pass					1				
Mercury (filtered) % 91 80-120 Pass Nickel (filtered) % 100 80-120 Pass Selenium (filtered) % 101 80-120 Pass Zinc (filtered) % 100 80-120 Pass Test Lab Sample ID QA Source Units Result 1 Acceptance Limits Pass Limits Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 M23-N00010604 NCP % 89 70-130 Pass TRH C10-C14 M23-N00012785 NCP % 116 70-130 Pass					1				
Nickel (filtered)									
Selenium (filtered) % 101 80-120 Pass Zinc (filtered) % 100 80-120 Pass Test Lab Sample ID QA Source Units Result 1 Acceptance Limits Pass Limits Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 M23-N00010604 NCP % 89 70-130 Pass TRH C10-C14 M23-N00012785 NCP % 116 70-130 Pass									
Zinc (filtered)	· · · · · · · · · · · · · · · · · · ·						1		
Test Lab Sample ID QA Source Units Result 1 Acceptance Limits Pass Limits Quarter Climits Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 M23-No0010604 NCP % 89 70-130 Pass TRH C10-C14 M23-No0012785 NCP % 116 70-130 Pass	<u>'</u>						1		
Total Recoverable Hydrocarbons Result 1 Image: Comparison of the content		Lab Sample ID	QA Source				Acceptance	Pass	Qualifying Code
TRH C6-C9 M23-No0010604 NCP % 89 70-130 Pass TRH C10-C14 M23-No0012785 NCP % 116 70-130 Pass					Desuit 4				
TRH C10-C14 M23-No0012785 NCP % 116 70-130 Pass		M00 N=0040004	NOD	0/	1		70.400	Desir	
					+				
「IKH Cb-CTU MZ3-NOUTU604 I NCP I % X/ I 170-130 Page I							1		
TRH >C10-C16									

Page 14 of 19

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
ВТЕХ				Result 1			
Benzene	M23-No0010604	NCP	%	78	70-130	Pass	
Toluene	M23-No0010604	NCP	%	77	70-130	Pass	
Ethylbenzene	M23-No0010604	NCP	%	78	70-130	Pass	
m&p-Xylenes	M23-No0010604	NCP	%	81	70-130	Pass	
o-Xylene	M23-No0010604	NCP	%	82	70-130	Pass	
Xylenes - Total*	M23-No0010604	NCP	%	82	70-130	Pass	
Spike - % Recovery	,						
Total Recoverable Hydrocarbor	ns - 2013 NEPM Fract	ions		Result 1		T	
Naphthalene	M23-No0010604	NCP	%	88	70-130	Pass	
Spike - % Recovery			,,	90	10.00		
Organochlorine Pesticides				Result 1		Τ	
Chlordanes - Total	M23-No0008629	СР	%	96	70-130	Pass	
4.4'-DDD	M23-No0008629	CP	%	86	70-130	Pass	
4.4'-DDE	M23-No0008629	CP	%	81	70-130	Pass	<u> </u>
4.4'-DDE	M23-N00008629	CP	%	93	70-130	Pass	
		CP					
a-HCH	M23-No0008629	CP	%	93	70-130	Pass	
Aldrin	M23-No0008629		%	91	70-130	Pass	
b-HCH	M23-No0008629	CP	%	94	70-130	Pass	-
d-HCH	M23-No0008629	CP	%	92	70-130	Pass	-
Dieldrin	M23-No0008629	CP	%	73	70-130	Pass	<u> </u>
Endosulfan I	M23-No0008629	CP	%	95	70-130	Pass	
Endosulfan II	M23-No0008629	CP	%	87	70-130	Pass	
Endosulfan sulphate	M23-No0008629	CP	%	92	70-130	Pass	
Endrin	M23-No0008629	CP	%	104	70-130	Pass	
Endrin aldehyde	M23-No0008629	CP	%	81	70-130	Pass	
Endrin ketone	M23-No0008629	CP	%	83	70-130	Pass	
g-HCH (Lindane)	M23-No0008629	CP	%	97	70-130	Pass	
Heptachlor	M23-No0008629	CP	%	108	70-130	Pass	
Heptachlor epoxide	M23-No0008629	CP	%	95	70-130	Pass	
Hexachlorobenzene	M23-No0008629	CP	%	90	70-130	Pass	
Methoxychlor	M23-No0008629	CP	%	96	70-130	Pass	
Spike - % Recovery							
				Result 1			
Chromium (hexavalent)	M23-No0005789	NCP	%	97	70-130	Pass	
Spike - % Recovery							
				Result 1			
Phenolics (total)	M23-No0008630	СР	%	110	70-130	Pass	
Phosphate total (as P)	M23-No0008630	СР	%	112	70-130	Pass	
Spike - % Recovery							
				Result 1			
Total Kjeldahl Nitrogen (as N)	M23-No0008632	СР	%	100	70-130	Pass	
Spike - % Recovery		Ų.	,,	.00	10.00		
70.1.0001019				Result 1			
Nitrate & Nitrite (as N)	M23-No0008633	СР	%	125	70-130	Pass	<u> </u>
Nitrite (as N)	M23-No0008633		%	91	70-130	Pass	
Spike - % Recovery	IVIZ-1400000033	UI UI	/0	, JI	10-130	1 1 1 1 1 1 1	
opike - // Necovery				Pocult 1		T	
Total Kieldehl Nitreger (N)	Maa Nagagaa	CD	0/	Result 1	70.400	Pass	
Total Kjeldahl Nitrogen (as N)	M23-No0008635	CP	%	88	70-130	Pass	
Spike - % Recovery				Depuit 4			
Organochlorine Pesticides	MOC N. COSCOSE	05	0/	Result 1		+	
Chlordanes - Total	M23-No0008637	CP	%	98	70-130	Pass	-
4.4'-DDD	M23-No0008637	CP	%	95	70-130	Pass	

Page 15 of 19

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
4.4'-DDE	M23-No0008637	СР	%	90			70-130	Pass	
4.4'-DDT	M23-No0008637	CP	%	112			70-130	Pass	
a-HCH	M23-No0008637	CP	%	95			70-130	Pass	
Aldrin	M23-No0008637	СР	%	94			70-130	Pass	
b-HCH	M23-No0008637	СР	%	98			70-130	Pass	
d-HCH	M23-No0008637	СР	%	96			70-130	Pass	
Dieldrin	M23-No0008637	СР	%	92			70-130	Pass	
Endosulfan I	M23-No0008637	СР	%	97			70-130	Pass	
Endosulfan II	M23-No0008637	СР	%	92			70-130	Pass	
Endosulfan sulphate	M23-No0008637	СР	%	101			70-130	Pass	
Endrin	M23-No0008637	СР	%	108			70-130	Pass	
Endrin aldehyde	M23-No0008637	CP	%	88			70-130	Pass	
Endrin ketone	M23-No0008637	CP	%	89			70-130	Pass	
g-HCH (Lindane)	M23-No0008637	CP	%	99			70-130	Pass	
Heptachlor	M23-No0008637	CP	%	119			70-130	Pass	
Heptachlor epoxide	M23-No0008637	CP	%	101			70-130	Pass	
Hexachlorobenzene	M23-No0008637	CP	%	95			70-130	Pass	
Methoxychlor	M23-No0008637	CP	%	119			70-130	Pass	
Spike - % Recovery	10123 1400000037	Oi I	70	110			70 130	1 433	
Heavy Metals				Result 1					
Aluminium (filtered)	M23-No0008638	СР	%	98			75-125	Pass	
Arsenic (filtered)	M23-No0008638	CP	%	95			75-125 75-125	Pass	
Barium (filtered)	M23-No0008638	CP	%	96			75-125 75-125	Pass	
Beryllium (filtered)	M23-No0008638	CP	%	93			75-125 75-125	Pass	
Boron (filtered)	M23-No0005794	NCP	%	104			75-125 75-125	Pass	
Cadmium (filtered)	M23-No0003794	CP	%	97			75-125 75-125	Pass	
Chromium (filtered)	M23-No0008638	CP	%	94					
	M23-N00008638	CP	%				75-125 75-125	Pass	
Cobalt (filtered)				95			75-125	Pass	
Copper (filtered)	M23-No0008638	CP	%	88			75-125	Pass	
Iron (filtered)	M23-No0008638	CP	%	93			75-125	Pass	
Lead (filtered)	M23-No0008638	CP	%	85			75-125	Pass	
Manganese (filtered)	M23-No0008638	CP	%	94			75-125	Pass	
Mercury (filtered)	M23-No0008638	CP	%	90			75-125	Pass	
Nickel (filtered)	M23-No0008638	CP	%	92			75-125	Pass	
Selenium (filtered)	M23-No0008638	CP	%	96			75-125	Pass	
Silver (filtered)	M23-No0008638	CP	%	92			75-125	Pass	
Tin (filtered)	M23-No0008638	CP	%	86			75-125	Pass	
Zinc (filtered)	M23-No0008638		%	80			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	T			Result 1	Result 2	RPD			
TRH C6-C9	M23-No0010534	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	B23-No0001764	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	B23-No0001764	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	B23-No0001764	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C6-C10	M23-No0010534	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16	B23-No0001764	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	B23-No0001764	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	B23-No0001764	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	

Page 16 of 19

Dunlingto									
Duplicate				Desided	Deside	DDC			
BTEX				Result 1	Result 2	RPD		_	
Benzene	M23-No0010534	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	M23-No0010534	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	M23-No0010534	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	M23-No0010534	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	M23-No0010534	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	M23-No0010534	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate				l	l I				
Total Recoverable Hydrocarbons -				Result 1	Result 2	RPD		_	
Naphthalene	M23-No0010534	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate					1				
Organochlorine Pesticides	1			Result 1	Result 2	RPD			
Chlordanes - Total	M23-No0008542	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
4.4'-DDD	M23-No0008542	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDE	M23-No0008542	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDT	M23-No0008542	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
a-HCH	M23-No0008542	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Aldrin	M23-No0008542	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
b-HCH	M23-No0008542	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
d-HCH	M23-No0008542	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Dieldrin	M23-No0008542	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan I	M23-No0008542	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan II	M23-No0008542	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan sulphate	M23-No0008542	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin	M23-No0008542	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin aldehyde	M23-No0008542	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin ketone	M23-No0008542	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
g-HCH (Lindane)	M23-No0008542	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor	M23-No0008542	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor epoxide	M23-No0008542	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Hexachlorobenzene	M23-No0008542	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Methoxychlor	M23-No0008542	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Toxaphene	M23-No0008542	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate		_	<u> </u>						
				Result 1	Result 2	RPD			
Ammonia (as N)	M23-No0008132	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Cyanide (total)	M23-No0008629	СР	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Nitrate & Nitrite (as N)	M23-No0008132	NCP	mg/L	0.38	0.36	7.1	30%	Pass	
Nitrite (as N)	M23-No0008132	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Phenolics (total)	M23-No0008629	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Sulphate (as SO4)	M23-No0005798	NCP	mg/L	43	42	1.2	30%	Pass	
Total Dissolved Solids Dried at 180	11120 11000007 50	1401	mg/L	10	72	1,2	0070	1 455	
°C ± 2 °C	M23-No0005874	NCP	mg/L	2900	2900	1.0	30%	Pass	
Phosphate total (as P)	M23-No0008629	СР	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Aluminium (filtered)	M23-No0008629	СР	mg/L	< 0.05	< 0.5	<1	30%	Pass	
Arsenic (filtered)	M23-No0008629	СР	mg/L	< 0.001	< 0.01	<1	30%	Pass	
Barium (filtered)	M23-No0008629	СР	mg/L	0.02	< 0.2	<1	30%	Pass	
Beryllium (filtered)	M23-No0008629	СР	mg/L	< 0.001	< 0.01	<1	30%	Pass	
Boron (filtered)	M23-No0008629	СР	mg/L	0.8	< 5	<1	30%	Pass	
Cadmium (filtered)	M23-No0008629	CP	mg/L	< 0.0002	< 0.002	<1	30%	Pass	
Chromium (filtered)	M23-No0008629	CP	mg/L	< 0.001	< 0.01	<1	30%	Pass	
Cobalt (filtered)	M23-No0008629	CP	mg/L	< 0.001	< 0.01	<1	30%	Pass	
Copper (filtered)	M23-No0008629	CP	mg/L	< 0.001	< 0.01	<1	30%	Pass	
Soppor (intered)	11120 11000000029	<u> </u>	ı iig/L	_ \ 0.001	\ 0.01		JU 70	1 433	

Page 17 of 19

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
	M23-No0008629	CP					200/	Door	
Iron (filtered)		CP CP	mg/L	< 0.05	< 0.5	<1	30%	Pass Pass	
Lead (filtered)	M23-No0008629		mg/L	< 0.001	< 0.01	<1	30%		
Manganese (filtered)	M23-No0008629	CP	mg/L	0.052	0.056	6.2	30%	Pass	
Mercury (filtered)	M23-No0008629	CP	mg/L	< 0.0001	< 0.001	<1	30%	Pass	
Nickel (filtered)	M23-No0008629	CP	mg/L	< 0.001	< 0.01	<1	30%	Pass	
Selenium (filtered)	M23-No0008629	CP	mg/L	0.030	0.032	6.3	30%	Pass	
Silver (filtered)	M23-No0008629	CP	mg/L	< 0.005	< 0.05	<1	30%	Pass	
Tin (filtered)	M23-No0008629	CP	mg/L	< 0.005	< 0.05	<1	30%	Pass	
Zinc (filtered)	M23-No0008629	CP	mg/L	< 0.005	< 0.05	<1	30%	Pass	
Duplicate									
			1	Result 1	Result 2	RPD			
Sulphite (as SO3)	M23-No0008630	CP	mg/L	< 2.5	< 2.5	<1	30%	Pass	
Duplicate									
			1	Result 1	Result 2	RPD			
Total Kjeldahl Nitrogen (as N)	M23-No0008631	CP	mg/L	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
			1	Result 1	Result 2	RPD			
Chromium (hexavalent)	M23-No0008633	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate				ı			T		
				Result 1	Result 2	RPD			
Chromium (hexavalent)	M23-No0008634	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Sulphide (as S)	M23-No0008634	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Biochemical Oxygen Demand (BOD-5 Day)	M23-No0008635	СР	mg/L	< 5	< 5	<1	30%	Pass	
Duplicate				ı					
Heavy Metals				Result 1	Result 2	RPD			
Aluminium (filtered)	M23-No0008638	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Arsenic (filtered)	M23-No0008638	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Barium (filtered)	M23-No0008638	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Beryllium (filtered)	M23-No0008638	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Boron (filtered)	M23-No0008638	CP	mg/L	< 0.5	< 0.5	<1	30%	Pass	
Cadmium (filtered)	M23-No0008638	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	M23-No0008638	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt (filtered)	M23-No0008638	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	M23-No0008638	CP	mg/L	< 0.01	0.035	<1	30%	Pass	
Iron (filtered)	M23-No0008638	СР	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Lead (filtered)	M23-No0008638	СР	mg/L	< 0.01	0.043	5.1	30%	Pass	
Manganese (filtered)	M23-No0008638	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Mercury (filtered)	M23-No0008638	СР	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	M23-No0008638	СР	mg/L	< 0.01	0.014	<1	30%	Pass	
Selenium (filtered)	M23-No0008638	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Silver (filtered)	M23-No0008638	СР	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Tin (filtered)	M23-No0008638	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc (filtered)	M23-No0008638	СР	mg/L	< 0.05	0.11	<1	30%	Pass	

Page 18 of 19

Comments

This report has been revised (V2) to include additional metals for all samples, per COC.

This report has been revised (V3) following repeat analysis of metals for all samples to acheive lower LOR.

Sample Integrity

, , ,	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Description Code

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Authorised by:

N02

Amy Meunier Analytical Services Manager Caitlin Breeze Senior Analyst-Inorganic Caitlin Breeze Senior Analyst-Metal Edward Lee Senior Analyst-Organic Emily Rosenberg Senior Analyst-Metal Harry Bacalis Senior Analyst-Volatile Joseph Edouard Senior Analyst-Organic Mary Makarios Senior Analyst-Inorganic Mary Makarios Senior Analyst-Metal Mele Singh Senior Analyst-Organic

Glenn Jackson **Managing Director**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report: 1042654 9/11 BF

Company	LBWco	Laboratory		Report To		Billing	
Project ID	231445-01	Destination Lab	Eurofins	Primary	LBWco Laboratory Results	Purchase Order #	231445-01
Project Name	Riverlea Saltwater Lakes Dewatering	Lab Quote No	Q01470	Contact	results@lbwco.com.au	Org to be Billed	LBWco
	Assessment	Lab Contact	Sample Receipt Melb (03 8564 5000)	Secondary	Tess O'Leary	Bill To	finance@lbwco.com.au
SDG/COC#	2023-11-07-Eurofins-GG		envirosamplevic@eurofins.com	Contact	tess.oleary@lbwco.com.au	Attention	Tess O'Leary
Request / Version	on 1/1		envirosampievie@earonns.com			Attention	ress o Leary

TURNAROUND R SPECIAL INSTRU METALS NOT DISS SAMPLED BY: GA	ctions: An olved.	ALYSE B6A FOR TOTAL	Biochemical Oxygen Demand (BOD-5 Day)	Cyanide (total)	Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3,	Total P, Reactive P Eurofins Suite B6A	Metals M13	Organic TRH C6-C10	Organochlorine Pesticides	(at 25 °C)	Phenolics (total)	Sulphate (as SO4)	Sulphide (as S)	ID	COMMENTS
FIELD ID	MATRIX	DATE	Bioch Dem Day)	Š	Eurof Total NO2,	Tot Eur	Σ	P. IS	Org	H _d	Ph	Sul	Sul	운	
SW-RINSE-1	Water	07/11/2023 10:12AM					√								
TB-4	Water	07/11/2023 10:12AM						✓							
SW09	Water	07/11/2023 10:14AM	✓	✓	✓	✓			✓	✓	✓	✓	√		
SW08	Water	07/11/2023 10:50AM	✓	✓	✓	✓			✓	✓	✓	✓	√		
SW-DUP-1	Water	07/11/2023 10:50AM	✓	1	^ /	✓			✓	✓	✓	✓	✓		
SW07	Water	07/11/2023 11:23AM	✓	✓	✓	✓			✓	✓	✓	✓	✓		
SW04	Water	07/11/2023 12:18PM	✓	✓	✓	✓			✓	✓	✓	✓	✓		
SW03	Water	07/11/2023 12:45PM	✓	✓	✓	✓			✓	✓	✓	✓	✓		
SW02	Water	07/11/2023 12:59PM	✓	✓	✓	✓			✓	✓	✓	✓	✓		
SW05	Water	07/11/2023 01:26PM	✓	✓	✓	✓			✓	✓	✓	✓	✓		
SW06	Water	07/11/2023 01:47PM	✓	✓	✓	✓			✓	✓	✓	✓	✓		
SW01	Water	07/11/2023 02:15PM	✓	1	✓	√			✓	1	✓	✓	✓		

TURNAROUND REQUEST: 5 DAYS SPECIAL INSTRUCTIONS: ANALYSE B6A FOR TOTAL M NOT DISSOLVED. SAMPLED BY: GAETANO GARFI		- A FOR TOTAL METALS	Sulphite (as SO3)	Total Dissolved Solids Dried at 180 °C ± 2 °C	Total Suspended Solids Dried at 103 °C to 105 °C	,			COMMENTS
FIELD ID	MATRIX	DATE	Sulp	Total D Solids I °C ± 2	Soli °C t				Ногр
SW-RINSE-1	Water	07/11/2023 10:12AM							
TB-4	Water	07/11/2023 10:12AM							
SW09	Water	07/11/2023 10:14AM	✓	✓	✓				
SW08	Water	07/11/2023 10:50AM	✓	✓	✓				
SW-DUP-1	Water	07/11/2023 10:50AM	✓	✓	✓				
SW07	Water	07/11/2023 11:23AM	✓	✓	✓				
SW04	Water	07/11/2023 12:18PM	✓	✓	✓				
SW03	Water	.07/11/2023 12:45PM	✓	√	✓				
SW02	Water	07/11/2023 12:59PM	✓	√	✓				
SW05	Water	07/11/2023 01:26PM	✓	√	✓				
SW06	Water	07/11/2023 01:47PM	✓	√	√				
SW01	Water	07/11/2023 02:15PM	✓	✓	✓				
Hand Over		Relinqu	ished	R	eceived		Relinquished	Received	e-Request Sent
# of Delivery Boxes 2		Signature			7	- 1			Name -
Cooled ye	es	Name Gaetano	Garfi	f	aggin	al			Org -
Con Note -		Org			eneed	fw			Date -
		Date 07/11/20	23 10:12AN	Λ	08111	2120P	M		

SAMPLE REGISTER & CHAIN OF CUSTODY

Project Title: Riverlea Saltwater Lakes Dewatering

Project manager: Tess O'Leary Job Number: 231445-01

Email: tess.oleary@lbwco.com.au
Phone: 8331 2417
Send results to: results@lbwco.com.au
Send invoice to: finance@lbwco.com.au

Lab Quote Ref: 230303LBWS Primary Lab: Eurofins

Secondary lab: ALS

COC Reference: (sample delivery group) ADBQ-001-18_LBWco_SO 231445-01_COC_ 20231108

Signature:	ř	
Date/Time Received:		
Courier and consignment number: Received by:		
Signature:		
Relingished by: Relingished by: Our 1 Ce 3 1 B Date/Time Relinguished:	TB-L	SW-RINSE-1
signature:	SW-DUP-1	SWOI
Date/Time Received:	90/MS	SW05
Courier and consignment number: Received by:	SOWS	SW 03
Signature of Manager	40 MS	£0/MS
GAETANO GARF / Date/Time Relinquished:	80MS	SWO9
Sample Custody - Step 1	Sample Details 2	Sample Details 1

Page_

45.

LBW co Pty Ltd 184 Magill Road Norwood SA 5069

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: TESS O'LEARY

Report 1042654-W

Project name RIVERLEA SALTWATER LAKES DEWATERING ASSESSMENT

Project ID 231445-01
Received Date Nov 09, 2023

Client Sample ID Sample Matrix			SW-RINSE-1 Water	TB-4 Water	SW09 Water	SW08 Water
Eurofins Sample No.			M23- No0021423	M23- No0021424	M23- No0021425	M23- No0021426
Date Sampled			Nov 07, 2023	Nov 07, 2023	Nov 07, 2023	Nov 07, 2023
Test/Reference	LOR	Unit	1101 01, 2020	1100 01, 2020	1101 01, 2020	1101 01, 2020
restretelice	LOR	Offic				
Chromium (hexavalent)	0.005	mg/L	< 1	-	< 0.005	< 0.005
Ammonia (as N)	0.01	mg/L	-	-	0.96	0.48
Biochemical Oxygen Demand (BOD-5 Day)	5	mg/L	-	-	< 5	< 5
Cyanide (total)	0.005	mg/L	-	-	< 0.005	0.005
Nitrate & Nitrite (as N)	0.05	mg/L	-	-	< 0.05	3.0
Nitrate (as N)	0.02	mg/L	-	-	0.03	2.8
Nitrite (as N)	0.02	mg/L	-	-	< 0.02	0.21
Organic Nitrogen (as N)*	0.2	mg/L	-	-	0.24	1.82
pH (at 25 °C)	0.1	pH Units	-	-	8.4	9.2
Phenolics (total)	0.05	mg/L	-	-	< 0.05	< 0.05
Phosphorus reactive (as P)	0.01	mg/L	-	-	< 0.01	0.37
Sulphate (as SO4)	5	mg/L	-	_	4600	1400
Sulphide (as S)	0.1	mg/L	-	-	< 0.1	< 0.1
Sulphite (as SO3)	0.5	mg/L	-	-	< 2.5	< 2.5
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	-	-	37000	9900
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	-	-	1.2	2.3
Total Nitrogen (as N)*	0.2	mg/L	-	-	1.2	5.3
Total Suspended Solids Dried at 103 °C to 105 °C	5	mg/L	-	-	540	120
Phosphate total (as P)	0.01	mg/L	-	-	0.04	0.62
Heavy Metals	'					
Aluminium	0.05	mg/L	-	_	0.07	< 0.05
Arsenic	0.001	mg/L	< 0.001	-	0.003	0.004
Barium	0.02	mg/L	-	-	0.03	0.03
Beryllium	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Boron	0.05	mg/L	< 0.05	-	12	7.5
Cadmium	0.0002	mg/L	< 0.0002	-	< 0.0002	< 0.0002
Chromium	0.001	mg/L	-	-	< 0.001	< 0.001
Cobalt	0.001	mg/L	< 0.001	-	0.001	0.002
Copper	0.001	mg/L	< 0.001	-	0.001	0.003
Iron	0.05	mg/L	-	-	0.24	0.06
Lead	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Manganese	0.005	mg/L	< 0.005	-	0.025	0.024
Mercury	0.0001	mg/L	< 0.0001	-	< 0.0001	< 0.0001
Nickel	0.001	mg/L	< 0.001	-	0.005	0.007
Selenium	0.001	mg/L	< 0.001	-	0.004	0.012

Client Sample ID			SW-RINSE-1	TB-4	SW09	SW08
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- No0021423	M23- No0021424	M23- No0021425	M23- No0021426
Date Sampled			Nov 07, 2023	Nov 07, 2023	Nov 07, 2023	Nov 07, 2023
Test/Reference	LOR	Unit	,	,	,	, ,
Heavy Metals	LOIC	Offic				
Silver	0.005	mg/L	_	_	< 0.005	< 0.005
Tin	0.005	mg/L	_	-	< 0.005	< 0.005
Zinc	0.005	mg/L	< 0.005	_	< 0.005	0.009
Total Recoverable Hydrocarbons	0.000	ilig/L	V 0.003		V 0.005	0.003
TRH C6-C9	0.02	mg/L	_	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.02	mg/L	_	- 0.02	< 0.05	< 0.02
TRH C15-C28	0.03	mg/L	_	_	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	-		< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	_	_	< 0.1	< 0.1
TRH C6-C10	0.02	mg/L	_	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	_	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	-		< 0.05	< 0.02
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	_	_	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	_	_	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	_	_	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	_	_	< 0.1	< 0.1
BTEX	1 0.1	,g/ <u>-</u>			10.1	10.1
Benzene	0.001	mg/L	-	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	-	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	-	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	-	< 0.002	< 0.001	< 0.001
o-Xylene	0.002	mg/L	_	< 0.002	< 0.002	< 0.002
Xylenes - Total*	0.003	mg/L	-	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	-	99	95	98
Volatile Organics	'	70		33	30	30
Naphthalene ^{N02}	0.01	mg/L	-	< 0.01	_	-
Naphthalene Total Recoverable Hydrocarbons - 2013 NEPM I		ilig/L	-	₹ 0.01	-	-
Naphthalene ^{N02}	0.01	ma/l	-	_	- 0.01	10.01
•	0.01	mg/L	-	-	< 0.01	< 0.01
Organochlorine Pesticides	0.000				2 222	0.000
Chlordanes - Total	0.002	mg/L	-	-	< 0.002	< 0.002
4.4'-DDD	0.0002	mg/L	-	-	< 0.0002	< 0.0002
4.4'-DDE	0.0002	mg/L	-	-	< 0.0002	< 0.0002
4.4'-DDT	0.0002	mg/L	-	-	< 0.0002	< 0.0002
a-HCH	0.0002	mg/L	-	-	< 0.0002	< 0.0002
Aldrin	0.0002	mg/L	-	-	< 0.0002	< 0.0002
b-HCH	0.0002	mg/L	-	-	< 0.0002	< 0.0002
d-HCH	0.0002	mg/L	-	-	< 0.0002	< 0.0002
Dieldrin Endosulfan I	0.0002	mg/L	-	-	< 0.0002	< 0.0002
Endosulfan I	0.0002	mg/L	-	-	< 0.0002	< 0.0002
Endosulfan II	0.0002	mg/L	-	-	< 0.0002	< 0.0002
Endosulfan sulphate	0.0002	mg/L	-	-	< 0.0002	< 0.0002
Endrin	0.0002	mg/L	-	-	< 0.0002	< 0.0002
Endrin aldehyde	0.0002	mg/L	-	-	< 0.0002	< 0.0002
Endrin ketone g-HCH (Lindane)	0.0002	mg/L mg/L	-	-	< 0.0002	< 0.0002 < 0.0002
,	0.0002	mg/L mg/L	-	-	< 0.0002	< 0.0002
Heptachlor Heptachlor epoxide	0.0002	mg/L mg/L	-	-	< 0.0002 < 0.0002	< 0.0002
Heptachior epoxide Hexachlorobenzene	0.0002	mg/L mg/L	-	-	< 0.0002	< 0.0002

Client Sample ID			SW-RINSE-1	TB-4	SW09	SW08
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- No0021423	M23- No0021424	M23- No0021425	M23- No0021426
Date Sampled			Nov 07, 2023	Nov 07, 2023	Nov 07, 2023	Nov 07, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Methoxychlor	0.0002	mg/L	-	-	< 0.0002	< 0.0002
Toxaphene	0.005	mg/L	-	-	< 0.005	< 0.005
Aldrin and Dieldrin (Total)*	0.0002	mg/L	-	-	< 0.0002	< 0.0002
DDT + DDE + DDD (Total)*	0.0002	mg/L	-	-	< 0.0002	< 0.0002
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	-	-	< 0.002	< 0.002
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	-	-	< 0.002	< 0.002
Dibutylchlorendate (surr.)	1	%	-	-	92	51
Tetrachloro-m-xylene (surr.)	1	%	-	-	78	91

Client Sample ID			SW-DUP-1	SW07	SW04	SW03
Sample Matrix			Water	Water	Water	Water
			M23-	M23-	M23-	M23-
Eurofins Sample No.			No0021427	No0021428	No0021429	No0021430
Date Sampled			Nov 07, 2023	Nov 07, 2023	Nov 07, 2023	Nov 07, 2023
Test/Reference	LOR	Unit				
Chromium (hexavalent)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Ammonia (as N)	0.01	mg/L	0.54	0.71	0.31	< 0.01
Biochemical Oxygen Demand (BOD-5 Day)	5	mg/L	< 5	< 5	16	7.7
Cyanide (total)	0.005	mg/L	0.008	0.006	0.006	< 0.005
Nitrate & Nitrite (as N)	0.05	mg/L	3.4	4.2	< 0.05	< 0.05
Nitrate (as N)	0.02	mg/L	2.9	3.7	< 0.02	< 0.02
Nitrite (as N)	0.02	mg/L	0.44	0.53	< 0.02	< 0.02
Organic Nitrogen (as N)*	0.2	mg/L	1.16	1.89	4.49	2.5
pH (at 25 °C)	0.1	pH Units	9.2	9.1	8.9	8.6
Phenolics (total)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Phosphorus reactive (as P)	0.01	mg/L	0.37	0.67	0.42	1.7
Sulphate (as SO4)	5	mg/L	1400	1200	2300	450
Sulphide (as S)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Sulphite (as SO3)	0.5	mg/L	< 2.5	< 2.5	< 2.5	< 2.5
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	10000	8100	16000	4300
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	1.7	2.6	4.8	2.5
Total Nitrogen (as N)*	0.2	mg/L	5.1	6.8	4.8	2.5
Total Suspended Solids Dried at 103 °C to 105 °C	5	mg/L	130	140	170	45
Phosphate total (as P)	0.01	mg/L	0.57	0.95	0.69	1.7
Heavy Metals						
Aluminium	0.05	mg/L	0.05	0.32	1.8	0.07
Arsenic	0.001	mg/L	0.004	0.004	0.018	0.009
Barium	0.02	mg/L	0.03	0.04	0.13	0.09
Beryllium	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Boron	0.05	mg/L	8.1	8.0	8.6	2.4
Cadmium	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium	0.001	mg/L	< 0.001	0.001	0.003	< 0.001
Cobalt	0.001	mg/L	0.002	0.002	0.002	0.002
Copper	0.001	mg/L	0.007	0.006	0.002	< 0.001
Iron	0.05	mg/L	0.05	0.31	1.6	0.17
Lead	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Manganese	0.005	mg/L	0.023	0.034	0.18	0.54

		1				
Client Sample ID			SW-DUP-1	SW07	SW04	SW03
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- No0021427	M23- No0021428	M23- No0021429	M23- No0021430
Date Sampled			Nov 07, 2023	Nov 07, 2023	Nov 07, 2023	Nov 07, 2023
Test/Reference	LOR	Unit				
Heavy Metals						
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	0.0003
Nickel	0.001	mg/L	0.006	0.007	0.019	0.034
Selenium	0.001	mg/L	0.011	0.009	0.003	< 0.001
Silver	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Tin	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Zinc	0.005	mg/L	< 0.005	0.007	< 0.005	< 0.005
Total Recoverable Hydrocarbons						
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	0.12	0.31	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	0.3	0.9	0.3
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	0.2	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	0.42	1.41	0.3
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	0.11	0.39	0.06
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	0.11	0.39	0.06
TRH >C16-C34	0.1	mg/L	< 0.1	0.2	0.9	0.3
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	0.31	1.29	0.36
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	95	91	90	92
Total Recoverable Hydrocarbons - 2013 NEPM Frac	ctions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Organochlorine Pesticides	•					
Chlordanes - Total	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
4.4'-DDD	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
4.4'-DDE	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
4.4'-DDT	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
a-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Aldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
b-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
d-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Dieldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan I	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan II	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan sulphate	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin aldehyde	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
·	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin ketone	0.0002					
Endrin ketone g-HCH (Lindane)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
			< 0.0002 < 0.0002	< 0.0002 < 0.0002	< 0.0002 < 0.0002	< 0.0002 < 0.0002

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			SW-DUP-1 Water M23- N00021427 Nov 07, 2023	SW07 Water M23- N00021428 Nov 07, 2023	SW04 Water M23- N00021429 Nov 07, 2023	SW03 Water M23- N00021430 Nov 07, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Hexachlorobenzene	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Methoxychlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Toxaphene	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Dibutylchlorendate (surr.)	1	%	57	61	115	122
Tetrachloro-m-xylene (surr.)	1	%	87	53	87	80

Client Sample ID			SW02	SW05	SW06	SW01
Sample Matrix Eurofins Sample No.			Water M23- No0021431	Water M23- No0021432	Water M23- No0021433	Water M23- No0021434
Date Sampled			Nov 07, 2023	Nov 07, 2023	Nov 07, 2023	Nov 07, 2023
•	LOD	Linit	140 07, 2023	1407 07, 2023	1407 07, 2023	1407 07, 2023
Test/Reference	LOR	Unit				
Chromium (hexavalent)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Ammonia (as N)	0.01	mg/L	0.39	0.65	0.38	0.60
Biochemical Oxygen Demand (BOD-5 Day)	5	mg/L	< 5	< 5	< 5	< 5
Cyanide (total)	0.005	mg/L	< 0.005	0.005	0.078	0.010
Nitrate & Nitrite (as N)	0.05	mg/L	70	0.75	18	0.15
Nitrate (as N)	0.02	mg/L	70	0.48	17	0.14
Nitrite (as N)	0.02	mg/L	0.07	0.27	0.71	< 0.02
Organic Nitrogen (as N)*	0.2	mg/L	2.01	2.95	2.82	0.3
pH (at 25 °C)	0.1	pH Units	8.1	9.3	9.1	9.1
Phenolics (total)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Phosphorus reactive (as P)	0.01	mg/L	4.6	0.78	0.29	< 0.01
Sulphate (as SO4)	5	mg/L	740	1300	1300	1200
Sulphide (as S)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Sulphite (as SO3)	0.5	mg/L	< 2.5	7.5	8.9	< 2.5
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	3700	3200	7500	480
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	2.4	3.6	3.2	0.9
Total Nitrogen (as N)*	0.2	mg/L	72	4.4	21	1.1
Total Suspended Solids Dried at 103 °C to 105 °C	5	mg/L	44	100	150	35
Phosphate total (as P)	0.01	mg/L	4.2	0.96	0.72	< 0.01
Heavy Metals						
Aluminium	0.05	mg/L	0.51	0.35	0.07	0.36
Arsenic	0.001	mg/L	0.006	0.006	0.005	0.003
Barium	0.02	mg/L	0.04	-	0.04	0.05
Beryllium	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Boron	0.05	mg/L	5.5	8.6	6.1	6.6
Cadmium	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium	0.001	mg/L	0.001	< 0.001	< 0.001	< 0.001
Cobalt	0.001	mg/L	< 0.001	0.002	0.002	0.001
Copper	0.001	mg/L	0.004	0.002	0.006	0.003
Iron	0.05	mg/L	0.55	0.33	0.08	0.31
Lead	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

LOR 0.005	Unit	SW02 Water M23- N00021431 Nov 07, 2023	SW05 Water M23- N00021432	SW06 Water M23- No0021433	SW01 Water M23- N00021434
	Unit	M23- No0021431	M23- No0021432	M23- No0021433	M23-
	Unit	No0021431	No0021432	No0021433	
	Unit	Nov 07, 2023	Nov 07, 2022		1
	Unit		Nov 07, 2023	Nov 07, 2023	Nov 07, 2023
0.005					
0.005					
	mg/L	0.030	0.023	0.019	0.006
0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
0.001	mg/L	0.004	0.008	0.006	0.003
0.001	mg/L	0.010	0.007	0.011	0.015
0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
0.005	mg/L	0.046	< 0.005	0.011	< 0.005
0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
0.1		< 0.1	< 0.1	< 0.1	< 0.1
0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
0.1		< 0.1			< 0.1
0.02		< 0.02		< 0.02	< 0.02
0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
0.1		< 0.1	< 0.1	< 0.1	< 0.1
0.1		< 0.1	< 0.1	< 0.1	< 0.1
0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
0.001		< 0.001	< 0.001	< 0.001	< 0.001
					< 0.001
					< 0.002
0.001			< 0.001	< 0.001	< 0.001
0.003		< 0.003	< 0.003	< 0.003	< 0.003
1	%	90	92	93	79
ns					
0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
0.002	ma/L	< 0.002	< 0.002	< 0.002	< 0.002
					< 0.0002
					< 0.0002
					< 0.0002
					< 0.0002
0.0002				< 0.0002	< 0.0002
0.0002				< 0.0002	< 0.0002
0.0002					< 0.0002
0.0002				< 0.0002	< 0.0002
0.0002				< 0.0002	< 0.0002
0.0002				< 0.0002	< 0.0002
0.0002					< 0.0002
0.0002					< 0.0002
0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
					+
			< 0.0002		< 0.0002
0.0002 0.0002	mg/L mg/L	< 0.0002 < 0.0002	< 0.0002 < 0.0002	< 0.0002 < 0.0002	< 0.0002 < 0.0002
	0.005 0.005 0.005 0.005 0.01 0.1 0.1 0.1 0.02 0.02 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.02 mg/L 0.05 mg/L 0.05 mg/L 0.1 mg/L 0.1 mg/L 0.01 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.002 mg/L 0.003 mg/L 0.0002 mg/L <td>0.005 mg/L < 0.005</td> 0.005 mg/L < 0.005	0.005 mg/L < 0.005	0.005 mg/L < 0.005 < 0.005 0.005 mg/L < 0.005	0.005 mg/L < 0.005

Client Sample ID			SW02 Water M23- No0021431	SW05 Water M23- N00021432	SW06 Water M23- No0021433	SW01 Water M23- N00021434
Sample Matrix Eurofins Sample No.						
Date Sampled			Nov 07, 2023	Nov 07, 2023	Nov 07, 2023	Nov 07, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Heptachlor epoxide	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hexachlorobenzene	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Methoxychlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Toxaphene	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Dibutylchlorendate (surr.)	1	%	101	118	95	104
Tetrachloro-m-xylene (surr.)	1	%	62	87	80	76

Sample History

Date Reported: Nov 16, 2023

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Finalize Scite BSA	Testing Site	Extracted	Holding Time
Eurofins Suite B6A	Melbourne	Nov. 15, 2022	29 Days
Chromium (hexavalent)	Meibourne	Nov 15, 2023	28 Days
- Method: LTM-INO-4100 Hexavalent Chromium by Spectrometric detection NEPM 2013 Metals: Metals M12	Melbourne	Nov 13, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Nov 13, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Nov 13, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Nov 13, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40 BTEX	Melbourne	Nov 13, 2023	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P	Malhauma	Nov. 12, 2022	20 Dave
Ammonia (as N)	Melbourne	Nov 13, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser Nitrate & Nitrite (as N)	Melbourne	Nov 13, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser Nitrate (as N)	Melbourne	Nov 13, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser Nitrite (as N)	Melbourne	Nov 13, 2023	2 Days
 Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser Organic Nitrogen (as N)* 	Melbourne	Nov 09, 2023	7 Days
- Method: APHA 4500 Organic Nitrogen (N) Phosphorus reactive (as P)	Melbourne	Nov 13, 2023	2 Days
- Method: APHA 4500-P			_
Total Kjeldahl Nitrogen (as N)	Melbourne	Nov 13, 2023	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA		N 40 0000	o. D
Biochemical Oxygen Demand (BOD-5 Day)	Melbourne	Nov 13, 2023	2 Days
- Method: LTM-INO-4010 Biochemical Oxygen Demand (BOD5) in Water	Melbourne	Nov 13, 2023	14 Days
Cyanide (total) - Method: LTM-INO-4020 Total Free WAD Cyanide by CFA	Meibourne	NOV 13, 2023	14 Days
pH (at 25 °C)	Melbourne	Nov 13, 2023	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE	Wicibodific	1407 10, 2020	o riodio
Phenolics (total)	Melbourne	Nov 13, 2023	7 Days
- Method: LTM-INO-4050 Total Phenolics in Waters and solids by CFA	Molhourno	Nov. 12, 2022	29 Days
Sulphate (as SO4)	Melbourne	Nov 13, 2023	28 Days
- Method: LTM-INO-4270 Anions by Ion Chromatography Sulphide (as S)	Melbourne	Nov 13, 2023	7 Days
- Method: LTM-INO-4011 Suphide Sulphite (as SO3)	Melbourne	Nov 13, 2023	2 Days
- Method: LTM-INO-4240 Sulfite & Thiosulfate in Water Total Suspended Solids Dried at 103 °C to 105 °C	Melbourne	Nov 13, 2023	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			_
Phosphate total (as P)	Melbourne	Nov 13, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS	Mallague	No. 40, 0000	00 Davis
Heavy Metals	Melbourne	Nov 16, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS Organochlorine Pesticides	Melbourne	Nov 13, 2023	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)			
Total Dissolved Solids Dried at 180 °C ± 2 °C	Melbourne	Nov 13, 2023	28 Days

Page 8 of 17

Report Number: 1042654-W

DescriptionTesting SiteExtractedHolding Time- Method: LTM-INO-4170 Total Dissolved Solids in WaterTotal Recoverable HydrocarbonsMelbourneNov 13, 20237 Days

- Method: LTM-ORG-2010 TRH C6-C40

Report Number: 1042654-W

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Address:

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

ABN: 50 005 085 521

NATA# 1261

Melbourne Geelong 6 Monterey Road Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 19/8 Lewalan Street 179 Magowar Road Girraween NSW 2145

NATA# 1261

Canberra Mitchell ACT 2911

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Perth

Welshpool

WA 6106

NATA# 2377

NZBN: 9429046024954

IANZ# 1327

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112

Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568

Nov 9, 2023 2:30 PM

IANZ# 1402

IANZ# 1290

Nov 16, 2023

Eurofins Analytical Services Manager: Amy Meunier

NATA# 1261 Site# 1254 Site# 25403 Site# 18217 Site# 25466 Site# 20794 Site# 2370 **Company Name:** LBW co Pty Ltd Received: Order No.:

> 184 Magill Road Report #: 1042654 Due: Norwood Phone: 08 8331 2417 **Priority:**

5 Day SA 5069 08 8331 2415 TESS O'LEARY Fax: **Contact Name:**

Project Name: RIVERLEA SALTWATER LAKES DEWATERING ASSESSMENT Project ID: 231445-01

Sample Detail							Cyanide (total)	pH (at 25 °C)	Phenolics (total)	Phosphate total (as P)	Sulphate (as SO4)	Sulphide (as S)	Sulphite (as SO3)	Total Suspended Solids Dried at 103 °C to 105 °C	Organochlorine Pesticides	NEPM 2013 Metals : Metals M13	BTEXN and Volatile TRH	Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P	Eurofins Suite B6A	Total Dissolved Solids Dried at 180 °C ± 2 °C
	ourne Laborato	_•	261 Site # 12	54		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	rnal Laboratory		I	T	1														\longmapsto	
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID															
1	SW-RINSE-1	Nov 07, 2023	10:12AM	Water	M23-No0021423											Х				
2	TB-4	Nov 07, 2023	10:12AM	Water	M23-No0021424												Х		igsqcut	
3	SW09	Nov 07, 2023	10:14AM	Water	M23-No0021425	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х			Х	Х	X
4	SW08	Nov 07, 2023	10:50AM	Water	M23-No0021426	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х			Х	Х	Х
5	SW-DUP-1	Nov 07, 2023	10:50AM	Water	M23-No0021427	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			Х	Х	Х
6	SW07	Nov 07, 2023	11:23AM	Water	M23-No0021428	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			X	Х	Х
7	SW04	Nov 07, 2023	12:18PM	Water	M23-No0021429	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			Х	Х	Х
8	SW03	Nov 07, 2023	12:45PM	Water	M23-No0021430	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			Х	Х	Х
9	SW02	Nov 07, 2023	12:59PM	Water	M23-No0021431	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			X	Х	Χ
10	SW05	Nov 07, 2023	1:26PM	Water	M23-No0021432	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			Х	Х	Х
11	SW06	Nov 07, 2023	1:47PM	Water	M23-No0021433	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			Х	Х	Х
12	SW01	Nov 07, 2023	2:15PM	Water	M23-No0021434	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			Х	Х	Х
Test	Counts					10	10	10	10	10	10	10	10	10	10	1	1	10	10	10

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil/sediment/solid results are reported on a dry weight basis unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion unless otherwise stated.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- 5. Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling; therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is 7 days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre μg/L: micrograms per litre

ppm: parts per million ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA WA DWER

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30%; however the following acceptance guidelines are equally

applicable: Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries above the QC limit designated in QSM 5.4, where no positive PFAS results have been reported, have been reviewed, and no data was affected

QC Data General Comments

- Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Page 11 of 17 Eurofins Environment Testing 6 Monterey Road, Dandenong South, Victoria, Australia 3175 ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 1042654-W

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Chromium (hexavalent)	mg/L	< 0.005	0.005	Pass	
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
Cyanide (total)	mg/L	< 0.005	0.005	Pass	
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Nitrate (as N)	mg/L	< 0.02	0.02	Pass	
Nitrite (as N)	mg/L	< 0.02	0.02	Pass	
Phenolics (total)	mg/L	< 0.05	0.05	Pass	
Phosphorus reactive (as P)	mg/L	< 0.01	0.01	Pass	
Sulphate (as SO4)	mg/L	< 5	5	Pass	
Sulphide (as S)	mg/L	< 0.1	0.1	Pass	
Phosphate total (as P)	mg/L	< 0.01	0.01	Pass	
Method Blank					
Heavy Metals					
Aluminium	mg/L	< 0.05	0.05	Pass	
Arsenic	mg/L	< 0.001	0.001	Pass	
Arsenic	mg/L	< 0.001	0.001	Pass	
Barium	mg/L	< 0.02	0.02	Pass	
Beryllium	mg/L	< 0.001	0.001	Pass	
Beryllium	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.0002	0.0002	Pass	
Cobalt		< 0.001	0.001	Pass	
Cobalt	mg/L	< 0.001	0.001	Pass	
	mg/L				
Copper	mg/L	< 0.001 < 0.001	0.001	Pass	
Copper	mg/L		0.001	Pass	
Iron	mg/L	< 0.05	0.05	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Manganese	mg/L	< 0.005	0.005	Pass	
Manganese	mg/L	< 0.005	0.005	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Selenium	mg/L	< 0.001	0.001	Pass	
Selenium	mg/L	< 0.001	0.001	Pass	
Silver	mg/L	< 0.005	0.005	Pass	
Tin	mg/L	< 0.005	0.005	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
Method Blank				T	
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank					
Volatile Organics					
Naphthalene	mg/L	< 0.01	0.01	Pass	
LCS - % Recovery					
Chromium (hexavalent)	%	123	70-130	Pass	
Ammonia (as N)	%	127	70-130	Pass	
Cyanide (total)	%	92	70-130	Pass	
Nitrate & Nitrite (as N)	%	122	70-130	Pass	
Nitrite (as N)	%	102	70-130	Pass	
Phenolics (total)	%	106	70-130	Pass	
Phosphorus reactive (as P)	%	106	70-130	Pass	
Sulphate (as SO4)	%	116	70-130	Pass	
Phosphate total (as P)	%	100	70-130	Pass	
LCS - % Recovery					
Heavy Metals					
Aluminium	%	108	80-120	Pass	
Arsenic	%	106	80-120	Pass	
Arsenic	%	94	80-120	Pass	
Barium	%	113	80-120	Pass	
Beryllium	%	94	80-120	Pass	
Beryllium	%	114	80-120	Pass	
Cadmium	%	98	80-120	Pass	
Cadmium	%	93	80-120	Pass	
Chromium	%	106	80-120	Pass	
Cobalt	%	104	80-120	Pass	
Cobalt	%	95	80-120	Pass	
Copper	%	98	80-120	Pass	
Copper	%	95	80-120	Pass	
Iron	%	101	80-120	Pass	
Lead	%	90	80-120	Pass	
Lead	%	93	80-120	Pass	
Manganese	%	109	80-120	Pass	
Manganese	%	95	80-120	Pass	
Mercury	%	97	80-120	Pass	
Mercury	%	96	80-120	Pass	
Nickel	%	100	80-120	Pass	
Nickel	%	96	80-120	Pass	
Selenium	%	103	80-120	Pass	
Selenium	%	96	80-120	Pass	
Silver	%	96	80-120	Pass	
Tin	%	118	80-120	Pass	
Zinc	%	106	80-120	Pass	
Zinc	%	95	80-120	Pass	
LCS - % Recovery	70		1 00-120	1 433	
Total Recoverable Hydrocarbons					
TRH C6-C9	%	78	70-130	Pass	
TRH C6-C9	%	93	70-130	Pass	
LCS - % Recovery	/0	<u> </u>	70-130	1 455	
BTEX					
Benzene	%	83	70-130	Pass	
Toluene	%	87	70-130	Pass	
I OIUGIIC	70	01	10-130	газэ	

Tes	t		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
m&p-Xylenes			%	83	70-130	Pass	
Xylenes - Total*			%	83	70-130	Pass	
LCS - % Recovery							
Volatile Organics							
Naphthalene			%	94	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
				Result 1			
Chromium (hexavalent)	M23-No0021425	CP	%	102	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Aluminium	M23-No0021425	CP	%	96	75-125	Pass	
Arsenic	M23-No0021425	CP	%	99	75-125	Pass	
Barium	M23-No0021425	CP	%	101	75-125	Pass	
Cadmium	M23-No0021425	CP	%	79	75-125	Pass	
Chromium	M23-No0021425	СР	%	94	75-125	Pass	
Cobalt	M23-No0021425	СР	%	88	75-125	Pass	
Copper	M23-No0021425	СР	%	78	75-125	Pass	
Iron	M23-No0021425	СР	%	86	75-125	Pass	
Manganese	M23-No0021425	СР	%	94	75-125	Pass	
Mercury	M23-No0021425	СР	%	89	75-125	Pass	
Nickel	M23-No0021425	CP	%	81	75-125	Pass	
Selenium	M23-No0021425	CP	%	84	75-125	Pass	
Tin	M23-No0021425	CP	%	102	75-125	Pass	
Zinc	M23-No0021425	CP	%	83	75-125	Pass	
Spike - % Recovery	WZ3 14000Z 14Z3	OI .	70		73 123	1 433	
Opine - 70 Necovery				Result 1			
Phenolics (total)	M23-No0021426	СР	%	77	70-130	Pass	
Spike - % Recovery	WZ3 14000Z 14Z0	OI .	70	, , ,	70 100	1 433	
Organochlorine Pesticides				Result 1			
Chlordanes - Total	M23-No0021430	СР	%	91	70-130	Pass	
4.4'-DDD	M23-No0021430	CP	%	83	70-130	Pass	
4.4'-DDE	M23-No0021430	CP	%	112	70-130	Pass	
4.4'-DDE	M23-N00021430	CP	%	106	70-130	Pass	
	M23-No0021430	-	%				
a-HCH	M23-N00021430	CP	%	119 108	70-130	Pass	
Aldrin				1	70-130	Pass	
b-HCH	M23-No0021430	CP	%	85	70-130	Pass	
d-HCH	M23-No0021430	CP	%	84	70-130	Pass	
Dieldrin	M23-No0021430	CP	%	81	70-130	Pass	
Endosulfan I	M23-No0021430	CP	%	82	70-130	Pass	
Endosulfan II	M23-No0021430	CP	%	116	70-130	Pass	
Endosulfan sulphate	M23-No0021430	CP	%	84	70-130	Pass	
Endrin	M23-No0021430	CP	%	103	70-130	Pass	
Endrin aldehyde	M23-No0021430	CP	%	95	70-130	Pass	
Endrin ketone	M23-No0021430	CP	%	108	70-130	Pass	
g-HCH (Lindane)	M23-No0021430	CP	%	85	70-130	Pass	
Heptachlor	M23-No0021430	CP	%	110	70-130	Pass	
Heptachlor epoxide	M23-No0021430	CP	%	91	70-130	Pass	
Hexachlorobenzene	M23-No0021430	CP	%	119	70-130	Pass	
Methoxychlor	M23-No0021430	CP	%	112	70-130	Pass	
Spike - % Recovery							
		1		Result 1			
Total Kjeldahl Nitrogen (as N)	M23-No0021434	CP	%	73	70-130	Pass	
Phosphate total (as P)	M23-No0021434	CP	%	112	70-130	Pass	

Report Number: 1042654-W

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Biochemical Oxygen Demand	M00 N=0004 405	CD.				.4	200/	D	
(BOD-5 Day)	M23-No0021425	CP	mg/L	< 5	< 5	<1	30%	Pass	
Phenolics (total)	M23-No0021425	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate Heavy Metals				Result 1	Result 2	RPD			
Aluminium	M23-No0021425	СР	mg/L	0.07	0.07	2.6	30%	Pass	
Arsenic	M23-No0021425	CP	mg/L	0.003	0.07	15	30%	Pass	
Barium	M23-No0021425	CP	mg/L	0.003	0.002	2.4	30%	Pass	
Beryllium	M23-No0021425	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Boron	M23-No0021425	CP	mg/L	12	12	2.3	30%	Pass	
Cadmium	M23-No0021425	CP	mg/L	< 0.0002	< 0.0002	<u> </u>	30%	Pass	
Chromium	M23-No0021425	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Cobalt	M23-No0021425	CP	mg/L	0.001	0.001	6.8	30%	Pass	
Copper	M23-No0021425	CP	mg/L	0.001	< 0.001	15	30%	Pass	
Iron	M23-No0021425	CP	mg/L	0.24	0.23	5.6	30%	Pass	
Lead	M23-No0021425	CP	mg/L	< 0.001	< 0.001	<u> </u>	30%	Pass	
Manganese	M23-No0021425	CP	mg/L	0.025	0.024	3.0	30%	Pass	
Mercury	M23-No0021425	CP	mg/L	< 0.0001	< 0.0001	<u> </u>	30%	Pass	
Nickel	M23-No0021425	CP	mg/L	0.005	0.005	1.5	30%	Pass	
Selenium	M23-No0021425	CP	mg/L	0.004	0.004	2.8	30%	Pass	
Silver	M23-No0021425	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Tin	M23-No0021425	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc	M23-No0021425	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate	WIZO 14000Z 14Z0	Į Oi	mg/L	<u> </u>	0.000		3070	1 455	
Total Recoverable Hydrocarbor	18			Result 1	Result 2	RPD			
TRH C10-C14	M23-No0021425	СР	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	M23-No0021425	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	M23-No0021425	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C10-C16	M23-No0021425	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	M23-No0021425	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	M23-No0021425	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate	10120 140002 1 120	<u> </u>	mg/ E	1 0.1	, , , , ,	- ' '	3070	1 400	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	M23-No0021425	СР	mg/L	< 0.002	< 0.002	<1	30%	Pass	
4.4'-DDD	M23-No0021425	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDE	M23-No0021425	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDT	M23-No0021425	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
a-HCH	M23-No0021425	СР	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Aldrin	M23-No0021425	СР	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
b-HCH	M23-No0021425	СР	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
d-HCH	M23-No0021425	СР	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Dieldrin	M23-No0021425	СР	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan I	M23-No0021425	СР	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan II	M23-No0021425	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan sulphate	M23-No0021425	СР	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin	M23-No0021425	СР	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin aldehyde	M23-No0021425	СР	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin ketone	M23-No0021425	СР	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
g-HCH (Lindane)	M23-No0021425	СР	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor	M23-No0021425	СР	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor epoxide	M23-No0021425	СР	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Hexachlorobenzene	M23-No0021425	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Methoxychlor	M23-No0021425	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Toxaphene	M23-No0021425	СР	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Duplicate				ı	ı		ı		
	1 1		1	Result 1	Result 2	RPD		_	
Sulphite (as SO3)	M23-No0021426	CP	mg/L	< 2.5	< 2.5	<1	30%	Pass	
Duplicate				l	l		1	1	
Total Recoverable Hydrocarbons			1	Result 1	Result 2	RPD			
TRH >C16-C34	M23-No0021429	CP	mg/L	0.9	0.7	30	30%	Pass	
TRH >C34-C40	M23-No0021429	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate					ı		1		
Organochlorine Pesticides	1 1		1	Result 1	Result 2	RPD			
Chlordanes - Total	M23-No0021429	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
4.4'-DDD	M23-No0021429	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDE	M23-No0021429	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDT	M23-No0021429	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
a-HCH	M23-No0021429	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Aldrin	M23-No0021429	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
b-HCH	M23-No0021429	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
d-HCH	M23-No0021429	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Dieldrin	M23-No0021429	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan I	M23-No0021429	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan II	M23-No0021429	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan sulphate	M23-No0021429	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin	M23-No0021429	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin aldehyde	M23-No0021429	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin ketone	M23-No0021429	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
g-HCH (Lindane)	M23-No0021429	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor	M23-No0021429	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor epoxide	M23-No0021429	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Hexachlorobenzene	M23-No0021429	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Methoxychlor	M23-No0021429	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Toxaphene	M23-No0021429	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate				1	1				
			1	Result 1	Result 2	RPD			
Sulphide (as S)	M23-No0021430	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				T	1		<u> </u>		
			1	Result 1	Result 2	RPD			
Nitrate & Nitrite (as N)	M23-No0021431	CP	mg/L	70	69	1.4	30%	Pass	
Nitrite (as N)	M23-No0021431	CP	mg/L	0.07	0.07	1.8	30%	Pass	
Sulphate (as SO4)	M23-No0021431	CP	mg/L	740	750	<1	30%	Pass	
Duplicate				T	1				
			1	Result 1	Result 2	RPD			
Ammonia (as N)	M23-No0021432	CP	mg/L	0.65	0.67	2.5	30%	Pass	
Nitrate & Nitrite (as N)	M23-No0021432	CP	mg/L	0.75	0.78	3.1	30%	Pass	
Nitrite (as N)	M23-No0021432	CP	mg/L	0.27	0.27	<1	30%	Pass	
Sulphate (as SO4)	M23-No0021432	CP	mg/L	1300	1300	<1	30%	Pass	
Total Suspended Solids Dried at	M22 No0024422	СР	ma/l	100	120	20	200/	Poss	
103 °C to 105 °C	M23-No0021432	U۲	mg/L	100	130	28	30%	Pass	
Duplicate				Popult 4	Pooult 2	DDD			
Ammonia (as NI)	M23-No0021433	CP	ma/l	0.38	Result 2	RPD 10	200/	Poor	
Ammonia (as N)	WIZ3-NUUUZ1433	UP	mg/L	0.38	0.35	10	30%	Pass	
Biochemical Oxygen Demand (BOD-5 Day)	M23-No0021433	CP	mg/L	< 5	< 5	<1	30%	Pass	
Nitrate & Nitrite (as N)	M23-No0021433	СР	mg/L	18	18	<1	30%	Pass	
Nitrite (as N)	M23-No0021433	СР	mg/L	0.71	0.68	4.1	30%	Pass	
Phosphate total (as P)	M23-No0021433	СР	mg/L	0.72	0.69	4.7	30%	Pass	
Duplicate									
•				Result 1	Result 2	RPD			
Chromium (hexavalent)	M23-No0021434	СР	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Sulphate (as SO4)	M23-No0021434	CP	mg/L	1200	1100	6.3	30%	Pass	
. \/			. <u> </u>	·					

Report Number: 1042654-W

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

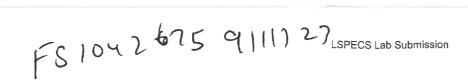
F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Authorised by:

N02

Amy Meunier Analytical Services Manager Caitlin Breeze Senior Analyst-Inorganic Edward Lee Senior Analyst-Organic Joseph Edouard Senior Analyst-Organic Joseph Edouard Senior Analyst-Volatile Mary Makarios Senior Analyst-Inorganic Mary Makarios Senior Analyst-Metal

Final Report - this report replaces any previously issued Report


- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

11/8/23, 8:27 AM

Company	LBWco			Labo	ratory				Rep	ort To				Billi	ng		
Project ID	231445-01			Dest	nation Lab	Eurofins	S		Prim	nary	LBWcc	Laboratory	Results	Pur	chase Order#	23144	45-01
Project Name			akes Dewatering	Lab (Quote No	Q01470)		Con	tact	results	s@lbwco.com	n.au	Org	to be Billed	LBWc	0
	Assessmen			Lab (Lab Contact Sample				00) Seco	Secondary Tess O'Leary			Bill	То	finance@lbwco.com.au		
SDG/COC#	2023-11-07	7-Eurofins	s-TO			envirosamplevic@eurofins.com		Con	tact	tess.ol	leary@lbwco.	com.au	Atte	ention	Tess C	D'Leary	
Request / Versio	n 1/1																
TURNAROUND R SPECIAL INSTRUC SAMPLED BY: GA	CTIONS: -	AYS			Biochemical Oxygen Demand (BOD-5 Day)	Cyanide (total)	Eurofins Suite B19E: Total N, TKN, NOx,	Total P, Reactive P Eurofins Suite B6A	Organochlorine Pesticides	pH (at 25 °C)		Phenolics (total)	Sulphate (as SO4)	Sulphide (as S)	Sulphite (as SO3)	Ногр	COMMENTS
FIELD ID	M	latrix	DATE		Bioch Dem Day)	Š	To To	를 다 다	Peg	된		Рh	Su	Su	Su	포	
6628-232	98	Water	07/11/2023 02:5		✓	1	✓	✓	1		✓	✓	1	√	✓		
								,									
																	-

184 Magill Road, Norwood SA 5067 PO Box 225 Stepney SA 5069 P: 08 8331 2417 F: 08 8331 2415

FS 1072 672

E: admin@lbwco.com.au ABN: 58 126 992 274

SAMPLE REGISTER & CHAIN OF CUSTODY

Project Title: Riverlea Saltwater Lakes Dewatering

Job Number: 231445-01

Project manager: Tess O'Leary

Email: tess.oleary@lbwco.com.au
Phone: 8331 2417
Send results to: results@lbwco.com.au

Lab Quote Ref: 230303LBWS Primary Lab: Eurofins

Secondary lab: ALS

ADBQ-001-18_LBWco_\$O

231445-01_COC_202311 0.8

4	_											
Send results to: results@lbwco.com.au Send invoice to: finance@lbwco.com.au	Sample Details 1	6628-23298			<i>y</i>							
wco.com.au lbwco.com.au	Sample Details 2											
COC Reference: 231445-01_COC_202341 0.8	Sample Custody - Step 1	CAETANO CARFI Date/Time Relinquished:	Signature: SILLS MU	Courier and consignment number: Received by:	Date/Time Received:	Signature:	Relinaished by: Sample Custody - Step 2 Au (a)	Date/Time Relinquished:	Ngnature:	Courier and consignment number:	Received by:	Date/Time Received:

Signature:

Page_

LBW co Pty Ltd 184 Magill Road Norwood SA 5069

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: TESS O'LEARY

Report 1042675-W

Project name RIVERLEA SALTWATER LAKES DEWATERING ASSESSMENT

Project ID 231445-01

Received Date Nov 08, 2023

Client Sample ID			6628-23298
Sample Matrix			Water
Surger Committee No.			M23-
Eurofins Sample No.			No0021422
Date Sampled			Nov 07, 2023
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons			
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
BTEX			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	98
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.01	mg/L	< 0.01
Organochlorine Pesticides			
Chlordanes - Total	0.002	mg/L	< 0.002
4.4'-DDD	0.0002	mg/L	< 0.0002
4.4'-DDE	0.0002	mg/L	< 0.0002
4.4'-DDT	0.0002	mg/L	< 0.0002
a-HCH	0.0002	mg/L	< 0.0002
Aldrin	0.0002	mg/L	< 0.0002
b-HCH	0.0002	mg/L	< 0.0002
d-HCH	0.0002	mg/L	< 0.0002
Dieldrin	0.0002	mg/L	< 0.0002
Endosulfan I	0.0002	mg/L	< 0.0002
Endosulfan II	0.0002	mg/L	< 0.0002
Endosulfan sulphate	0.0002	mg/L	< 0.0002

Report Number: 1042675-W

Client Sample ID			6628-23298
Sample Matrix			Water
Eurofins Sample No.			M23- No0021422
Date Sampled			Nov 07, 2023
Test/Reference	LOR	Unit	, , ,
Organochlorine Pesticides	LOIK	Onit	
Endrin	0.0002	mg/L	< 0.0002
Endrin aldehyde	0.0002	mg/L	< 0.0002
Endrin ketone	0.0002	mg/L	< 0.0002
g-HCH (Lindane)	0.0002	mg/L	< 0.0002
Heptachlor	0.0002	mg/L	< 0.0002
Heptachlor epoxide	0.0002	mg/L	< 0.0002
Hexachlorobenzene	0.0002	mg/L	< 0.0002
Methoxychlor	0.0002	mg/L	< 0.0002
Toxaphene	0.005		< 0.005
Aldrin and Dieldrin (Total)*	0.003	mg/L mg/L	< 0.003
DDT + DDE + DDD (Total)*	0.0002		< 0.0002
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L mg/L	< 0.002
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002
Dibutylchlorendate (surr.)	1	mg/L %	104
Tetrachloro-m-xylene (surr.)	1	%	87
Tetracilloro-m-xylene (sum.)		/0	07
Ammonia (as NI)	0.01	ma/l	2.0
Ammonia (as N)	0.01 5	mg/L	2.0 < 5
Biochemical Oxygen Demand (BOD-5 Day)		mg/L	
Chromium (hexavalent)	0.005 0.005	mg/L	< 0.005
Cyanide (total) Nitrate & Nitrite (as N)	0.003	mg/L mg/L	< 0.005 0.36
Nitrate (as N)	0.03	mg/L	0.35
Nitrite (as N)	0.02	mg/L	< 0.02
Organic Nitrogen (as N)*	0.02	mg/L	1
pH (at 25 °C)	0.1	pH Units	7.5
Phenolics (total)	0.05	mg/L	< 0.05
Phosphorus reactive (as P)	0.03	mg/L	0.04
Sulphate (as SO4)	5	mg/L	890
Sulphide (as S)	0.1	mg/L	< 0.1
Sulphite (as S)	0.1	mg/L	< 1
Total Kjeldahl Nitrogen (as N)	0.3	mg/L	3.0
Total Nitrogen (as N)*	0.2	mg/L	3.4
Phosphate total (as P)	0.2	mg/L	0.07
Heavy Metals	0.01	ilig/L	0.07
Arsenic (filtered)	0.001	mg/L	0.001
Beryllium (filtered)	0.001	mg/L	< 0.001
Boron (filtered)	0.001	mg/L	0.40
Cadmium (filtered)	0.0002	mg/L	< 0.0002
Cadmium (intered) Cobalt (filtered)	0.0002	mg/L	< 0.0002
Copper (filtered)	0.001	mg/L	< 0.001
Lead (filtered)	0.001		
,		mg/L	< 0.001
Manganese (filtered)	0.005	mg/L	0.44
Mercury (filtered)	0.0001	mg/L	< 0.0001
Nickel (filtered)	0.001	mg/L	0.005
Selenium (filtered) Zinc (filtered)	0.001	mg/L	0.002 0.006

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B6A (filtered metals)			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Nov 13, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Nov 13, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40	Meibourrie	1107 13, 2023	1 Days
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Nov 13, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40		,	· Jajo
BTEX	Melbourne	Nov 13, 2023	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Chromium (hexavalent)	Melbourne	Nov 13, 2023	28 Days
- Method: LTM-INO-4100 Hexavalent Chromium by Spectrometric detection			
NEPM 2013 Metals : Metals M12 (filtered)	Melbourne	Nov 13, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Organochlorine Pesticides	Melbourne	Nov 13, 2023	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)	Malhauma	Na.: 40, 2002	O.Davia
Biochemical Oxygen Demand (BOD-5 Day)	Melbourne	Nov 13, 2023	2 Days
- Method: LTM-INO-4010 Biochemical Oxygen Demand (BOD5) in Water Cyanide (total)	Melbourne	Nov 13, 2023	14 Days
- Method: LTM-INO-4020 Total Free WAD Cyanide by CFA	WEDOUTTE	1407 13, 2023	14 Days
pH (at 25 °C)	Melbourne	Nov 13, 2023	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE		•	
Phenolics (total)	Melbourne	Nov 13, 2023	7 Days
- Method: LTM-INO-4050 Total Phenolics in Waters and solids by CFA			
Sulphate (as SO4)	Melbourne	Nov 13, 2023	28 Days
- Method: LTM-INO-4270 Anions by Ion Chromatography			
Sulphide (as S)	Melbourne	Nov 13, 2023	7 Days
- Method: LTM-INO-4011 Suphide			
Sulphite (as S)	Melbourne	Nov 13, 2023	28 Days
- Method: LTM-INO-4240 Sulfite & Thiosulfate in Water	Malhauma	No. 44 0000	00 Davis
Phosphate total (as P) Method: LTM MET 2000 Metals in Waters Sails & Sediments by ICR MS	Melbourne	Nov 14, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P			
Ammonia (as N)	Melbourne	Nov 13, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser		., .	,
Nitrate & Nitrite (as N)	Melbourne	Nov 13, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Nitrate (as N)	Melbourne	Nov 13, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Nitrite (as N)	Melbourne	Nov 13, 2023	2 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Organic Nitrogen (as N)*	Melbourne	Nov 09, 2023	7 Days
- Method: APHA 4500 Organic Nitrogen (N)	Malhaure	Nov. 42, 2002	2 Dave
Phosphorus reactive (as P)	Melbourne	Nov 13, 2023	2 Days
- Method: APHA 4500-P Total Kjeldahl Nitrogen (as N)	Melbourne	Nov 13, 2023	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA	MCDOUITE	1404 10, 2020	20 Days
Motified. All TIA 4000-14019 Lotal Hydraeth Hillogeth by LIA			

Report Number: 1042675-W

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 179 Magowar Road Girraween NSW 2145

NATA# 1261

Site# 18217

Canberra

ACT 2911

NATA# 1261

Site# 25466

Order No.:

Report #:

Phone:

Fax:

Mitchell

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289

Site# 20794

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Received:

Due:

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Nov 8, 2023 2:30 PM

Nov 15, 2023

Company Name:

Project Name:

Project ID:

Address:

LBW co Pty Ltd

184 Magill Road

SA 5069

231445-01

Norwood

NATA# 1261

Site# 25403

RIVERLEA SALTWATER LAKES DEWATERING ASSESSMENT

231445-01

1042675

08 8331 2417 08 8331 2415 **Priority:** 5 Dav TESS O'LEARY **Contact Name:**

Eurofins Analytical Services Manager: Amy Meunier

		Sa	ımple Detail			Biochemical Oxygen Demand (BOD-5 Day)	Cyanide (total)	рН (at 25 °C)	Phenolics (total)	Sulphate (as SO4)	Sulphide (as S)	Sulphite (as S)	Organochlorine Pesticides	Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P	Eurofins Suite B6A (filtered metals)
Melb	ourne Laborato	ory - NATA # 12	61 Site # 12	54		Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х
Exte	rnal Laboratory														
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	6628-23298	Nov 07, 2023		Water	M23-No0021422	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х
Test	Fest Counts							1	1	1	1	1	1	1	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil/sediment/solid results are reported on a dry weight basis unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion unless otherwise stated.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- 5. Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling; therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is 7 days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre μg/L: micrograms per litre

ppm: parts per million ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA WA DWER

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30%; however the following acceptance guidelines are equally

applicable: Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries above the QC limit designated in QSM 5.4, where no positive PFAS results have been reported, have been reviewed, and no data was affected

QC Data General Comments

- Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	·				
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
ВТЕХ					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank	ı mg/L	< 0.000	0.000	1 433	
Total Recoverable Hydrocarbons - 2013 NEPM Fracti	one				
Naphthalene	mg/L	< 0.01	0.01	Pass	
Method Blank	IIIg/L	< 0.01	0.01	Fass	
Organochlorine Pesticides					
Chlordanes - Total	mg/L	< 0.002	0.002	Pass	
4.4'-DDD	mg/L	< 0.0002	0.0002	Pass	
4.4'-DDE	mg/L	< 0.0002	0.0002	Pass	
4.4'-DDT	mg/L	< 0.0002	0.0002	Pass	
a-HCH	mg/L	< 0.0002	0.0002	Pass	
Aldrin	mg/L	< 0.0002	0.0002	Pass	
b-HCH	mg/L	< 0.0002	0.0002	Pass	
d-HCH	mg/L	< 0.0002	0.0002	Pass	
Dieldrin		< 0.0002	0.0002	Pass	
Endosulfan I	mg/L	< 0.0002	0.0002	Pass	
Endosulfan II	mg/L	< 0.0002	0.0002	Pass	
Endosulfan sulphate	mg/L				
	mg/L	< 0.0002	0.0002	Pass	
Endrin	mg/L	< 0.0002	0.0002 0.0002	Pass	
Endrin aldehyde	mg/L	< 0.0002		Pass	
Endrin ketone	mg/L	< 0.0002	0.0002	Pass	
g-HCH (Lindane)	mg/L	< 0.0002	0.0002	Pass	
Heptachlor	mg/L	< 0.0002	0.0002	Pass	
Heptachlor epoxide	mg/L	< 0.0002	0.0002	Pass	
Hexachlorobenzene	mg/L	< 0.0002	0.0002	Pass	
Methoxychlor	mg/L	< 0.0002	0.0002	Pass	
Toxaphene	mg/L	< 0.005	0.005	Pass	
Method Blank		1 .0.04	204	Desir	
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
Biochemical Oxygen Demand (BOD-5 Day)	mg/L	< 5	5	Pass	
Chromium (hexavalent)	mg/L	< 0.005	0.005	Pass	
Cyanide (total)	mg/L	< 0.005	0.005	Pass	
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Nitrite (as N)	mg/L	< 0.02	0.02	Pass	
Phenolics (total)	mg/L	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Phosphorus reactive (as P)	mg/L	< 0.01	0.01	Pass	
Sulphate (as SO4)	mg/L	< 5	5	Pass	
Sulphide (as S)	mg/L	< 0.1	0.1	Pass	
Sulphite (as S)	mg/L	< 0.5	0.5	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Phosphate total (as P)	mg/L	< 0.01	0.01	Pass	
Method Blank					
Heavy Metals					
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Beryllium (filtered)	mg/L	< 0.001	0.001	Pass	
Boron (filtered)	mg/L	< 0.05	0.05	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Cobalt (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Selenium (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.001	Pass	
LCS - % Recovery		< 0.005	0.003	1 433	
Total Recoverable Hydrocarbons					
TRH C10-C14	%	123	70-130	Pass	
TRH >C10-C16	%	118	70-130	Pass	
LCS - % Recovery	/0	110	70-130	F 455	
Organochlorine Pesticides					
Chlordanes - Total	%	109	70-130	Pass	
4.4'-DDD	%	101	70-130	Pass	
4.4'-DDE	%	127	70-130	Pass	
4.4'-DDT	%	92	70-130	Pass	
		1	1		
a-HCH	%	92	70-130	Pass	
Aldrin	%	114	70-130	Pass	
b-HCH	%	100	70-130	Pass	
d-HCH	%	99	70-130	Pass	
Dieldrin	%	124	70-130	Pass	
Endosulfan I	%	99	70-130	Pass	
Endosulfan II	%	94	70-130	Pass	
Endosulfan sulphate	%	105	70-130	Pass	
Endrin	%	119	70-130	Pass	
Endrin aldehyde	%	115	70-130	Pass	
Endrin ketone	%	122	70-130	Pass	
g-HCH (Lindane)	%	101	70-130	Pass	
Heptachlor	%	126	70-130	Pass	
Heptachlor epoxide	%	106	70-130	Pass	
Hexachlorobenzene	%	93	70-130	Pass	
Methoxychlor	%	98	70-130	Pass	
LCS - % Recovery		T T			
Ammonia (as N)	%	128	70-130	Pass	
Biochemical Oxygen Demand (BOD-5 Day)	%	105	85-115	Pass	
Chromium (hexavalent)	%	119	70-130	Pass	
Cyanide (total)	%	92	70-130	Pass	
Nitrate & Nitrite (as N)	%	124	70-130	Pass	
Nitrite (as N)	%	100	70-130	Pass	
Phenolics (total)	%	98	70-130	Pass	

Report Number: 1042675-W

Tes	t		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Phosphorus reactive (as P)			%	98	70-130	Pass	
Sulphate (as SO4)			%	115	70-130	Pass	
Total Kjeldahl Nitrogen (as N)			%	76	70-130	Pass	
Phosphate total (as P)			%	99	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbor	ns			Result 1			
TRH C10-C14	M23-No0021514	NCP	%	116	70-130	Pass	
TRH >C10-C16	M23-No0021514	NCP	%	128	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
Chlordanes - Total	M23-No0021430	NCP	%	91	70-130	Pass	
4.4'-DDD	M23-No0021430	NCP	%	83	70-130	Pass	
4.4'-DDE	M23-No0021430	NCP	%	112	70-130	Pass	
4.4'-DDT	M23-No0021430	NCP	%	106	70-130	Pass	
a-HCH	M23-No0021430	NCP	%	119	70-130	Pass	
Aldrin	M23-No0021430	NCP	%	108	70-130	Pass	
b-HCH	M23-No0021430	NCP	%	85	70-130	Pass	
d-HCH	M23-No0021430	NCP	%	84	70-130	Pass	
Dieldrin	M23-No0021430	NCP	%	81	70-130	Pass	
Endosulfan I	M23-No0021430	NCP	%	82	70-130	Pass	
Endosulfan II	M23-No0021430	NCP	%	116	70-130	Pass	
Endosulfan sulphate	M23-No0021430	NCP	%	84	70-130	Pass	
Endrin	M23-No0021430	NCP	%	103	70-130	Pass	
Endrin aldehyde	M23-No0021430	NCP	%	95	70-130	Pass	
Endrin ketone	M23-No0021430	NCP	%	108	70-130	Pass	
g-HCH (Lindane)	M23-No0021430	NCP	%	85	70-130	Pass	
Heptachlor	M23-No0021430	NCP	%	110	70-130	Pass	
Heptachlor epoxide	M23-No0021430	NCP	%	91	70-130	Pass	
Hexachlorobenzene	M23-No0021430	NCP	%	119	70-130	Pass	
Methoxychlor	M23-No0021430	NCP	%	112	70-130	Pass	
Spike - % Recovery				Result 1			
Chromium (hexavalent)	M23-No0021425	NCP	%	102	70-130	Pass	
Phenolics (total)	M23-No0022290	NCP	%	127	70-130	Pass	
Total Kjeldahl Nitrogen (as N)	M23-No0021434	NCP	%	73	70-130	Pass	
Phosphate total (as P)	M23-No0021434	NCP	%	112	70-130	Pass	
Spike - % Recovery			,,,		1 10 100	1 400	
Heavy Metals				Result 1			
Arsenic (filtered)	M23-No0026735	NCP	%	106	75-125	Pass	
Beryllium (filtered)	M23-No0026735	NCP	%	91	75-125	Pass	
Cadmium (filtered)	M23-No0026735	NCP	%	91	75-125	Pass	
Cobalt (filtered)	M23-No0026735	NCP	%	96	75-125	Pass	
Copper (filtered)	M23-No0026735	NCP	%	87	75-125	Pass	
Lead (filtered)	M23-No0026735	NCP	%	83	75-125	Pass	
Manganese (filtered)	M23-No0026735	NCP	%	102	75-125	Pass	
Mercury (filtered)	M23-No0026735	NCP	%	93	75-125	Pass	
Nickel (filtered)	M23-No0026735	NCP	%	88	75-125	Pass	
Selenium (filtered)	M23-No0026735	NCP	%	96	75-125	Pass	
Zinc (filtered)	M23-No0026735	NCP	%	93	75-125	Pass	

Report Number: 1042675-W

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									550.5
Total Recoverable Hydrocarbon	S			Result 1	Result 2	RPD			
TRH C6-C9	M23-No0023140	NCP	mg/L	0.04	0.04	7.5	30%	Pass	
TRH C10-C14	M23-No0021422	СР	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	M23-No0021422	СР	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	M23-No0021422	СР	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C6-C10	M23-No0023140	NCP	mg/L	0.04	0.04	7.5	30%	Pass	
TRH >C10-C16	M23-No0021422	СР	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	M23-No0021422	СР	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	M23-No0021422	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate		-							
BTEX				Result 1	Result 2	RPD			
Benzene	M23-No0023140	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	M23-No0023140	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	M23-No0023140	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	M23-No0023140	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	M23-No0023140	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Xylenes - Total*	M23-No0023140	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate	10123-1000023140	INCF	IIIg/L	1 < 0.003	<u> </u>		30 /6	rass	
•	2012 NEDM Front	ione		Popult 1	Popult 2	DDD	1		
Total Recoverable Hydrocarbon			/1	Result 1	Result 2	RPD	200/	Dana	
Naphthalene	M23-No0023140	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate				D 11.4	D # 0	DDD	1		
Organochlorine Pesticides				Result 1	Result 2	RPD		_	
Chlordanes - Total	M23-No0021422	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
4.4'-DDD	M23-No0021422	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDE	M23-No0021422	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDT	M23-No0021422	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
a-HCH	M23-No0021422	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Aldrin	M23-No0021422	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
b-HCH	M23-No0021422	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
d-HCH	M23-No0021422	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Dieldrin	M23-No0021422	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan I	M23-No0021422	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan II	M23-No0021422	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan sulphate	M23-No0021422	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin	M23-No0021422	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin aldehyde	M23-No0021422	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin ketone	M23-No0021422	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
g-HCH (Lindane)	M23-No0021422	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor	M23-No0021422	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor epoxide	M23-No0021422	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Hexachlorobenzene	M23-No0021422	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Methoxychlor	M23-No0021422	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Toxaphene	M23-No0021422	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Ammonia (as N)	M23-No0021433	NCP	mg/L	0.38	0.35	10	30%	Pass	
Biochemical Oxygen Demand (BOD-5 Day)	M23-No0022098	NCP	mg/L	67	67	<1	30%	Pass	
Chromium (hexavalent)	M23-No0024176	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Cyanide (total)	M23-No0024262	NCP	mg/L	0.005	< 0.005	14	30%	Pass	
Nitrate & Nitrite (as N)	M23-No0021433	NCP	mg/L	18	18	<1	30%	Pass	
Nitrite (as N)	M23-No0021433	NCP	mg/L	0.71	0.68	4.1	30%	Pass	
			⊖, ⊏		5.55	1.1		. 455	
Phenolics (total)	M23-No0021422	СР	mg/L	< 0.05	< 0.05	<1	30%	Pass	

Date Reported: Nov 20, 2023

Environment Testing

Duplicate									
•				Result 1	Result 2	RPD			
Sulphide (as S)	M23-No0021430	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Sulphite (as S)	M23-No0021422	CP	mg/L	< 1	< 1	<1	30%	Pass	
Total Kjeldahl Nitrogen (as N)	M23-No0028084	NCP	mg/L	0.7	0.6	18	30%	Pass	
Phosphate total (as P)	M23-No0023308	NCP	mg/L	0.13	0.11	15	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	M23-No0026735	NCP	mg/L	0.002	0.002	9.6	30%	Pass	
Beryllium (filtered)	M23-No0026735	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Boron (filtered)	M23-No0026735	NCP	mg/L	< 0.5	< 0.5	<1	30%	Pass	
Cadmium (filtered)	M23-No0026735	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Cobalt (filtered)	M23-No0026735	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	M23-No0026735	NCP	mg/L	0.007	0.007	7.3	30%	Pass	
Lead (filtered)	M23-No0026735	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese (filtered)	M23-No0026735	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Mercury (filtered)	M23-No0026735	NCP	mg/L	0.0002	0.0002	4.0	30%	Pass	
Nickel (filtered)	M23-No0026735	NCP	mg/L	0.019	0.018	4.0	30%	Pass	
Selenium (filtered)	M23-No0026735	NCP	mg/L	0.009	0.010	7.1	30%	Pass	
Zinc (filtered)	M23-No0026735	NCP	mg/L	0.017	0.016	5.7	30%	Pass	

Page 10 of 11

Report Number: 1042675-W

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Authorised by:

N02

Amy Meunier Analytical Services Manager Caitlin Breeze Senior Analyst-Inorganic Edward Lee Senior Analyst-Organic Emily Rosenberg Senior Analyst-Metal Joseph Edouard Senior Analyst-Organic Joseph Edouard Senior Analyst-Volatile Mary Makarios Senior Analyst-Inorganic Mary Makarios Senior Analyst-Metal

Glenn Jackson **Managing Director**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 1042675-W

Tyrone Gowans

From:

Amy Meunier

Sent:

Thursday, 16 November 2023 5:43 PM

To:

Tess O Leary

Cc:

#AU_CAU001_EnviroSampleVic

Subject:

RE: Additional Analysis - 1042654 & 1040740

Follow Up Flag:

Follow up

Flag Status:

Flagged

Categories:

ADDITIONALS

INFO: INTERNAL EMAIL - Sent from your own Eurofins email domain.

Hi Tess,

No worries, we will get this organised.

Tyrone- 3 day TAT below thanks.

Kind regards,

Amy Meunier

Analytical Services Manager

Mobile: +61 477 574 867

Email : AmyMeunier@eurofins.com

Eurofins

6 Monterey Road, Dandenong VIC 3175

Australia

My office hours are 9am to 5:30pm (Monday to Friday) If you require sample receipt outside these hours please email envirosamplevic@eurofins.com

From: Tess O Leary <tess.oleary@lbwco.com.au> Sent: Thursday, 16 November 2023 5:38 PM To: Amy Meunier < Amy Meunier @eurofins.com> Subject: Additional Analysis - 1042654 & 1040740

CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins. Do not click on links or open attachments unless you recognise the sender and are certain that the content is safe.

J'ally Jakos

Hi Amy

E Ta

Could we please order silica gel clean up analysis on the following samples:

- 1040740
 - o SLMW03-Q1
- 1042654
 - o SW03
 - o SW04
 - o SW07

On three-day turnaround please.

Thanks

Tess

Tess O'Leary

Senior Environmental Advisor | Team Leader

The last 15 years wouldn't have been possible without our fabulous team, our valued clients, our trusted suppliers, and our support network. We wouldn't be LBWco without you all - thank you!

08 8331 2417 0405 480 106 www.lbwco.com.au

LBW co Pty Ltd 184 Magill Road Norwood SA 5069

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: TESS O'LEARY

Report 1044954-W

Project name RIVERLEA SALTWATER LAKES DEWATERING ASSESSMENT

Project ID 231445-01

Received Date Nov 16, 2023

Client Sample ID			SLMW03-Q1	SW03	SW04	SW07
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M23- No0039863	M23- No0039864	M23- No0039865	M23- No0039866
Date Sampled			Nov 01, 2023	Nov 07, 2023	Nov 07, 2023	Nov 07, 2023
Test/Reference	LOR	Unit				
TRH - 2013 NEPM Fractions (after silica gel clean-	ıp)					
TRH >C10-C16 (after silica gel clean-up)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34 (after silica gel clean-up)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C34-C40 (after silica gel clean-up)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total) (after silica-gel clean up)*	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH - 1999 NEPM Fractions (after silica gel clean-	ıp)					
TRH C10-C14 (after silica gel clean-up)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28 (after silica gel clean-up)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C36 (after silica gel clean-up)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total) (after silica gel clean-up)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
TRH - 2013 NEPM Fractions (after silica gel clean-up)	Melbourne	Nov 16, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
TRH - 1999 NEPM Fractions (after silica gel clean-up)	Melbourne	Nov 16, 2023	7 Days
- Method: TRH C6-C36 (Silica Gel Cleanup) - MGT 100A			

Report Number: 1044954-W

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 179 Magowar Road Girraween NSW 2145

NATA# 1261

Site# 18217

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289 Site# 20794

Received:

Due:

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Nov 16, 2023 5:43 PM

Company Name:

LBW co Pty Ltd 184 Magill Road

Norwood

SA 5069

Order No.:

TRH (after Silica Gel cleanup)

Canberra

Mitchell

ACT 2911

NATA# 1261

Site# 25466

Fax:

Report #: Phone:

1044954 08 8331 2417 08 8331 2415

Priority:

Nov 22, 2023

3 Day

TESS O'LEARY **Contact Name:**

Project Name:

RIVERLEA SALTWATER LAKES DEWATERING ASSESSMENT

Project ID:

Address:

231445-01

Eurofins Analytical Services Manager: Amy Meunier

Sample Detail

Melb	ourne Laborato	ory - NATA # 12	61 Site # 12	54		Х
Exte	rnal Laboratory	1				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID	
1	SLMW03-Q1	Nov 01, 2023		Water	M23-No0039863	Χ
2	SW03	Nov 07, 2023		Water	M23-No0039864	Х
3	SW04	Nov 07, 2023		Water	M23-No0039865	Х
4	SW07	Nov 07, 2023		Water	M23-No0039866	Х
Test	Counts					4

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil/sediment/solid results are reported on a dry weight basis unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion unless otherwise stated.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- 5. Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling; therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is 7 days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre μg/L: micrograms per litre

ppm: parts per million ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA WA DWER

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30%; however the following acceptance guidelines are equally

applicable: Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries above the QC limit designated in QSM 5.4, where no positive PFAS results have been reported, have been reviewed, and no data was affected

QC Data General Comments

- Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
TRH - 2013 NEPM Fractions (after	silica gel clean-up)							
TRH >C10-C16 (after silica gel clea	n-up)		mg/L	< 0.05			0.05	Pass	
TRH >C16-C34 (after silica gel clea	n-up)		mg/L	< 0.1			0.1	Pass	
TRH >C34-C40 (after silica gel clea	n-up)		mg/L	< 0.1			0.1	Pass	
Method Blank					1 1				
TRH - 1999 NEPM Fractions (after	silica gel clean-up)							
TRH C10-C14 (after silica gel clean	-up)		mg/L	< 0.05			0.05	Pass	
TRH C15-C28 (after silica gel clean	-up)		mg/L	< 0.1			0.1	Pass	
TRH C29-C36 (after silica gel clean	-up)		mg/L	< 0.1			0.1	Pass	
LCS - % Recovery				T	1 1			Γ	
TRH - 2013 NEPM Fractions (after)							
TRH >C10-C16 (after silica gel clea	n-up)		%	123			70-130	Pass	
LCS - % Recovery				l	1 1		T		
TRH - 1999 NEPM Fractions (after)		100				_	
TRH C10-C14 (after silica gel clean	-up)		%	130			70-130	Pass	0 117 1
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1	1				
TRH - 2013 NEPM Fractions (after	silica gel clean-up)		Result 1					
TRH >C10-C16 (after silica gel clean-up)	M23-No0030695	NCP	%	76			70-130	Pass	
Spike - % Recovery									
TRH - 1999 NEPM Fractions (after	silica gel clean-up)		Result 1					
TRH C10-C14 (after silica gel clean-up)	M23-No0030695	NCP	%	79			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
TRH - 2013 NEPM Fractions (after	silica gel clean-up)		Result 1	Result 2	RPD			
TRH >C10-C16 (after silica gel clean-up)	M23-No0029367	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34 (after silica gel clean-up)	M23-No0029367	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40 (after silica gel clean-up)	M23-No0029367	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
TRH - 1999 NEPM Fractions (after	silica gel clean-up)		Result 1	Result 2	RPD			
TRH C10-C14 (after silica gel clean-up)	M23-No0029367	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28 (after silica gel clean-up)	M23-No0029367	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36 (after silica gel clean-up)	M23-No0029367	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C10-C36 (Total) (after silica gel clean-up)	M23-No0029367	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Authorised by:

Amy Meunier Analytical Services Manager
Edward Lee Senior Analyst-Organic

Glenn Jackson Managing Director

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 1044954-W

Hold (as SO3) Matrix Date Sulphide (as SO3) Matrix Beraul (as SO3) Matrix Date Sulphide (as SO3) Matrix Date Sulphide (as SO3)	Cyanide (tot Cyanide (tot Cyanide (tot Cyanide (as Sulphite (as Sulphi	Company Project ID Project Name SDG/COC # Request / Version	LBWco 231445-01 Riverlea Saltwater L Assessment 2023-11-07-Eurofir n 1/1	J	Laboratory Destination Lab Lab Quote No Lab Contact			Repor Primal Contact (000) Second Contact	y t dary	result Tess (co Laboratory ts@lbwco.co O'Leary oleary@lbwco	m.au	P O B	illing urchase Order # org to be Billed ill To ttention	LBWo finan	
6628-23298 Water 07/11/2023 02:56PM / / / / / / / / / / / / / / / / / / /	6628-23298 Water 07/11/2023 02:56PM / / / / / / / / / / / / / / / / / / /	SPECIAL INSTRUC Sampled by: Ga	ETIONS: - ETANO GARFI	DATE	Biochemical Oxygen Demand (BOD-5 Day)	anide	Suite TKN, I 3, NH Reactif Suite	Organochlorine Pesticides	(at 25		henolics (total)	(as	(as	(as	qop	COMMENTS
		6628-2329	98 Water	07/11/2023 02:50	6PM √	✓	√ √	✓		✓ .	✓	✓	√	4		***************************************

20/11/27 55 # 1045817 20/11/27

TURNAROUND REQUEST SPECIAL INSTRUCTIONS SAMPLED BY: GAETANO	s: -		al Dissolved ds Dried at 180 : 2 °C	Suspended Is Dried at 103 105°C					COMMENTS
FIELD ID	MATRIX	DATE	Total Solid °C ±	Tota Solic °C to				HOLD	
6628-23298	Water	07/11/2023 02:56PM	✓	√				_	

Hand Over			Relinquished	Received	Relinquished	Received	e-Request Sent
# of Delivery Boxes 1 Signature						Name -	
Cooled	no	Name	Tess O'Leary				
Con Note	_	Org	-				Org -
		Date	07/11/2023 02:52PM				Date -

#1045817 20/11/23 35

١,,

Tyrone Gowans

Tess O Leary <tess.oleary@lbwco.com.au>

Monday, 20 November 2023 6:40 PM

Sent: From:

증 Amy Meunier; #AU_CAU001_EnviroSampleVic

Subject: RE: Eurofins Test Results, Invoice - Report 1044954 : Site RIVERLEA SALTWATER LAKES

DEWATERING ASSESSMENT (231445-01)

231445-01_LTO_231108_GW.pdf

Importance: High Attachments:

Do not click on links or open attachments unless you recognise the sender and are certain that the CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins.

content is safe.

Hi Amy

Sorry to do this again, but it looks like the additional metals weren't included with these results?

and therefore not analysed. Do you still have enough of the sample to complete this? If so, could we please get that data ASAP? Also, the TDS and TSS analysis that was on the second page of the testing order has been missed off the SRA

Thanks

Tess O'Leary

Senior Environmental Advisor | Team Leader

From: AmyMeunier@eurofins.com < AmyMeunier@eurofins.com >

#1045 817 118 SAOIT

Sent: Monday, November 20, 2023 3:46 PM

To: Tess O Leary <tess.oleary@lbwco.com.au>

Cc: Results < results@lbwco.com.au>; lbwco@esdat.com.au

Subject: Eurofins Test Results, Invoice - Report 1044954 : Site RIVERLEA SALTWATER LAKES DEWATERING ASSESSMENT

(231445-01)

Please find attached results for your project in the subject header.

Kind regards,

Amy Meunier

Analytical Services Manager

Mobile: +61 477 574 867

Eurofins Environment Testing 6 Monterey Rd

Dandenong South VIC 3175 AUSTRALIA

Email: AmyMeunier@eurofins.com
Website: www.eurofins.com.au/environmental-testing
View our latest EnviroNotes

#1045 817

2

LBW co Pty Ltd 184 Magill Road Norwood SA 5069

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: TESS O'LEARY

Report 1045817-W

Project name RIVERLEA SALTWATER LAKES DEWATERING ASSESSMENT

Project ID 231445-01

Received Date Nov 20, 2023

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	6628-23298 Water M23- N00048029 Nov 07, 2023
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	4500
Total Suspended Solids Dried at 103 °C to 105 °C	5	mg/L	130

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Dissolved Solids Dried at 180 °C ± 2 °C	Melbourne	Nov 21, 2023	28 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			
Total Suspended Solids Dried at 103 °C to 105 °C	Melbourne	Nov 21, 2023	7 Days

Report Number: 1045817-W

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 179 Magowar Road Girraween NSW 2145 NATA# 1261

Site# 18217

Canberra Mitchell ACT 2911

Phone:

Fax:

NATA# 1261

Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289

08 8331 2417

08 8331 2415

Site# 20794

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Company Name:

Address:

LBW co Pty Ltd

184 Magill Road

Norwood

SA 5069

RIVERLEA SALTWATER LAKES DEWATERING ASSESSMENT

Project Name: Project ID:

231445-01

Site# 2370 Received: Order No.: Nov 20, 2023 5:29 PM Report #: 1045817

Perth

Welshpool

WA 6106

NATA# 2377

Due: Nov 21, 2023 **Priority:** 1 Day

TESS O'LEARY **Contact Name:**

Eurofins Analytical Services Manager: Amy Meunier

		Sa	mple Detail			Total Suspended Solids Dried at 103 °C to 105 °C	Total Dissolved Solids Dried at 180 °C ± 2 °C
Melb	ourne Laborato	ry - NATA # 12	61 Site # 12	54		Х	Х
Exte	rnal Laboratory						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	6628-23298	Nov 07, 2023		Water	M23-No0048029	Х	Х
Test	Counts					1	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil/sediment/solid results are reported on a dry weight basis unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion unless otherwise stated.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- 5. Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling; therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is 7 days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre μg/L: micrograms per litre

ppm: parts per million ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA WA DWER

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30%; however the following acceptance guidelines are equally

applicable: Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries above the QC limit designated in QSM 5.4, where no positive PFAS results have been reported, have been reviewed, and no data was affected

QC Data General Comments

- Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Authorised by:

Amy Meunier Analytical Services Manager
Mary Makarios Senior Analyst-Inorganic

Glenn Jackson Managing Director

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 1045817-W

FS/052736 8112113

184 Magill Road, Norwood SA 5067 PO Box 225 Stepney SA 5069 P: 08 8331 2417 F: 08 8331 2415

> E: admin@lbwco.com.au ABN: 58 126 992 274

LABORATORY TESTING ORDER

721	8 1	<u> </u>	7	Т										
C. Cardina	08-Dec-23	O'Leary	quested by:	LBW co AUI	06-Dec-23	Date Sampled			- -	Results fo:	Phone: (Email:	Project ID:	Job Number/ 231445-01
	į			LBW CO AUTHORISATION	EX10	SAMPLE SAMPLE ID		231445-01	IRW co's COC REFERENCE (comple delivery group)	Results to: results@bwco.com.au bwco@esdat.com.au bwolce to: Imance@lbwco.com.au	Phone: 08 8331 2417	Email: less pled @lbwco.com au	less O'legry	ribject lille : Riveried sallwoter Lakes Dewatering bob Number/ 231445-01
Signature:		Date \time received:	Received by:	LAB	water	SAMPLE DETAILS Sample Matrix		231445-01_COC_20231207		bwco@esdat		3		2 Dewoleiling
	•			LABORATORY RECEIPT		Additional Information /)7	- Brown amount	.com.au) (4)	
			1	-†	× IDS									
				-†	× M13				7	<u> </u>	Sec		<u> </u>	
				-[× B19E					borato	ondar		boralo	Primar
				-	× Additional Metals - Al, !	Ba, Cr (Total), Fe, Ag, Sn				Laboratory Quote Ref: Lab Quote Reference	Secondary Laboratory: Laboratory	4	Laboratory Quate Reft Price Rook 2023	Primary Laboratory: Eurofins
				0		CHE			_	e Re	ratory:	_	20	ratory:
			ddillor	0		AICALT		Stan	The state of the s	Lab Q	Laborat	2	Price R	Eurofins
			Additional Comments	0		CHEMICAL TESTING REQUIRED		Standard 5 Day	Tumaround Required	uote R	γ	0	2	
			nmen	0		REQ		Day	a li	eferer		ŝ	ર્ડ ડ	
			<u>~</u>	-		JIRED			1	l Ce				
				0										
				5										
				•										
			ı	0	HOLD		_		===	50		- 52		

Tyrone Gowans

From: Sent:

To: Subject:

Attachments:

51051236 811423

Tess O Leary <tess.oleary@lbwco.com.au> Friday, 8 December 2023 12:03 PM

Amy Meunier; #AU_CAU001_EnviroSampleVic

Testing Order for Water Sample 231445-01_LTO_20231208.pdf

content is safe. Do not click on links or open attachments unless you recognise the sender and are certain that the CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins.

Hi Amy

Please see attached testing order for the water sample we sent off yesterday.

Let me know if you have any questions.

Thanks

Tess

Tess O'Leary

Senior Environmental Advisor | Team Leader

The LBWco leam wish you and your family a happy, relaxing, and sale festive season. Thank you for sharing 2023 with usl

Our office will be closed from 22 December 2023 until 8 January 2024.

SAMPLE REGISTER & CHAIN OF CUSTODY

Project Title: 231445-01

Job Number:

Project manager: Tess O'Leavy
Email: Tess o'Leavy (buco.com.au
Phone: 8331 2417
Send results to: results@lbwco.com.au, lbwco@esdat.com
Send invoice to: finance@lbwco.com.au

Secondary lab:

Primary Lab: Lab Quote Ref: Eurofins

COC Reference: 231445-01_00C-20231207

										EX10	Sample Details 1
											Sample Details 2
Signature:	Date/Time Received:	Courier and consignment number:	Signature:	Date/Time Relinquished:	Relingished by:	Signature: 15.6°C 05.11	Date/Time Received:	Courier and consignment number: puccup Received by:	Signature:	Date/Time Relinquished: 7/12/23	Relingished by:

Page_

앜

LBW co Pty Ltd 184 Magill Road Norwood SA 5069

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: TESS O'LEARY

Report 1052236-W

Project name RIVERSEA SALTWATER LAKES DEWATERING

Project ID 231445-01
Received Date Dec 08, 2023

Client Sample ID			EX10
Sample Matrix			Water
Eurofins Sample No.			M23- De0020088
Date Sampled			Dec 06, 2023
Test/Reference	LOR	Unit	
Ammonia (as N)	0.01	mg/L	0.05
Chromium (hexavalent)	0.005	mg/L	< 0.005
Nitrate & Nitrite (as N)	0.05	mg/L	2.8
Nitrate (as N)	0.02	mg/L	2.8
Nitrite (as N)	0.02	mg/L	< 0.02
Organic Nitrogen (as N)*	0.2	mg/L	1.15
Phosphorus reactive (as P)	0.01	mg/L	< 0.01
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	6000
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	1.2
Total Nitrogen (as N)*	0.2	mg/L	4.0
Phosphate total (as P)	0.01	mg/L	< 0.01
Heavy Metals			
Aluminium (filtered)	0.05	mg/L	< 0.05
Arsenic (filtered)	0.001	mg/L	< 0.001
Barium (filtered)	0.02	mg/L	0.03
Beryllium (filtered)	0.001	mg/L	< 0.001
Boron (filtered)	0.05	mg/L	7.1
Cadmium (filtered)	0.0002	mg/L	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001
Cobalt (filtered)	0.001	mg/L	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001
Iron (filtered)	0.05	mg/L	< 0.05
Lead (filtered)	0.001	mg/L	< 0.001
Manganese (filtered)	0.005	mg/L	0.048
Mercury (filtered)	0.0001	mg/L	< 0.0001
Nickel (filtered)	0.001	mg/L	< 0.001
Selenium (filtered)	0.001	mg/L	0.013
Silver (filtered)	0.005	mg/L	< 0.005
Tin (filtered)	0.005	mg/L	< 0.005
Zinc (filtered)	0.005	mg/L	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P			
Ammonia (as N)	Melbourne	Dec 08, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Nitrate & Nitrite (as N)	Melbourne	Dec 08, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Nitrate (as N)	Melbourne	Dec 08, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Nitrite (as N)	Melbourne	Dec 08, 2023	2 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Organic Nitrogen (as N)*	Melbourne	Dec 08, 2023	7 Days
- Method: APHA 4500 Organic Nitrogen (N)			
Phosphorus reactive (as P)	Melbourne	Dec 08, 2023	2 Days
- Method: APHA 4500-P			
Total Kjeldahl Nitrogen (as N)	Melbourne	Dec 08, 2023	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Chromium (hexavalent)	Melbourne	Dec 08, 2023	28 Days
- Method: LTM-INO-4100 Hexavalent Chromium by Spectrometric detection			
Heavy Metals (filtered)	Melbourne	Dec 08, 2023	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Mobil Metals : Metals M15	Melbourne	Dec 08, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Total Dissolved Solids Dried at 180 °C ± 2 °C	Melbourne	Dec 08, 2023	28 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			
Phosphate total (as P)	Melbourne	Dec 08, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

VIC 3216

NATA# 1261

Site# 25403

+61 3 8564 5000

ABN: 50 005 085 521

Geelong Sydney 19/8 Lewalan Street 179 Magowar Road Grovedale

Girraween Mitchell NSW 2145 ACT 2911 +61 2 9900 8400 +61 2 6113 8091 NATA# 1261 NATA# 1261 Site# 18217 Site# 25466

Canberra

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West QLD 4172 NSW 2304 T: +61 7 3902 4600 +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 20794

1052236

08 8331 2417

08 8331 2415

Order No.:

Report #:

Phone:

Fax:

WA 6106 Site# 25079 & 25289 Site# 2370

Perth 46-48 Banksia Road Welshpool +61 8 6253 4444 NATA# 2377

ABN: 91 05 0159 898

Auckland Auckland (Asb) 35 O'Rorke Road Unit C1/4 Pacific Rise. 43 Detroit Drive Penrose, Mount Wellington, Auckland 1061 Auckland 1061 +64 9 526 4551 +64 9 525 0568 IANZ# 1327 IANZ# 1308

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd

NZBN: 9429046024954

Christchurch Rolleston, +64 3 343 5201 IANZ# 1290 IANZ# 1402

Tauranga 1277 Cameron Road. Gate Pa, Christchurch 7675 Tauranga 3112 +64 9 525 0568

Company Name:

Address:

Project ID:

web: www.eurofins.com.au

Site# 1254 LBW co Pty Ltd

Melbourne

VIC 3175

NATA# 1261

6 Monterey Road

+61 3 8564 5000

Dandenong South

Norwood

SA 5069

Project Name:

184 Magill Road

RIVERSEA SALTWATER LAKES DEWATERING

231445-01

Received: Dec 8, 2023 12:03 PM

Due: Dec 15, 2023

Priority: 5 Day

TESS O'LEARY **Contact Name:**

Eurofins Analytical Services Manager: Amy Meunier

		Sa	mple Detail			Aluminium (filtered)	Barium (filtered)	Chromium (filtered)	Iron (filtered)	Phosphate total (as P)	Silver (filtered)	Tin (filtered)	NEPM 2013 Metals : Metals M13 filtered	Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P	Total Dissolved Solids Dried at 180 °C ± 2 °C
Melb	ourne Laborato	ory - NATA # 12	61 Site # 12	54		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Exte	rnal Laboratory														
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	EX10	Dec 06, 2023		Water	M23-De0020088	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х
Test	Counts					1	1	1	1	1	1	1	1	1	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil/sediment/solid results are reported on a dry weight basis unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion unless otherwise stated.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling; therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is 7 days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ppm: parts per million μg/L: micrograms per litre ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Colour: Pt-Co Units CFU: Colony forming unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

The addition of a similar compound to the analyte target is reported as percentage recovery. See below for acceptance criteria Surr - Surrogate

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however, free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA WA DWER

QC - Acceptance Criteria

The acceptance criteria should only be used as a guide and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is ≤30%; however, the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%, VOC recoveries 70 - 130%

PFAS field samples containing surrogate recoveries above the QC limit designated in QSM 5.4, where no positive PFAS results have been reported or reviewed, and no data was affected.

QC Data General Comments

- 1. Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
Chromium (hexavalent)	mg/L	< 0.005	0.005	Pass	
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Nitrate (as N)	mg/L	< 0.02	0.02	Pass	
Nitrite (as N)	mg/L	< 0.02	0.02	Pass	
Phosphorus reactive (as P)	mg/L	< 0.01	0.01	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	mg/L	< 10	10	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Phosphate total (as P)	mg/L	< 0.01	0.01	Pass	
Method Blank					
Heavy Metals					
Aluminium (filtered)	mg/L	< 0.05	0.05	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Barium (filtered)	mg/L	< 0.02	0.02	Pass	
Beryllium (filtered)	mg/L	< 0.001	0.001	Pass	
Boron (filtered)	mg/L	< 0.05	0.05	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.0002	0.002	Pass	
Cobalt (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)		< 0.001	0.001	Pass	
Iron (filtered)	mg/L	< 0.001	0.001	Pass	
	mg/L				
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Selenium (filtered)	mg/L	< 0.001	0.001	Pass	
Silver (filtered)	mg/L	< 0.005	0.005	Pass	
Tin (filtered)	mg/L	< 0.005	0.005	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery	T	1		_	
Ammonia (as N)	%	103	70-130	Pass	
Chromium (hexavalent)	%	110	70-130	Pass	
Nitrate & Nitrite (as N)	%	106	70-130	Pass	
Nitrite (as N)	%	98	70-130	Pass	
Phosphorus reactive (as P)	%	111	70-130	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	%	93	70-130	Pass	
Total Kjeldahl Nitrogen (as N)	%	108	70-130	Pass	
Phosphate total (as P)	%	100	70-130	Pass	
LCS - % Recovery		, , ,			
Heavy Metals					
Aluminium (filtered)	%	119	80-120	Pass	
Arsenic (filtered)	%	105	80-120	Pass	
Boron (filtered)	%	110	80-120	Pass	
Cadmium (filtered)	%	105	80-120	Pass	
Chromium (filtered)	%	107	80-120	Pass	
Cobalt (filtered)	%	105	80-120	Pass	
Copper (filtered)	%	100	80-120	Pass	
Iron (filtered)	%	108	80-120	Pass	
Lead (filtered)	%	98	80-120	Pass	
Manganese (filtered)	%	112	80-120	Pass	
Mercury (filtered)	%	86	80-120	Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Nickel (filtered)			%	102			80-120	Pass	
Selenium (filtered)			%	94			80-120	Pass	
Silver (filtered)			%	101			80-120	Pass	
Tin (filtered)			%	114			80-120	Pass	
Zinc (filtered)			%	105			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Nitrate & Nitrite (as N)	M23-De0021381	NCP	%	113			70-130	Pass	
Nitrite (as N)	M23-De0021381	NCP	%	106			70-130	Pass	
Total Kjeldahl Nitrogen (as N)	M23-De0018918	NCP	%	95			70-130	Pass	
Phosphate total (as P)	B23-De0020196	NCP	%	102			70-130	Pass	
Spike - % Recovery									
Heavy Metals	I	1		Result 1					
Aluminium (filtered)	M23-De0019585	NCP	%	101			75-125	Pass	
Arsenic (filtered)	M23-De0019585	NCP	%	96			75-125	Pass	
Barium (filtered)	M23-De0019585	NCP	%	92			75-125	Pass	
Beryllium (filtered)	M23-De0019585	NCP	%	84			75-125	Pass	
Cadmium (filtered)	M23-De0019585	NCP	%	92			75-125	Pass	
Chromium (filtered)	M23-De0019585	NCP	%	99			75-125	Pass	
Cobalt (filtered)	M23-De0019585	NCP	%	92			75-125	Pass	
Copper (filtered)	M23-De0019585	NCP	%	87			75-125	Pass	
Iron (filtered)	M23-De0019585	NCP	%	91			75-125	Pass	
Lead (filtered)	M23-De0019585	NCP	%	79			75-125	Pass	
Manganese (filtered)	M23-De0019585	NCP	%	98			75-125	Pass	
Mercury (filtered)	M23-De0019585	NCP	%	62			75-125	Fail	Q08
Nickel (filtered)	M23-De0019585	NCP	%	89			75-125	Pass	
Selenium (filtered)	M23-De0019585	NCP	%	87			75-125	Pass	
Silver (filtered)	M23-De0019585	NCP	%	83			75-125	Pass	
Tin (filtered)	M23-De0019585	NCP	%	95			75-125	Pass	
Zinc (filtered)	M23-De0019585	NCP	%	115			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				T	ı		T		
	I	1		Result 1	Result 2	RPD			
Ammonia (as N)	M23-De0020939	NCP	mg/L	0.02	0.02	19	30%	Pass	
Chromium (hexavalent)	M23-De0015133	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Nitrate & Nitrite (as N)	M23-De0020939	NCP	mg/L	0.34	0.34	<1	30%	Pass	
Nitrite (as N)	M23-De0020939	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	M23-De0015137	NCP	mg/L	3900	3800	2.9	30%	Pass	
Total Kjeldahl Nitrogen (as N)	M23-De0018922	NCP	mg/L	11	11	<1	30%	Pass	
Phosphate total (as P)	M23-De0016345	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate	11120 2000 100 10	110.	mg/ E	1 0.01	V 0.01	` ' '	0070	1 400	
Heavy Metals				Result 1	Result 2	RPD			
Aluminium (filtered)	M23-De0019585	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Arsenic (filtered)	M23-De0019585	NCP	mg/L	0.004	0.004	3.8	30%	Pass	
Barium (filtered)	M23-De0019585	NCP	mg/L	0.10	0.10	<1	30%	Pass	
Beryllium (filtered)	M23-De0019585	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	M23-De0019585	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	M23-De0019585	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt (filtered)	M23-De0019585	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	M23-De0019585	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
									i .

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead (filtered)	M23-De0019585	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese (filtered)	M23-De0019585	NCP	mg/L	0.008	0.008	1.4	30%	Pass	
Mercury (filtered)	M23-De0019585	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	M23-De0019585	NCP	mg/L	0.005	0.005	<1	30%	Pass	
Selenium (filtered)	M23-De0019585	NCP	mg/L	0.002	0.002	8.3	30%	Pass	
Silver (filtered)	M23-De0019585	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Tin (filtered)	M23-De0019585	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc (filtered)	M23-De0019585	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Report Number: 1052236-W

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference. Q08

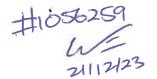
Authorised by:

Harry Bacalis Analytical Services Manager Emily Rosenberg Senior Analyst-Metal Mary Makarios Senior Analyst-Inorganic Mary Makarios Senior Analyst-Metal

Glenn Jackson **Managing Director**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service


Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 1052236-W

184 Magill Road, Norwood SA 5067 PO Box 225 Stepney SA 5069 P: 08 8331 2417 F: 08 8331 2415

E: admin@lbwco.com.au ABN: 58 126 992 274

LABORATORY TESTING ORDER

Project Title :	Rivertea Saltwater Lakes Dewatering	/
b Number/ Project ID :	231445-01	Primary Laboratory: Eurofins
Project Manager:	Tess O'Leary	Laboratory Quote Ref: Price Book 2023
Email:	tess.oleary@lbwco.com.au	
Phone:	08 8331 2417	Secondary Laboratory:
Results to:	results@lbwco.com.au, !bwco@esdat.com.au	Laboratory Quote Ref:
Invoice to:	finance@lbwco,com.au	
	LBW co's COC REFERENCE (sample delivery group)	Turnaround Required
	231445-01_LTO_20231219 °*	Standard 5 Day

	SAMPLE	DETAILS						CHE	VICAL	TESTING	REQU	IRED				
Date Sampled	Sample ID	Sample Matrix	Additional Information / Comments	sqi	M13	B19E	Additional Metals - Al, Ba, Cr (Total), Fe, Ag, Sn									дтон
15-Dec-23	EX12	Water		Х	Х	Х	Х									
19-Dec-23	EX13	Water		х	х	x	х									
																,
										1						
LBW co A	UTHORISATION		BORATORY RECEIPT	2	2	2	2	0	0	0	0	0	0	0	0	-
equested by: Creber		Received by:	in young						Additio	nal Ca		ts 19 V	1 7	e E	3	
ate\time requested: 9-Dec-23	1	20/12	/23									im	u			
ignature:	eber	Signature:	•	10.10							4	0	11	2,1	0	

LBW co Pty Ltd 184 Magill Road Norwood SA 5069

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: TESS O'LEARY

Report 1056259-W

Project name RIVERLEA SALTWATER LAKES DEWATERING

Project ID 231445-01
Received Date Dec 20, 2023

Client Sample ID			EX12	EX13
Sample Matrix			Water	Water
· Eurofins Sample No.			M23- De0051351	M23- De0051352
Date Sampled			Dec 15, 2023	Dec 19, 2023
Test/Reference	LOR	Unit		200 10, 2020
Test/Reletefice	LOR	Offic		
Ammonia (as N)	0.01	mg/L	< 0.01	< 0.01
Chromium (hexavalent)	0.005	mg/L	< 0.005	< 0.005
Nitrate & Nitrite (as N)	0.05	mg/L	2.3	19
Nitrate (as N)	0.02	mg/L	2.3	19
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02
Organic Nitrogen (as N)*	0.2	mg/L	0.6	1.1
Phosphorus reactive (as P)	0.01	mg/L	< 0.01	0.02
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	8100	4700
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.6	1.1
Total Nitrogen (as N)*	0.2	mg/L	2.9	20
Phosphate total (as P)	0.01	mg/L	< 0.01	0.02
Heavy Metals				
Aluminium (filtered)	0.05	mg/L	< 0.05	< 0.05
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001
Barium (filtered)	0.02	mg/L	0.02	0.03
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001
Boron (filtered)	0.05	mg/L	9.7	4.8
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	0.002	< 0.001
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	< 0.001
Iron (filtered)	0.05	mg/L	< 0.05	< 0.05
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001
Manganese (filtered)	0.005	mg/L	0.007	0.008
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	< 0.001	< 0.001
Selenium (filtered)	0.001	mg/L	0.052	0.037
Silver (filtered)	0.005	mg/L	< 0.005	< 0.005
Tin (filtered)	0.005	mg/L	< 0.005	< 0.005
Zinc (filtered)	0.005	mg/L	0.008	0.008

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P			
Ammonia (as N)	Melbourne	Dec 22, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Nitrate & Nitrite (as N)	Melbourne	Dec 22, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Nitrate (as N)	Melbourne	Dec 22, 2023	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Nitrite (as N)	Melbourne	Dec 22, 2023	2 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Organic Nitrogen (as N)*	Melbourne	Dec 21, 2023	7 Days
- Method: APHA 4500 Organic Nitrogen (N)			
Phosphorus reactive (as P)	Melbourne	Dec 22, 2023	2 Days
- Method: APHA 4500-P			
Total Kjeldahl Nitrogen (as N)	Melbourne	Dec 22, 2023	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Chromium (hexavalent)	Melbourne	Dec 22, 2023	28 Days
- Method: LTM-INO-4100 Hexavalent Chromium by Spectrometric detection			
Heavy Metals (filtered)	Melbourne	Dec 22, 2023	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Mobil Metals : Metals M15	Melbourne	Dec 22, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Total Dissolved Solids Dried at 180 °C ± 2 °C	Melbourne	Dec 22, 2023	28 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			
Phosphate total (as P)	Melbourne	Dec 22, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521 Melbourne

Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3216 +61 3 8564 5000 +61 3 8564 5000 NATA# 1261 NATA# 1261

Sydney 179 Magowar Road Girraween NSW 2145 +61 2 9900 8400 NATA# 1261 Site# 18217

Canberra Mitchell ACT 2911 +61 2 6113 8091 NATA# 1261 Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West QLD 4172 NSW 2304 T: +61 7 3902 4600 +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 20794 Site# 25079 & 25289

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

Auckland Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd

NZBN: 9429046024954

Received:

Auckland (Asb) 35 O'Rorke Road Unit C1/4 Pacific Rise. 43 Detroit Drive Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Christchurch Rolleston, +64 3 343 5201 IANZ# 1290 IANZ# 1402

Dec 20, 2023 12:00 PM

Tauranga 1277 Cameron Road. Gate Pa, Christchurch 7675 Tauranga 3112 +64 9 525 0568

Company Name:

Address:

web: www.eurofins.com.au

LBW co Pty Ltd 184 Magill Road

VIC 3175

Site# 1254

Norwood

SA 5069

Project Name:

RIVERLEA SALTWATER LAKES DEWATERING

Site# 25403

Project ID: 231445-01

Order No.: Report #:

Phone:

1056259 08 8331 2417

08 8331 2415 Fax:

Due: Jan 8, 2024 **Priority:** 10 Day

TESS O'LEARY **Contact Name:**

Eurofins Analytical Services Manager: Amy Meunier

	Sample Detail					Aluminium (filtered)	Barium (filtered)	Chromium (filtered)	Iron (filtered)	Phosphate total (as P)	Silver (filtered)	Tin (filtered)	NEPM 2013 Metals : Metals M13 filtered	Eurofins Suite B19E: Total N, TKN, NOx, NO2, NO3, NH3, Total P, Reactive P	Total Dissolved Solids Dried at 180 °C ± 2 °C
Melb	ourne Laborato	ory - NATA # 12	61 Site # 12	54		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Exte	rnal Laboratory	1													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	EX12	Dec 15, 2023		Water	M23-De0051351	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
2	P. EX13 Dec 19, 2023 Water M23-De005135				M23-De0051352	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х
Test	Counts		2	2	2	2	2	2	2	2	2	2			

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil/sediment/solid results are reported on a dry weight basis unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion unless otherwise stated.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- 5. Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling; therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is 7 days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ppm: parts per million μg/L: micrograms per litre ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Colour: Pt-Co Units CFU: Colony forming unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

The addition of a similar compound to the analyte target is reported as percentage recovery. See below for acceptance criteria Surr - Surrogate

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however, free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA WA DWER

QC - Acceptance Criteria

The acceptance criteria should only be used as a guide and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is ≤30%; however, the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%, VOC recoveries 70 - 130%

PFAS field samples containing surrogate recoveries above the QC limit designated in QSM 5.4, where no positive PFAS results have been reported or reviewed, and no data was affected.

QC Data General Comments

- 1. Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				•	
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Nitrate (as N)	mg/L	< 0.02	0.02	Pass	
Nitrite (as N)	mg/L	< 0.02	0.02	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	mg/L	< 10	10	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Phosphate total (as P)	mg/L	< 0.01	0.01	Pass	
Method Blank					
Heavy Metals					
Aluminium (filtered)	mg/L	< 0.05	0.05	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Barium (filtered)	mg/L	< 0.02	0.02	Pass	
Beryllium (filtered)	mg/L	< 0.001	0.001	Pass	
Boron (filtered)	mg/L	< 0.05	0.05	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Cobalt (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Iron (filtered)	mg/L	< 0.05	0.05	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Selenium (filtered)	mg/L	< 0.001	0.001	Pass	
Silver (filtered)	mg/L	< 0.005	0.005	Pass	
Tin (filtered)	mg/L	< 0.005	0.005	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery	111g/ L	1 0.000	1 0.000	1 400	
Ammonia (as N)	%	106	70-130	Pass	
Chromium (hexavalent)	%	95	70-130	Pass	
Nitrate & Nitrite (as N)	%	109	70-130	Pass	
Nitrite (as N)	%	95	70-130	Pass	
Phosphorus reactive (as P)	%	91	70-130	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	%	89	70-130	Pass	
Total Kjeldahl Nitrogen (as N)	%	94	70-130	Pass	
Phosphate total (as P)	%	99	70-130	Pass	
LCS - % Recovery	70		70 100	1 400	
Heavy Metals				T	
Aluminium (filtered)	%	89	80-120	Pass	
Arsenic (filtered)	%	86	80-120	Pass	
Boron (filtered)	%	95	80-120	Pass	
Cadmium (filtered)	%	85	80-120	Pass	
Chromium (filtered)	%	85	80-120		
Cobalt (filtered)	%	84	80-120	Pass Pass	
Copper (filtered)	%	85	80-120	Pass	
Iron (filtered)	%	90	80-120		
Lead (filtered)	%	83	80-120	Pass	
				Pass	
Manganese (filtered)	%	89	80-120	Pass	
Mercury (filtered)	%	89	80-120	Pass	
Nickel (filtered)	%	85	80-120	Pass	
Selenium (filtered)	%	88	80-120	Pass	

Report Number: 1056259-W

Tesi	t .		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Silver (filtered)			%	84			80-120	Pass	
Tin (filtered)			%	90			80-120	Pass	
Zinc (filtered)			%	91			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1	ı				
				Result 1				_	
Nitrate & Nitrite (as N)	M23-De0048464	NCP	%	97			70-130	Pass	
Nitrite (as N)	M23-De0048464	NCP	%	100			70-130	Pass	
Total Kjeldahl Nitrogen (as N)	B23-De0051482	NCP	%	95			70-130	Pass	
Phosphate total (as P)	B23-De0051126	NCP	%	104			70-130	Pass	
Spike - % Recovery				Docuted.					
Heavy Metals	M00 D 00 47704	NOD	0/	Result 1			75.405	D	
Aluminium (filtered)	M23-De0047764	NCP	%	93			75-125	Pass	
Arsenic (filtered)	M23-De0047764	NCP	%	89			75-125	Pass	
Beryllium (filtered)	M23-De0047764 M23-De0030425	NCP NCP	%	88 58			75-125 75-125	Pass Fail	000
Boron (filtered) Cadmium (filtered)	M23-De0030425	NCP	% %	75			75-125 75-125	Pass	Q08
Chromium (filtered)	M23-De0047764	NCP	%	82			75-125	Pass	
Cobalt (filtered)	M23-De0047764	NCP	%	77			75-125 75-125	Pass	
Copper (filtered)	M23-De0047764	NCP	%	75			75-125	Pass	
Iron (filtered)	M23-De0047764	NCP	%	85			75-125	Pass	
Lead (filtered)	M23-De0047764	NCP	%	68			75-125	Fail	Q08
Manganese (filtered)	M23-De0047764	NCP	%	44			75-125	Fail	Q08
Mercury (filtered)	M23-De0047764	NCP	%	98			75-125	Pass	Q 00
Nickel (filtered)	M23-De0047764	NCP	%	75			75-125	Pass	
Selenium (filtered)	M23-De0047764	NCP	%	86			75-125	Pass	
Silver (filtered)	M23-De0047764	NCP	%	60			75-125	Fail	Q08
Tin (filtered)	M23-De0047764	NCP	%	86			75-125	Pass	200
Zinc (filtered)	M23-De0047764	NCP	%	84			75-125	Pass	
Test	Lab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
	Lab Gample 15	Source	Onits	result 1			Limits	Limits	Code
Duplicate				Result 1	Result 2	RPD			
Ammonia (as N)	M23-De0051351	СР	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Nitrate & Nitrite (as N)	M23-De0051351	CP	mg/L	2.3	2.3	1.2	30%	Pass	
Nitrite (as N)	M23-De0051351	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Total Kjeldahl Nitrogen (as N)	M23-De0051369	NCP	mg/L	2.7	2.7	2.6	30%	Pass	
Phosphate total (as P)	M23-De0051351	СР	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Aluminium (filtered)	M23-De0047764	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Arsenic (filtered)	M23-De0047764	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Barium (filtered)	M23-De0047764	NCP	mg/L	0.43	0.38	12	30%	Pass	
Beryllium (filtered)	M23-De0047764	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Boron (filtered)	M23-De0030425	NCP	mg/L	0.53	0.55	4.3	30%	Pass	
Cadmium (filtered)	M23-De0047764	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	M23-De0047764	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt (filtered)	M23-De0047764	NCP	mg/L	0.006	0.006	14	30%	Pass	
Copper (filtered)	M23-De0047764	NCP	mg/L	0.009	0.007	17	30%	Pass	
Iron (filtered)	M23-De0047764	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Lead (filtered)	M23-De0047764	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese (filtered)	M23-De0047764	NCP	mg/L	0.32	0.28	13	30%	Pass	
Mercury (filtered)	M23-De0047764	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	M23-De0047764	NCP	mg/L	0.010	0.008	16	30%	Pass	

Duplicate											
Heavy Metals	Result 1	Result 2	RPD								
Selenium (filtered)	M23-De0047764	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass			
Silver (filtered)	M23-De0047764	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass			
Tin (filtered)	M23-De0047764	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass			
Zinc (filtered)	M23-De0047764	NCP	mg/L	0.061	0.050	19	30%	Pass			
Duplicate											
				Result 1	Result 2	RPD					
Total Dissolved Solids Dried at 180 °C ± 2 °C	M23-De0051352	СР	mg/L	4700	4400	7.3	30%	Pass			

Report Number: 1056259-W

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference. Q08

Authorised by:

Catherine Wilson Analytical Services Manager Mary Makarios Senior Analyst-Inorganic Mary Makarios Senior Analyst-Metal

Glenn Jackson **Managing Director**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 1056259-W

CERTIFICATE OF ANALYSIS

Work Order : EM2307883

Client : LBW CO PTY LTD

Contact : TESS O'LEARY

Address : 184 MAGILL ROAD

NORWOOD SA, AUSTRALIA 5067

Telephone : ----

Project : 231445-01

Order number : ----

C-O-C number : 231445-01 COC 20230503

Sampler : ---Site : ----

Quote number : ADBQ-001-18 Seconday Work only

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 7

Laboratory : Environmental Division Melbourne

Contact : Kieren Burns

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +61881625130

Date Samples Received : 05-May-2023 10:55

Date Analysis Commenced : 05-May-2023

Issue Date : 12-May-2023 22:23

, ALS. This document shall

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Andrew Lu	VOC Section Supervisor	Melbourne Organics, Springvale, VIC
Arenie Vijayaratnam	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Dilani Fernando	Laboratory Coordinator	Melbourne Inorganics, Springvale, VIC
Eric Chau	Metals Team Leader	Melbourne Inorganics, Springvale, VIC

Page : 2 of 7

Work Order : EM2307883

Client : LBW CO PTY LTD

Project : 231445-01

ALS

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

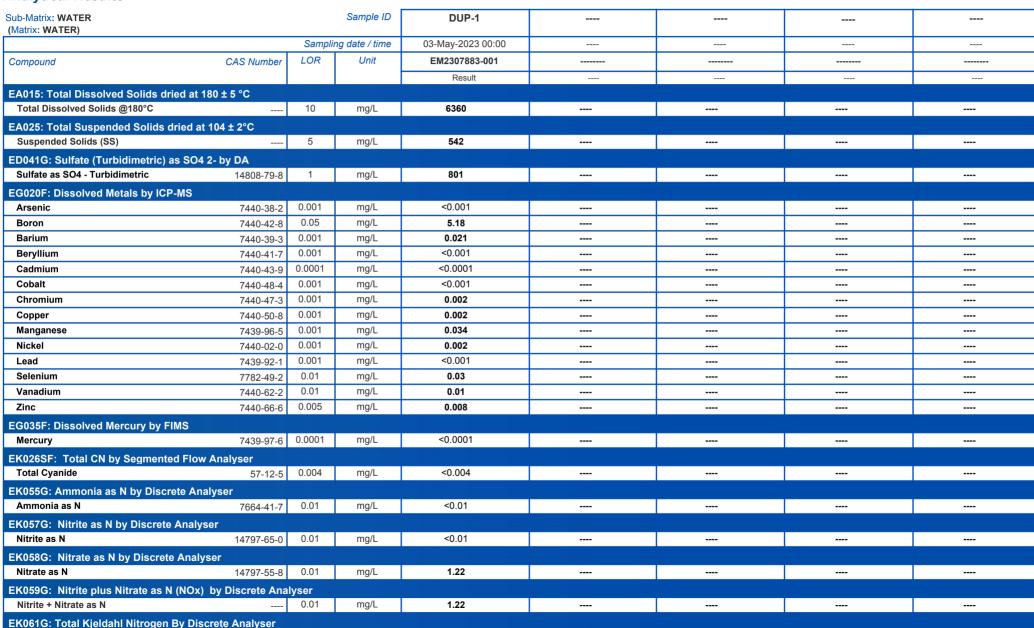
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.


LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a,h)anthracene (1.0), Benzo(g,h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP075: Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported. Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported. Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EK085: (EM2307720#1) Poor matrix spike recovery for sulfide due to matrix effects.
- Samples have been conducted outside of the recommended analytical holding times for sulfite. Results should be scrutinised accordingly.
- EP075: Where reported, 'Sum of PAH' is the sum of the USEPA 16 priority PAHs

Page : 3 of 7 Work Order : EM2307883

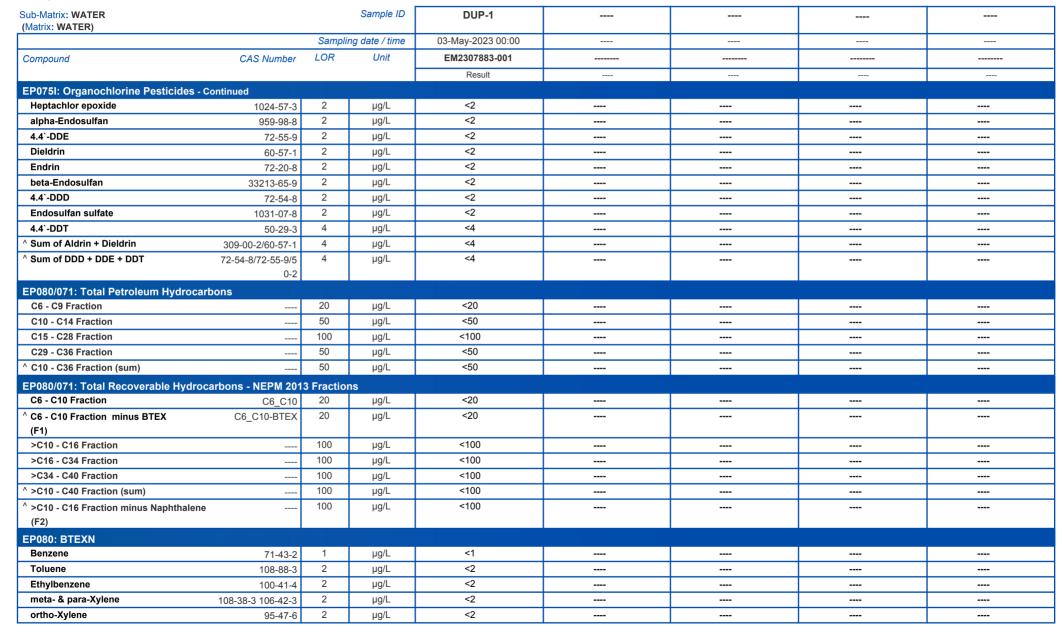
Client : LBW CO PTY LTD

Project : 231445-01

Page : 4 of 7 Work Order : EM2307883

Client : LBW CO PTY LTD

Project : 231445-01



Page : 5 of 7 Work Order : EM2307883

Client : LBW CO PTY LTD

Project : 231445-01

 Page
 : 6 of 7

 Work Order
 : EM2307883

Client : LBW CO PTY LTD

Project : 231445-01

Sub-Matrix: WATER			Sample ID	DUP-1	 	
(Matrix: WATER)						
		Sampli	ing date / time	03-May-2023 00:00	 	
Compound	CAS Number	LOR	Unit	EM2307883-001	 	
				Result	 	
EP080: BTEXN - Continued						
^ Total Xylenes		2	μg/L	<2	 	
^ Sum of BTEX		1	μg/L	<1	 	
Naphthalene	91-20-3	5	μg/L	<5	 	
EP075(SIM)S: Phenolic Compound	d Surrogates					
Phenol-d6	13127-88-3	1.0	%	29.3	 	
2-Chlorophenol-D4	93951-73-6	1.0	%	57.0	 	
2.4.6-Tribromophenol	118-79-6	1.0	%	80.6	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	1.0	%	74.4	 	
Anthracene-d10	1719-06-8	1.0	%	82.9	 	
4-Terphenyl-d14	1718-51-0	1.0	%	83.2	 	
EP075S: Acid Extractable Surroga	ates					
2-Fluorophenol	367-12-4	2	%	38.8	 	
Phenol-d6	13127-88-3	2	%	28.0	 	
2-Chlorophenol-D4	93951-73-6	2	%	66.5	 	
2.4.6-Tribromophenol	118-79-6	2	%	67.8	 	
EP075T: Base/Neutral Extractable	Surrogates					
Nitrobenzene-D5	4165-60-0	2	%	74.0	 	
1.2-Dichlorobenzene-D4	2199-69-1	2	%	55.8	 	
2-Fluorobiphenyl	321-60-8	2	%	72.1	 	
Anthracene-d10	1719-06-8	2	%	82.6	 	
4-Terphenyl-d14	1718-51-0	2	%	78.1	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	2	%	103	 	
Toluene-D8	2037-26-5	2	%	87.3	 	
4-Bromofluorobenzene	460-00-4	2	%	97.2	 	

Page : 7 of 7
Work Order : EM2307883

Client : LBW CO PTY LTD

Project : 231445-01

Surrogate Control Limits

Sub-Matrix: WATER		Recovery Limits (%)			
Compound	CAS Number	Low	High		
EP075(SIM)S: Phenolic Compound	Surrogates				
Phenol-d6	13127-88-3	10	51		
2-Chlorophenol-D4	93951-73-6	30	114		
2.4.6-Tribromophenol	118-79-6	26	133		
EP075(SIM)T: PAH Surrogates					
2-Fluorobiphenyl	321-60-8	35	127		
Anthracene-d10	1719-06-8	44	122		
4-Terphenyl-d14	1718-51-0	44	124		
EP075S: Acid Extractable Surrogate	es				
2-Fluorophenol	367-12-4	6	83		
Phenol-d6	13127-88-3	10	65		
2-Chlorophenol-D4	93951-73-6	22	112		
2.4.6-Tribromophenol	118-79-6	22	125		
EP075T: Base/Neutral Extractable S	urrogates				
Nitrobenzene-D5	4165-60-0	37	115		
1.2-Dichlorobenzene-D4	2199-69-1	32	99		
2-Fluorobiphenyl	321-60-8	39	116		
Anthracene-d10	1719-06-8	49	123		
4-Terphenyl-d14	1718-51-0	47	129		
EP080S: TPH(V)/BTEX Surrogates					
1.2-Dichloroethane-D4	17060-07-0	73	129		
Toluene-D8	2037-26-5	70	125		
4-Bromofluorobenzene	460-00-4	71	129		

QUALITY CONTROL REPORT

: EM2307883 Work Order Page

Client : LBW CO PTY LTD

Contact : TESS O'LEARY

Address : 184 MAGILL ROAD

NORWOOD SA. AUSTRALIA 5067 Telephone

Project : 231445-01

Order number ٠ ____

C-O-C number : 231445-01_COC_20230503

Sampler Site

Quote number : ADBQ-001-18 Seconday Work only

No. of samples received No. of samples analysed : 1 : 1 of 10

Laboratory : Environmental Division Melbourne

: Kieren Burns Contact

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +61881625130 Date Samples Received : 05-May-2023 Date Analysis Commenced : 05-May-2023

: 12-May-2023 Issue Date

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Andrew Lu	VOC Section Supervisor	Melbourne Organics, Springvale, VIC
Arenie Vijayaratnam	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Dilani Fernando	Laboratory Coordinator	Melbourne Inorganics, Springvale, VIC
Eric Chau	Metals Team Leader	Melbourne Inorganics, Springvale, VIC

 Page
 : 2 of 10

 Work Order
 : EM2307883

 Client
 : LBW CO PTY LTD

Project : 231445-01

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER	o-Matrix: WATER					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)				
EA015: Total Dissol	ved Solids dried at 180 ± 5 °C	C (QC Lot: 5038518)											
EM2307791-016	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	604	592	2.0	0% - 20%				
EM2307792-006	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	3360	3520	4.6	0% - 20%				
EM2307797-003	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	2960	3340	12.1	0% - 20%				
EM2307829-004	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	32	44	30.5	No Limit				
EA025: Total Suspe	nded Solids dried at 104 ± 2°	C (QC Lot: 5038519)											
EM2307829-002	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	16	16	0.0	No Limit				
EM2307883-001	DUP-1	EA025H: Suspended Solids (SS)		5	mg/L	542	512	5.9	0% - 20%				
EM2308002-002	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	46	62	28.2	0% - 50%				
EM2308002-013	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	8	7	15.9	No Limit				
ED041G: Sulfate (Tu	ırbidimetric) as SO4 2- by DA	(QC Lot: 5031886)											
EM2307910-004	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	46	46	0.0	0% - 20%				
EM2307834-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	<10	0.0	No Limit				
EG020F: Dissolved	Metals by ICP-MS (QC Lot: 5	6040243)											
EM2307792-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit				
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit				
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit				
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.105	0.100	4.8	0% - 20%				
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.002	0.001	0.0	No Limit				
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit				
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit				
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit				
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.003	0.003	0.0	No Limit				
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.004	0.004	0.0	No Limit				

 Page
 : 3 of 10

 Work Order
 : EM2307883

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

Laboratory Duplicate (DUP) Report Sub-Matrix: WATER Laboratory sample ID Sample ID CAS Number Original Result LOR Unit **Duplicate Result** RPD (%) Acceptable RPD (%) Method: Compound EG020F: Dissolved Metals by ICP-MS (QC Lot: 5040243) - continued EM2307792-001 Anonymous 7440-66-6 0.005 0.007 0.007 0.0 No Limit EG020A-F: Zinc mq/L 7782-49-2 0.01 < 0.01 < 0.01 0.0 No Limit EG020A-F: Selenium mq/L 7440-62-2 0.01 ma/L < 0.01 < 0.01 0.0 No Limit EG020A-F: Vanadium 7440-42-8 0.05 < 0.05 < 0.05 0.0 No Limit FG020A-F: Boron mg/L EM2307830-006 7440-43-9 0.0001 < 0.0001 <0.0001 0.0 EG020A-F: Cadmium mg/L No Limit Anonymous EG020A-F: Arsenic 7440-38-2 0.001 mg/L 0.002 0.002 0.0 No Limit 7440-41-7 0.001 < 0.001 < 0.001 0.0 No Limit mg/L EG020A-F: Beryllium 7440-39-3 0.001 0.045 0.044 0.0 0% - 20% ma/L EG020A-F: Barium 7440-47-3 0.0 EG020A-F: Chromium 0.001 ma/L < 0.001 < 0.001 No Limit 7440-48-4 0.001 < 0.001 < 0.001 0.0 No Limit EG020A-F: Cobalt mg/L 7440-50-8 0.001 < 0.001 < 0.001 0.0 No Limit mg/L EG020A-F: Copper 7439-92-1 0.0 No Limit 0.001 mg/L < 0.001 < 0.001 EG020A-F: Lead 7439-96-5 0.001 0.003 0.003 0.0 No Limit mg/L EG020A-F: Manganese 7440-02-0 0.001 0.003 0.003 0.0 No Limit EG020A-F: Nickel mg/L 7440-66-6 0.005 <0.005 <0.005 0.0 No Limit FG020A-F: Zinc mg/L 7782-49-2 0.01 mg/L < 0.01 < 0.01 0.0 No Limit EG020A-F: Selenium 7440-62-2 0.01 mg/L < 0.01 < 0.01 0.0 No Limit EG020A-F: Vanadium 7440-42-8 0.05 0.0 0.14 0.14 No Limit EG020A-F: Boron mg/L EG035F: Dissolved Mercury by FIMS (QC Lot: 5040245) EM2307822-001 Anonymous EG035F: Mercury 7439-97-6 0.0001 mg/L < 0.0001 < 0.0001 0.0 No Limit EM2308041-004 Anonymous EG035F: Mercury 7439-97-6 0.0001 mg/L < 0.0001 < 0.0001 0.0 No Limit EK026SF: Total CN by Segmented Flow Analyser (QC Lot: 5037509) FM2307901-006 Anonymous 57-12-5 0.004 < 0.004 < 0.004 0.0 No Limit mg/L EK026SF: Total Cvanide EK055G: Ammonia as N by Discrete Analyser (QC Lot: 5035821) EM2307153-029 Anonymous 7664-41-7 0.01 7.52 6.54 13.9 0% - 20% EK055G: Ammonia as N mg/L EM2307875-001 Anonymous 7664-41-7 0.35 0.36 0% - 20% 0.01 mg/L 0.0 EK055G: Ammonia as N EK057G: Nitrite as N by Discrete Analyser (QC Lot: 5031888) EM2307910-007 Anonymous EK057G: Nitrite as N 14797-65-0 0.01 mg/L < 0.01 < 0.01 0.0 No Limit EM2307834-001 Anonymous EK057G: Nitrite as N 14797-65-0 0.01 mg/L < 0.02 < 0.02 0.0 No Limit EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QC Lot: 5035820) EM2307879-001 Anonymous 0.20 0.19 0% - 50% EK059G: Nitrite + Nitrate as N 0.01 mg/L 0.0 EM2307153-029 Anonymous 0.01 0.05 0.04 0.0 No Limit mg/L EK059G: Nitrite + Nitrate as N EK061G: Total Kieldahl Nitrogen By Discrete Analyser (QC Lot: 5036228) EM2307883-001 DUP-1 0.1 0.6 0.4 53.8 No Limit EK061G: Total Kjeldahl Nitrogen as N mg/L EK067G: Total Phosphorus as P by Discrete Analyser (QC Lot: 5036227) FM2307832-001 0.01 0.18 0.22 19.3 0% - 20% Anonymous EK067G: Total Phosphorus as P mg/L EK071G: Reactive Phosphorus as P by discrete analyser (QC Lot: 5031887) EM2307910-007 14265-44-2 0.01 0.02 0.02 0.0 No Limit Anonymous mg/L EK071G: Reactive Phosphorus as P

 Page
 : 4 of 10

 Work Order
 : EM2307883

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

ALS

Laboratory Duplicate (DUP) Report Sub-Matrix: WATER Laboratory sample ID Sample ID CAS Number LOR Unit Original Result Duplicate Result RPD (%) Acceptable RPD (%) Method: Compound EK071G: Reactive Phosphorus as P by discrete analyser (QC Lot: 5031887) - continued EM2307834-001 14265-44-2 0.02 Anonymous EK071G: Reactive Phosphorus as P 0.01 0.02 0.0 No Limit mq/L EK085M: Sulfide as S2- (QC Lot: 5040239) EM2307701-001 Anonymous 18496-25-8 0.1 0.7 0.8 0.0 No Limit EK085: Sulfide as S2mq/L EM2307740-002 Anonymous 18496-25-8 0.1 mg/L < 0.1 < 0.1 0.0 No Limit EK085: Sulfide as S2-EK086: Sulfite as SO3 2- (QC Lot: 5043296) EM2307883-001 DUP-1 EK086: Sulfite as SO3 2-14265-45-3 2 <2 <2 0.0 No Limit mg/L EP030: Biochemical Oxygen Demand (BOD) (QC Lot: 5031980) FM2307792-013 0.0 No Limit Anonymous 2 mg/L <2 <2 EP030: Biochemical Oxygen Demand EM2307910-001 2 <12 <12 0.0 Anonymous EP030: Biochemical Oxygen Demand mg/L No Limit EP075(SIM)A: Phenolic Compounds (QC Lot: 5033104) EM2307751-001 Anonymous EP075(SIM): Phenol 108-95-2 μg/L <1.0 <1.0 0.0 No Limit 95-57-8 1 <1.0 <1.0 0.0 No Limit EP075(SIM): 2-Chlorophenol µg/L 95-48-7 1 μg/L <1.0 <1.0 0.0 No Limit EP075(SIM): 2-Methylphenol 88-75-5 1 μg/L <1.0 <1.0 0.0 No Limit EP075(SIM): 2-Nitrophenol 105-67-9 1 μg/L <1.0 <1.0 0.0 No Limit EP075(SIM): 2.4-Dimethylphenol 120-83-2 μg/L <1.0 <1.0 0.0 No Limit EP075(SIM): 2.4-Dichlorophenol 87-65-0 1 μg/L <1.0 <1.0 0.0 No Limit EP075(SIM): 2.6-Dichlorophenol 59-50-7 <1.0 <1.0 0.0 No Limit EP075(SIM): 4-Chloro-3-methylphenol µg/L 88-06-2 1 μg/L <1.0 <1.0 0.0 No Limit EP075(SIM): 2.4.6-Trichlorophenol <1.0 0.0 EP075(SIM): 2.4.5-Trichlorophenol 95-95-4 1 µq/L <1.0 No Limit 1319-77-3 2 μg/L < 2.0 < 2.0 0.0 No Limit EP075(SIM): 3- & 4-Methylphenol 87-86-5 2 μg/L < 2.0 < 2.0 0.0 No Limit EP075(SIM): Pentachlorophenol EP080/071: Total Petroleum Hydrocarbons (QC Lot: 5032992) EM2307801-001 Anonymous 20 μg/L <20 <20 0.0 No Limit EP080: C6 - C9 Fraction EM2307958-007 20 270 220 18.0 0% - 50% Anonymous EP080: C6 - C9 Fraction μg/L EP080/071: Total Petroleum Hydrocarbons (QC Lot: 5033105) EM2307957-001 Anonymous 100 <100 <100 0.0 No Limit EP071: C15 - C28 Fraction μg/L 50 <50 <50 0.0 No Limit μg/L EP071: C10 - C14 Fraction μg/L 50 <50 < 50 0.0 No Limit EP071: C29 - C36 Fraction EM2307751-001 <100 Anonymous 100 μg/L <100 0.0 No Limit EP071: C15 - C28 Fraction ---<50 <50 0.0 50 No Limit EP071: C10 - C14 Fraction µg/L 0.0 EP071: C29 - C36 Fraction 50 μg/L <50 <50 No Limit EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC Lot: 5032992) EM2307801-001 Anonymous EP080: C6 - C10 Fraction C6 C10 20 μg/L <20 <20 0.0 No Limit FM2307958-007 C6 C10 20 710 590 18.3 0% - 20% Anonymous EP080: C6 - C10 Fraction µg/L EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC Lot: 5033105) EM2307957-001 Anonymous EP071: >C10 - C16 Fraction 100 μg/L <100 <100 0.0 No Limit __ 100 <100 <100 0.0 No Limit EP071: >C16 - C34 Fraction µg/L

 Page
 : 5 of 10

 Work Order
 : EM2307883

 Client
 : LBW CO PTY LTD

Project : 231445-01

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EP080/071: Total Re	ecoverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 5033105) - cont	inued								
EM2307957-001	Anonymous	EP071: >C34 - C40 Fraction		100	μg/L	<100	<100	0.0	No Limit		
EM2307751-001	Anonymous	EP071: >C10 - C16 Fraction		100	μg/L	<100	<100	0.0	No Limit		
		EP071: >C16 - C34 Fraction		100	μg/L	<100	<100	0.0	No Limit		
		EP071: >C34 - C40 Fraction		100	μg/L	<100	<100	0.0	No Limit		
EP080: BTEXN (QC	Lot: 5032992)										
EM2307801-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit		
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit		
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit		
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit		
			106-42-3								
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit		
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit		
EM2307958-007	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit		
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit		
		EP080: Ethylbenzene	100-41-4	2	μg/L	32	28	10.8	0% - 50%		
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	54	48	12.0	0% - 20%		
			106-42-3								
		EP080: ortho-Xylene	95-47-6	2	μg/L	10	9	0.0	No Limit		
		EP080: Naphthalene	91-20-3	5	μg/L	37	46	20.7	No Limit		

 Page
 : 6 of 10

 Work Order
 : EM2307883

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCI	₋ot: 5038518)							
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	103	91.0	110
				<10	2440 mg/L	108	81.6	118
				<10	293 mg/L	96.2	91.0	110
EA025: Total Suspended Solids dried at 104 ± 2°C (QC	Lot: 5038519)							
EA025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	100	91.0	109
				<5	836 mg/L	109	84.8	115
				<5	1000 mg/L	101	90.3	109
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCL	.ot: 5031886)							
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	102	90.0	110
				<1	500 mg/L	103	90.0	110
EG020F: Dissolved Metals by ICP-MS (QCLot: 5040243	3)							
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	98.1	89.0	111
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	101	85.0	112
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	98.6	83.6	113
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	104	83.5	111
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	95.1	83.2	109
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	97.4	84.3	110
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	93.6	83.1	107
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	98.3	84.6	108
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	96.0	84.8	110
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	94.6	84.3	110
EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	104	82.3	113
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	96.5	83.7	110
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	106	86.3	112
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	101	85.4	115
EG035F: Dissolved Mercury by FIMS (QCLot: 5040245								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	109	71.6	116
EK026SF: Total CN by Segmented Flow Analyser (QC	Lot: 5037509)							
EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	0.2 mg/L	98.4	77.7	116
EK055G: Ammonia as N by Discrete Analyser (QCLot:	5035821)							

Page : 7 of 10 EM2307883 Work Order LBW CO PTY LTD Client

113

82.0

Project 231445-01 Method Blank (MB) Laboratory Control Spike (LCS) Report Sub-Matrix: WATER Report Spike Spike Recovery (%) Acceptable Limits (%) CAS Number LOR Unit Result Concentration LCS Low High Method: Compound EK055G: Ammonia as N by Discrete Analyser (QCLot: 5035821) - continued FK055G: Ammonia as N 0.01 mg/L < 0.01 1 mg/L 93.1 90.0 110 EK057G: Nitrite as N by Discrete Analyser (QCLot: 5031888) EK057G: Nitrite as N 14797-65-0 0.01 mg/L < 0.01 0.5 mg/L 90.0 104 110 EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 5035820) 0.01 EK059G: Nitrite + Nitrate as N mg/L < 0.01 0.5 mg/L 90.0 99.6 110 EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 5036228) 0.1 < 0.1 70.0 EK061G: Total Kjeldahl Nitrogen as N mg/L 5 mg/L 71.2 117 EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 5036227) 0.01 < 0.01 71.9 mg/L 2.21 mg/L EK067G: Total Phosphorus as P 72.5 114 EK071G: Reactive Phosphorus as P by discrete analyser (QCLot: 5031887) 14265-44-2 0.01 mg/L < 0.01 0.5 mg/L 90.0 EK071G: Reactive Phosphorus as P 102 110 EK085M: Sulfide as S2- (QCLot: 5040239) 18496-25-8 81.9 FK085: Sulfide as S2-0.1 mg/L < 0.1 0.5 mg/L 94.9 116 EK086: Sulfite as SO3 2- (QCLot: 5043296) 14265-45-3 2 <2 EK086: Sulfite as SO3 2mg/L 100 mg/L 95.0 91.8 101 EP030: Biochemical Oxygen Demand (BOD) (QCLot: 5031980) 2 <2 79.5 ---mg/L 198 mg/L EP030: Biochemical Oxygen Demand 112 122 EP075(SIM)A: Phenolic Compounds (QCLot: 5033104) 108-95-2 1 <1.0 5 µg/L 17.8 EP075(SIM): Phenol μg/L 30.0 51.1 95-57-8 43.2 1 <1.0 EP075(SIM): 2-Chlorophenol μg/L 5 µg/L 75.5 107 95-48-7 1 <1.0 39.2 µg/L 5 µg/L EP075(SIM): 2-Methylphenol 64.3 98.7 1319-77-3 2 μg/L <2.0 10 μg/L 35.5 EP075(SIM): 3- & 4-Methylphenol 60.6 91.3 88-75-5 EP075(SIM): 2-Nitrophenol 1 μg/L <1.0 5 µg/L 34.4 124 81.7 105-67-9 1 μq/L <1.0 5 µg/L 44.4 EP075(SIM): 2.4-Dimethylphenol 112 73.2 120-83-2 1 <1.0 5 µg/L 45.3 EP075(SIM): 2.4-Dichlorophenol μg/L 81.4 115 87-65-0 44.3 EP075(SIM): 2.6-Dichlorophenol 1 µg/L <1.0 5 µg/L 82.5 116 59-50-7 1 <1.0 5 µg/L 46.6 μg/L EP075(SIM): 4-Chloro-3-methylphenol 81.1 117 88-06-2 1 μg/L <1.0 5 µg/L 38.2 EP075(SIM): 2.4.6-Trichlorophenol 80.1 122 95-95-4 1 <1.0 43.2 μg/L 5 µg/L EP075(SIM): 2.4.5-Trichlorophenol 76.6 123 87-86-5 2 <2.0 48.1 EP075(SIM): Pentachlorophenol µq/L 10 μg/L 60.1 130 EP075I: Organochlorine Pesticides (QCLot: 5033107) 319-84-6 EP075: alpha-BHC 2 μg/L <2 10 µg/L 76.0 56.2 112 319-85-7 2 <2 10 μg/L 56.2 μg/L EP075: beta-BHC 79.3 113 2 <2 58-89-9 µg/L 10 µg/L 55.2 EP075: gamma-BHC

 Page
 : 8 of 10

 Work Order
 : EM2307883

 Client
 : LBW CO PTY LTD

Project : 231445-01

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075I: Organochlorine Pesticides (QCLot: 5033107) - continued								
EP075: delta-BHC 319-86-8	2	μg/L	<2	10 μg/L	81.4	52.6	117	
EP075: Heptachlor 76-44-8	2	μg/L	<2	10 μg/L	77.3	53.4	111	
EP075: Aldrin 309-00-2	2	μg/L	<2	10 μg/L	72.4	54.0	112	
EP075: Heptachlor epoxide 1024-57-3	2	μg/L	<2	10 μg/L	81.0	54.2	113	
EP075: alpha-Endosulfan 959-98-8	2	μg/L	<2	10 μg/L	77.8	49.3	122	
EP075: 4.4`-DDE 72-55-9	2	μg/L	<2	10 μg/L	77.2	56.0	121	
EP075: Dieldrin 60-57-1	2	μg/L	<2	10 μg/L	71.0	55.2	118	
EP075: Endrin 72-20-8	2	μg/L	<2	10 μg/L	78.8	52.7	121	
EP075: beta-Endosulfan 33213-65-9	2	μg/L	<2	10 μg/L	77.9	55.1	119	
EP075: 4.4`-DDD 72-54-8	2	μg/L	<2	10 μg/L	77.9	55.4	120	
EP075: Endosulfan sulfate 1031-07-8	2	μg/L	<2	10 μg/L	84.8	49.6	123	
EP075: 4.4`-DDT 50-29-3	4	μg/L	<4	10 μg/L	69.6	47.8	127	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 5032992)								
EP080: C6 - C9 Fraction	20	μg/L	<20	360 μg/L	76.0	66.2	134	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 5033105)								
EP071: C10 - C14 Fraction	50	μg/L	<50	4560 μg/L	61.5	47.2	122	
EP071: C15 - C28 Fraction	100	μg/L	<100	16200 μg/L	79.0	52.9	131	
EP071: C29 - C36 Fraction	50	μg/L	<50	8650 μg/L	76.3	50.4	127	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	CLot: 5032992)							
EP080: C6 - C10 Fraction C6_C10	20	μg/L	<20	450 μg/L	80.1	66.2	132	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	CLot: 5033105)							
EP071: >C10 - C16 Fraction	100	μg/L	<100	6190 μg/L	65.6	49.1	125	
EP071: >C16 - C34 Fraction	100	μg/L	<100	22200 μg/L	77.2	51.6	128	
EP071: >C34 - C40 Fraction	100	μg/L	<100	1520 μg/L	72.1	47.2	130	
EP080: BTEXN (QCLot: 5032992)								
EP080: Benzene 71-43-2	1	μg/L	<1	20 μg/L	83.9	68.8	127	
EP080: Toluene 108-88-3	2	μg/L	<2	20 μg/L	83.7	72.9	129	
EP080: Ethylbenzene 100-41-4	2	μg/L	<2	20 μg/L	85.1	71.7	130	
EP080: meta- & para-Xylene 108-38-3 106-42-3	2	μg/L	<2	40 μg/L	82.1	72.3	136	
EP080: ortho-Xylene 95-47-6	2	μg/L	<2	20 μg/L	87.4	75.9	134	
EP080: Naphthalene 91-20-3	5	μg/L	<5	5 μg/L	101	68.3	131	

 Page
 : 9 of 10

 Work Order
 : EM2307883

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	ix: WATER			Matrix Spike (MS) Report						
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)			
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
D041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 5031886									
EM2307897-006	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	100 mg/L	94.2	70.0	130			
G020F: Dissolve	ed Metals by ICP-MS (QCLot: 5040243)									
EM2307792-001	Anonymous	EG020A-F: Arsenic	7440-38-2	0.2 mg/L	92.1	76.6	124			
		EG020A-F: Beryllium	7440-41-7	0.2 mg/L	83.6	73.0	120			
		EG020A-F: Barium	7440-39-3	0.2 mg/L	84.5	75.0	127			
		EG020A-F: Cadmium	7440-43-9	0.05 mg/L	90.7	74.6	118			
		EG020A-F: Chromium	7440-47-3	0.2 mg/L	80.9	71.0	135			
		EG020A-F: Cobalt	7440-48-4	0.2 mg/L	87.3	78.0	132			
		EG020A-F: Copper	7440-50-8	0.2 mg/L	84.5	76.0	130			
		EG020A-F: Lead	7439-92-1	0.2 mg/L	80.7	75.0	133			
		EG020A-F: Manganese	7439-96-5	0.2 mg/L	81.2	64.0	134			
		EG020A-F: Nickel	7440-02-0	0.2 mg/L	84.0	73.0	131			
		EG020A-F: Vanadium	7440-62-2	0.2 mg/L	83.2	73.0	131			
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	86.8	75.0	131			
G035F: Dissolve	d Mercury by FIMS (QCLot: 5040245)									
M2307830-006	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	105	70.0	120			
K026SF: Total C	CN by Segmented Flow Analyser (QCLot: 503750	9)								
M2307883-001	DUP-1	EK026SF: Total Cyanide	57-12-5	0.2 mg/L	109	70.0	130			
K055G: Ammoni	ia as N by Discrete Analyser (QCLot: 5035821)									
EM2307701-001	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	76.2	70.0	130			
K057G: Nitrite a	s N by Discrete Analyser (QCLot: 5031888)									
EM2307883-001	DUP-1	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	102	80.0	114			
K059G: Nitrite p	olus Nitrate as N (NOx) by Discrete Analyser(QC			, and the second						
M2307744-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	86.3	70.0	130			
K061G: Total Kie	eldahl Nitrogen By Discrete Analyser (QCLot: 50			, and the second						
M2307892-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	75.0	70.0	130			
K067G: Total Ph	osphorus as P by Discrete Analyser (QCLot: 503			9						
M2307832-002	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	119	70.0	130			
K071G: Reactive	Phosphorus as P by discrete analyser (QCLot:			J						
M2307883-001	DUP-1	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	# Not	79.0	123			
2007000 001		Littor 19. Reactive Filosphorus as F	17200 77-2	0.0 mg/L	# Not Determined	70.0	120			
K085M: Sulfide a	as S2- (QCLot: 5040239)				Determined					
		T/407 0 15 1	40400 05 0	0.5	# 40.2	70.0	420			
EM2307720-001	Anonymous	EK085: Sulfide as S2-	18496-25-8	0.5 mg/L	# 40.3	70.0	130			

 Page
 : 10 of 10

 Work Order
 : EM2307883

 Client
 : LBW CO PTY LTD

Project : 231445-01

Sub-Matrix: WATER				Matrix Spike (MS) Report						
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EP075(SIM)A: Phe	nolic Compounds (QCLot: 5033104)									
EM2307751-002	Anonymous	EP075(SIM): Phenol	108-95-2	5 μg/L	17.3	15.0	61.0			
		EP075(SIM): 2-Chlorophenol	95-57-8	5 μg/L	44.1	35.0	131			
		EP075(SIM): 2-Nitrophenol	88-75-5	5 μg/L	50.8	39.0	121			
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	5 μg/L	47.9	32.0	130			
		EP075(SIM): Pentachlorophenol	87-86-5	5 μg/L	11.9	11.0	147			
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 5032992)									
EM2307816-136	Anonymous	EP080: C6 - C9 Fraction		280 μg/L	72.9	33.9	126			
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 5033105)									
EM2307751-003	Anonymous	EP071: C10 - C14 Fraction		4460 μg/L	61.2	48.0	126			
		EP071: C15 - C28 Fraction		14300 μg/L	85.6	51.7	132			
		EP071: C29 - C36 Fraction		7300 µg/L	86.0	50.5	127			
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fracti	ons (QCLot: 5032992)								
EM2307816-136	Anonymous	EP080: C6 - C10 Fraction	C6_C10	330 μg/L	68.2	34.0	122			
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fracti	ons (QCLot: 5033105)								
EM2307751-003	Anonymous	EP071: >C10 - C16 Fraction		6090 µg/L	64.0	48.0	128			
		EP071: >C16 - C34 Fraction		19400 μg/L	84.2	50.4	130			
		EP071: >C34 - C40 Fraction		1300 μg/L	81.0	47.4	131			
EP080: BTEXN (Q	CLot: 5032992)									
EM2307816-136	Anonymous	EP080: Benzene	71-43-2	20 μg/L	94.4	56.3	133			
		EP080: Toluene	108-88-3	20 μg/L	94.0	60.4	132			

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM2307883** Page : 1 of 9

Client : LBW CO PTY LTD Laboratory : Environmental Division Melbourne

 Contact
 : TESS O'LEARY
 Telephone
 : +61881625130

 Project
 : 231445-01
 Date Samples Received
 : 05-May-2023

 Site
 : -- Issue Date
 : 12-May-2023

Sampler : --- No. of samples received : 1
Order number : --- No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

 Page
 : 2 of 9

 Work Order
 : EM2307883

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EK085M: Sulfide as S2-	EM2307720001	Anonymous	Sulfide as S2-	18496-25-8	40.3 %	70.0-130%	Recovery less than lower data quality
							objective

Outliers: Analysis Holding Time Compliance

Matrix: WATER

Matrix. WATER						
Method	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days overdue	Date analysed	Due for analysis	Days overdue
EK086: Sulfite as SO3 2-						
Clear Plastic Bottle - EDTA/Zinc Acetate						
DUP-1				11-May-2023	05-May-2023	6

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Co	unt	Rate (%)		Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)	0	1	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds Matrix Spikes (MS)	U		0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation:	= Holding	time breach: <	= Within holding	time.

Madrix. WATER				Lvaluation	. • - Holding time	breach, within	a notaling time.
Method	Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA015: Total Dissolved Solids dried at 180 ± 5 °C							
Clear Plastic Bottle - Natural (EA015H)							
DUP-1	03-May-2023				10-May-2023	10-May-2023	✓
EA025: Total Suspended Solids dried at 104 ± 2°C							
Clear Plastic Bottle - Natural (EA025H)							
DUP-1	03-May-2023				10-May-2023	10-May-2023	✓

 Page
 : 3 of 9

 Work Order
 : EM2307883

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA							
Clear Plastic Bottle - Natural (ED041G) DUP-1	03-May-2023				09-May-2023	31-May-2023	✓
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Filtered; Lab-acidified (EG020A-F) DUP-1	03-May-2023				10-May-2023	30-Oct-2023	✓
EG035F: Dissolved Mercury by FIMS							
Clear Plastic Bottle - Filtered; Lab-acidified (EG035F) DUP-1	03-May-2023				11-May-2023	31-May-2023	√
EK026SF: Total CN by Segmented Flow Analyser							
Opaque plastic bottle - NaOH (EK026SF) DUP-1	03-May-2023				10-May-2023	17-May-2023	✓
EK055G: Ammonia as N by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK055G) DUP-1	03-May-2023				09-May-2023	31-May-2023	√
EK057G: Nitrite as N by Discrete Analyser							
Clear Plastic Bottle - Natural (EK057G) DUP-1	03-May-2023				05-May-2023	05-May-2023	✓
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) DUP-1	03-May-2023				10-May-2023	31-May-2023	✓
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G) DUP-1	03-May-2023	10-May-2023	31-May-2023	✓	10-May-2023	31-May-2023	✓
EK067G: Total Phosphorus as P by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK067G) DUP-1	03-May-2023	10-May-2023	31-May-2023	1	10-May-2023	31-May-2023	✓
EK071G: Reactive Phosphorus as P by discrete analyser							
Clear Plastic Bottle - Natural (EK071G) DUP-1	03-May-2023				05-May-2023	05-May-2023	✓
EK085M: Sulfide as S2-							
Clear Plastic Bottle - Zinc Acetate/NaOH (EK085) DUP-1	03-May-2023				10-May-2023	10-May-2023	✓
EK086: Sulfite as SO3 2-							
Clear Plastic Bottle - EDTA/Zinc Acetate (EK086) DUP-1	03-May-2023				11-May-2023	05-May-2023	×
EP030: Biochemical Oxygen Demand (BOD)							
Clear Plastic Bottle - Natural (EP030) DUP-1	03-May-2023				05-May-2023	05-May-2023	✓

 Page
 : 4 of 9

 Work Order
 : EM2307883

 Client
 : LBW CO PTY LTD

ALS

Project : 231445-01

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP075(SIM)A: Phenolic Compounds							
Amber Glass Bottle - Unpreserved (EP075(SIM)) DUP-1	03-May-2023	08-May-2023	10-May-2023	✓	09-May-2023	17-Jun-2023	✓
EP075l: Organochlorine Pesticides							
Amber Glass Bottle - Unpreserved (EP075) DUP-1	03-May-2023	08-May-2023	10-May-2023	✓	09-May-2023	17-Jun-2023	✓
EP080/071: Total Petroleum Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP071) DUP-1	03-May-2023	08-May-2023	10-May-2023	✓	09-May-2023	17-Jun-2023	✓
Amber VOC Vial - Sulfuric Acid (EP080) DUP-1	03-May-2023	08-May-2023	17-May-2023	✓	09-May-2023	17-May-2023	✓
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071) DUP-1	03-May-2023	08-May-2023	10-May-2023	✓	09-May-2023	17-Jun-2023	✓
Amber VOC Vial - Sulfuric Acid (EP080) DUP-1	03-May-2023	08-May-2023	17-May-2023	✓	09-May-2023	17-May-2023	✓
EP080: BTEXN							
Amber VOC Vial - Sulfuric Acid (EP080) DUP-1	03-May-2023	08-May-2023	17-May-2023	✓	09-May-2023	17-May-2023	√

 Page
 : 5 of 9

 Work Order
 : EM2307883

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: * = Quality Control frequency not within specification; < = Quality Control frequency within specification.

Watrix: WATER Quality Control Sample Type		Co	ount	Lvaldation	Rate (%)		not within specification; ✓ = Quality Control frequency within specification Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	quanty control opermeation
Laboratory Duplicates (DUP)							
Ammonia as N by Discrete analyser	EK055G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Biochemical Oxygen Demand (BOD)	EP030	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	18	11.11	10.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds	EP075	0	1	0.00	10.00	x	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfide as S2-	EK085	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfite as SO3 2-	EK086	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	4	35	11.43	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	4	39	10.26	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Ammonia as N by Discrete analyser	EK055G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Biochemical Oxygen Demand (BOD)	EP030	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds	EP075	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfide as S2-	EK085	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfite as SO3 2-	EK086	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	3	35	8.57	7.50	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	3	39	7.69	7.50	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

 Page
 : 6 of 9

 Work Order
 : EM2307883

 Client
 : LBW CO PTY LTD

Project : 231445-01

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Control Samples (LCS) - Continued							
Total Phosphorus as P By Discrete Analyser	EK067G	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	19	5.26	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
Biochemical Oxygen Demand (BOD)	EP030	1	20	5.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	13	7.69	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	18	5.56	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	17	5.88	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	7	14.29	5.00	√	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	15	6.67	5.00	√	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds	EP075	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfide as S2-	EK085	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfite as SO3 2-	EK086	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	35	5.71	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	39	5.13	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds	EP075	0	1	0.00	5.00	3c	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfide as S2-	EK085	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

 Page
 : 7 of 9

 Work Order
 : EM2307883

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Total Cyanide by Segmented Flow Analyser	EK026SF	WATER	In house: Referenced to APHA 4500-CN C&O / ASTM D7511 / ISO 14403. Sodium hydroxide preserved samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)

 Page
 : 8 of 9

 Work Order
 : EM2307883

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

Analytical Methods	Method	Matrix	Method Descriptions
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed
			by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate
			calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by
Analyser			Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM
			Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high
Analyser			temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined
			colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid
Analyser			digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with
			ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its
			concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)
Reactive Phosphorus as P-By Discrete	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid
Analyser			medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely
			coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant
			with NEPM Schedule B(3)
Sulfide as S2-	EK085	WATER	In house: Referenced to APHA 4500-S2- D. Sulfide species present in water samples are immediately
			precipitated when collected in pretreated caustic/zinc acetate preserved sample containers. The sulphides are
			coloured using methylene blue indicator. Non-detects may be screened by comparison against a standard at
			half-LOR, otherwise samples are measured using UV-VIS detection at 664nm. This method is compliant with
Sulfite as SO3 2-	EK086	WATER	NEPM Schedule B(3) In house: Referenced to APHA 4500-SO32- B. Sulfite is determined by standardised lodate / lodide titration.
Biochemical Oxygen Demand (BOD)	EP030	WATER	
Biochemical Oxygen Demand (BOD)	EP030	WATER	In house: Referenced to APHA 5210 B. The 5-Day BOD test provides an empirical measure of the oxygen consumption capacity of a given water. A portion of the sample is diluted into oxygenated, nutrient rich water, and
			a seed added to begin biological decay. The initial dissolved oxygen content is measured, then the bottle is
			sealed and incubated for five days. The remaining dissolved oxygen content is measured, and from the difference, the
			demand for oxygen, by biological decay, is determined. This method is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and
	21 07 1	.,,,,,	quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This
			method is compliant with the QC requirements of NEPM Schedule B(3)
Semivolatile Organic Compounds	EP075	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS and
			quantification is by comparison against an established 5 point calibration curve. This method is compliant with
			NEPM Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode
			and quantification is by comparison against an established 5 point calibration curve. This method is compliant
			with NEPM Schedule B(3)

 Page
 : 9 of 9

 Work Order
 : EM2307883

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

Analytical Methods	Method	Matrix	Method Descriptions
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This
			method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

SOUTHONE BUTTONE BUTTO

Job Number: 231445-01 Project Manager, Tess O'Legy

Environmental Division Melbourne
Work Order Reference
EM2307883 LABORATORY TESTING ORDER

Laboratory Quote Ref: ADRQ-001-18_LBWco_50

Invoice for the page of the garden point of

Project Title: Eveded Dewatering Assessment

LEW co's COC REFERENCE pumps delivery group) 231445-01_COC_20230503

tesuls to: 100 ft a few to comou bear a build to may

Standard (5 Day)

Telephone: +61-3-8549 9600

SAMPLE DETAILS Date Sampled SUMW03-Q1 Water 03-May-21 SLWW04-Q1 Water SLM.W07-Q1 Water 03-May-23 DUF-1 Water Forward to ALS 03-May-23 MNSE-1 Water T8-1 03-May-25 Water LEW co AUTHO MIATION LABORATORY RECEIPT Please forward sample DUF-1 to ALS for analysis Analysis as per quale 250303LEWS

Received Kg 5/5/23

CERTIFICATE OF ANALYSIS

Work Order : EM2319725

Client : LBW CO PTY LTD

Contact : Results Lbw

Address : 184 MAGILL ROAD

NORWOOD SA, AUSTRALIA 5067

Telephone

Project : 231445-01 Order number : 231445-01

C-O-C number : 2023-11-01-ALS-AB

Sampler Site

Quote number : EM2023LBWENV0007

No. of samples received : 1 No. of samples analysed : 1 Page : 1 of 7

Laboratory : Environmental Division Melbourne

Contact : Kieren Burns

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +61881625130 **Date Samples Received** : 03-Nov-2023 12:40

Date Analysis Commenced : 06-Nov-2023

Issue Date : 13-Nov-2023 13:05

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Jarwis Nheu	Non-Metals Team Leader	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC

Page : 2 of 7

Work Order : EM2319725

Client : LBW CO PTY LTD

Project : 231445-01

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

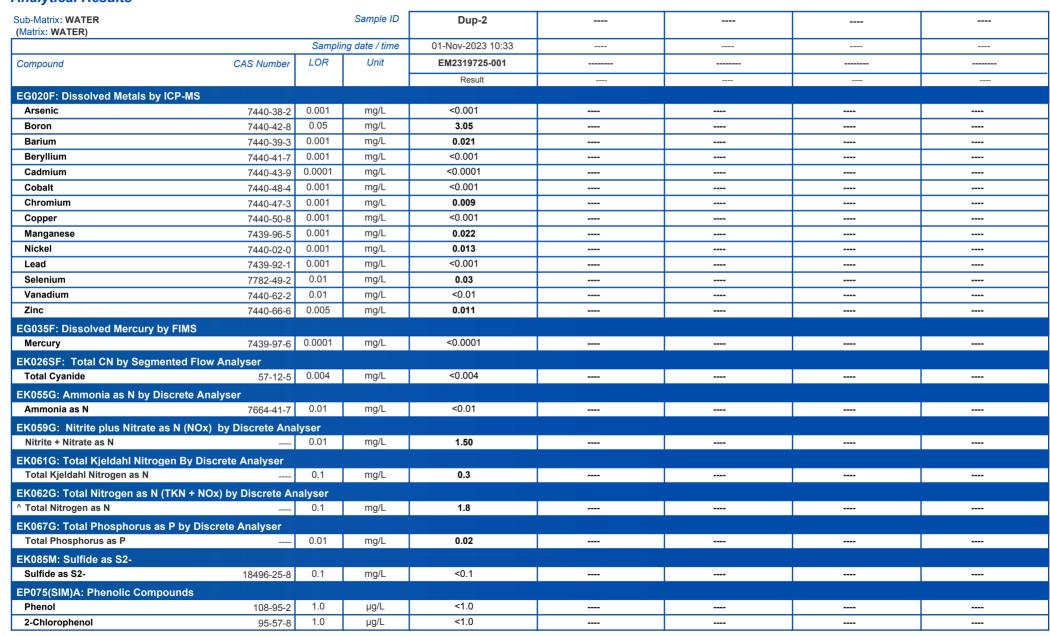
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP075: Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g,h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported. Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG020F: EM2319506 #1 Poor matrix spike recovery for metals due to sample matrix. Confirmed by re-extraction and re-analysis.
- EP075: Where reported, 'Sum of PAH' is the sum of the USEPA 16 priority PAHs

Page : 3 of 7 Work Order : EM2319725

Client : LBW CO PTY LTD

Project : 231445-01

Analytical Results

Page : 4 of 7 Work Order : EM2319725

Client : LBW CO PTY LTD

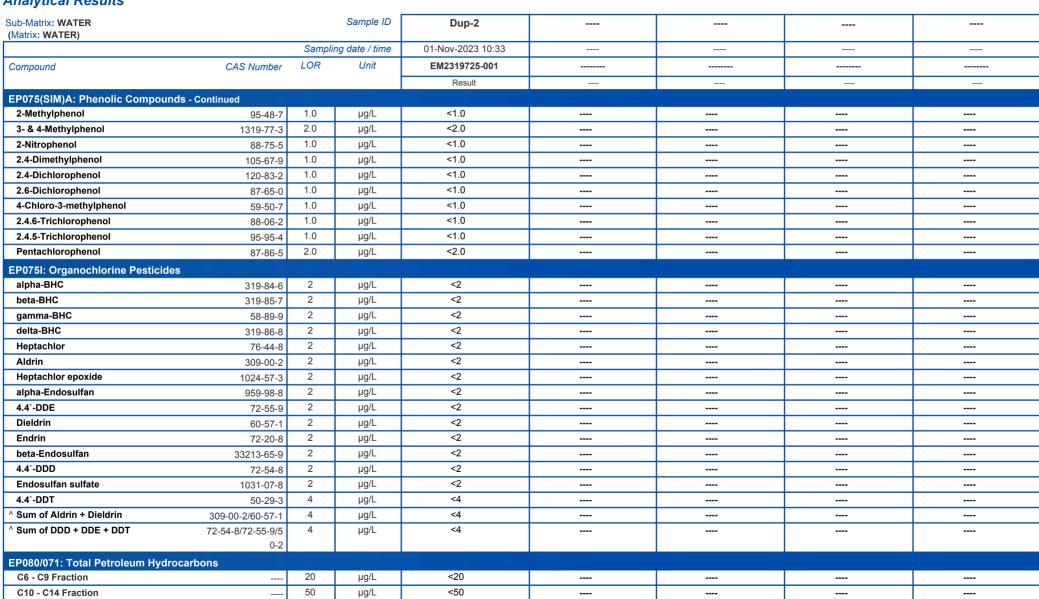
Project : 231445-01

Analytical Results

C15 - C28 Fraction

C29 - C36 Fraction

100


50

μg/L

μg/L

<100

<50

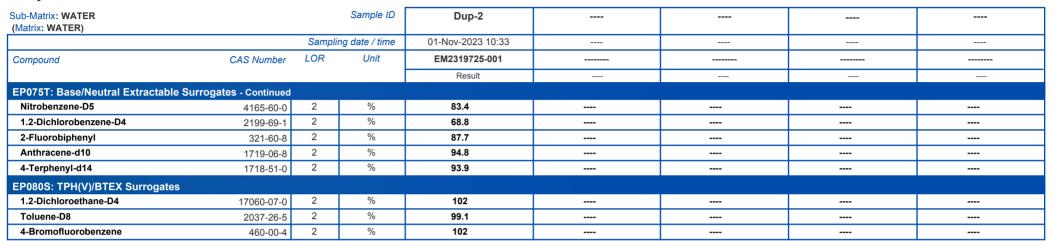
Page : 5 of 7
Work Order : EM2319725

Client : LBW CO PTY LTD

Project : 231445-01

ALS

Analytical Results


Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Dup-2		 	
(WIGUIA: WATER)		Sampli	ing date / time	01-Nov-2023 10:33		 	
Compound	CAS Number	LOR	Unit	EM2319725-001		 	
Compound	CAS Number	Lort	O'm	Result		 	
EP080/071: Total Petroleum Hydrocar	bono Continued			Nesuit			
^ C10 - C36 Fraction (sum)	DONS - Continued	50	μg/L	<50		 	
EP080/071: Total Recoverable Hydrod							
C6 - C10 Fraction	C6_C10	20	μg/L	<20		 	
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	μg/L	<20		 	
(F1)	00_010 B1EX		F-9:-				
>C10 - C16 Fraction		100	μg/L	<100		 	
>C16 - C34 Fraction		100	μg/L	<100		 	
>C34 - C40 Fraction		100	μg/L	<100		 	
^ >C10 - C40 Fraction (sum)		100	μg/L	<100		 	
^ >C10 - C16 Fraction minus Naphthalene		100	μg/L	<100		 	
(F2)							
EP080: BTEXN							
Benzene	71-43-2	1	μg/L	<1		 	
Toluene	108-88-3	2	μg/L	<2		 	
Ethylbenzene	100-41-4	2	μg/L	<2		 	
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2		 	
ortho-Xylene	95-47-6	2	μg/L	<2		 	
^ Total Xylenes		2	μg/L	<2		 	
^ Sum of BTEX		1	μg/L	<1		 	
Naphthalene	91-20-3	5	μg/L	<5		 	
EP075(SIM)S: Phenolic Compound Su	ırrogates						
Phenol-d6	13127-88-3	1.0	%	10.4		 	
2-Chlorophenol-D4	93951-73-6	1.0	%	59.7		 	
2.4.6-Tribromophenol	118-79-6	1.0	%	94.0		 	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	1.0	%	91.6		 	
Anthracene-d10	1719-06-8	1.0	%	94.7		 	
4-Terphenyl-d14	1718-51-0	1.0	%	94.9		 	
EP075S: Acid Extractable Surrogates							
2-Fluorophenol	367-12-4	2	%	11.4		 	
Phenol-d6	13127-88-3	2	%	10.1		 	
2-Chlorophenol-D4	93951-73-6	2	%	43.4		 	
2.4.6-Tribromophenol	118-79-6	2	%	78.7		 	
EP075T: Base/Neutral Extractable Su	rrogates						

Page : 6 of 7
Work Order : EM2319725

Client : LBW CO PTY LTD

Project : 231445-01

Analytical Results

Page : 7 of 7
Work Order : EM2319725

Client : LBW CO PTY LTD

Project : 231445-01

Surrogate Control Limits

Sub-Matrix: WATER	Recovery Limits (%)			
Compound	CAS Number	Low	High	
EP075(SIM)S: Phenolic Compound S	Surrogates			
Phenol-d6	13127-88-3	10	51	
2-Chlorophenol-D4	93951-73-6	30	114	
2.4.6-Tribromophenol	118-79-6	26	133	
EP075(SIM)T: PAH Surrogates				
2-Fluorobiphenyl	321-60-8	35	127	
Anthracene-d10	1719-06-8	44	122	
4-Terphenyl-d14	1718-51-0	44	124	
EP075S: Acid Extractable Surrogate	s			
2-Fluorophenol	367-12-4	6	83	
Phenol-d6	13127-88-3	10	65	
2-Chlorophenol-D4	93951-73-6	22	112	
2.4.6-Tribromophenol	118-79-6	22	125	
EP075T: Base/Neutral Extractable S	urrogates			
Nitrobenzene-D5	4165-60-0	37	115	
1.2-Dichlorobenzene-D4	2199-69-1	32	99	
2-Fluorobiphenyl	321-60-8	39	116	
Anthracene-d10	1719-06-8	49	123	
4-Terphenyl-d14	1718-51-0	47	129	
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	17060-07-0	73	129	
Toluene-D8	2037-26-5	70	125	
4-Bromofluorobenzene	460-00-4	71	129	

QUALITY CONTROL REPORT

Telephone

: +61881625130

Work Order : **EM2319725** Page : 1 of 8

Client : LBW CO PTY LTD Laboratory : Environmental Division Melbourne

Contact : Results Lbw Contact : Kieren Burns

Address : 184 MAGILL ROAD Address : 4 Westall Rd Springvale VIC Australia 3171

NORWOOD SA, AUSTRALIA 5067
Telephone ; ----

Project : 231445-01 Date Samples Received : 03-Nov-2023
Order number : 231445-01 Date Analysis Commenced : 06-Nov-2023

C-O-C number : 2023-11-01-ALS-AB | Issue Date : 13-Nov-2023

Sampler : ---Site : ----

Quote number : EM2023LBWENV0007

No. of samples received : 1
No. of samples analysed : 1

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Jarwis Nheu	Non-Metals Team Leader	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC

 Page
 : 2 of 8

 Work Order
 : EM2319725

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

Laboratami Dunlinata (DUD) Danart

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report LOR Unit Original Result Duplicate Result RPD (%) Acceptable RPD (%)						
Laboratory sample ID Sample ID Method: Compound CAS Number					Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 5413243)									
EM2319506-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.412	0.424	2.8	0% - 20%		
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.033	0.034	0.0	0% - 20%		
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	4.65	4.68	0.7	0% - 20%		
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.078	0.080	2.3	0% - 20%		
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.037	0.036	0.0	No Limit		
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		EG020A-F: Boron	7440-42-8	0.05	mg/L	0.19	0.18	0.0	No Limit		
EM2319721-009	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.012	0.012	0.0	0% - 50%		
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.031	0.032	4.5	0% - 20%		
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.002	0.002	0.0	No Limit		

 Page
 : 3 of 8

 Work Order
 : EM2319725

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

Laboratory Duplicate (DUP) Report Sub-Matrix: WATER Laboratory sample ID Sample ID CAS Number LOR Unit Original Result **Duplicate Result** RPD (%) Acceptable RPD (%) Method: Compound EG020F: Dissolved Metals by ICP-MS (QC Lot: 5413243) - continued EM2319721-009 Anonymous 7440-66-6 <0.005 0.005 < 0.005 0.0 No Limit FG020A-F: Zinc mq/L 7782-49-2 0.01 mg/L < 0.01 < 0.01 0.0 No Limit EG020A-F: Selenium 7440-62-2 0.01 ma/L < 0.01 < 0.01 0.0 No Limit EG020A-F: Vanadium 7440-42-8 0.05 <0.05 < 0.05 0.0 No Limit EG020A-F: Boron mg/L EG035F: Dissolved Mercury by FIMS (QC Lot: 5413246) EM2319725-001 Dup-2 7439-97-6 0.0001 < 0.0001 < 0.0001 0.0 No Limit EG035F: Mercury mg/L EM2319778-001 Anonymous 7439-97-6 0.0001 < 0.0001 < 0.0001 0.0 No Limit EG035F: Mercury mg/L EK026SF: Total CN by Segmented Flow Analyser (QC Lot: 5405289) FM2319601-001 Anonymous 57-12-5 0.004 < 0.004 < 0.004 No Limit EK026SF: Total Cyanide mg/L 0.0 FM2319697-002 Anonymous EK026SF: Total Cvanide 57-12-5 0.004 mg/L < 0.004 < 0.004 0.0 No I imit EK055G: Ammonia as N by Discrete Analyser (QC Lot: 5413355) EM2319744-001 Anonymous 7664-41-7 0.01 1.49 1.48 0.0 0% - 20% EK055G: Ammonia as N mg/L FM2319659-001 7664-41-7 0.01 0.03 0.04 No Limit Anonymous ma/L 0.0 EK055G: Ammonia as N EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QC Lot; 5413354) EM2319701-002 0% - 50% Anonymous EK059G: Nitrite + Nitrate as N 0.01 mg/L 0.11 0.10 0.0 EM2319659-001 Anonymous 0.01 4.71 4.88 3.7 0% - 20% EK059G: Nitrite + Nitrate as N mq/L EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QC Lot: 5414322) EM2319722-001 Anonymous 0.1 57.6 61.9 7.2 0% - 20% EK061G: Total Kieldahl Nitrogen as N mq/L EM2319724-007 Anonymous 0.1 mg/L 0.7 0.7 0.0 No Limit EK061G: Total Kieldahl Nitrogen as N EK067G: Total Phosphorus as P by Discrete Analyser (QC Lot: 5414321) EM2319674-003 0.07 0.10 34.8 Anonymous EK067G: Total Phosphorus as P 0.01 mg/L No Limit EM2319724-005 0.07 0.10 28.6 Anonymous 0.01 EK067G: Total Phosphorus as P mg/L No Limit EK085M: Sulfide as S2- (QC Lot: 5411535) EM2319565-002 Anonymous 18496-25-8 0.1 mg/L < 0.1 < 0.1 0.0 No Limit EK085: Sulfide as S2-FM2319768-002 Anonymous EK085: Sulfide as S2-18496-25-8 0.1 mg/L 1.1 1.1 0.0 No Limit EP080/071: Total Petroleum Hydrocarbons (QC Lot: 5405084) EM2319793-004 100 120 270 75.7 No Limit Anonymous μg/L EP071: C15 - C28 Fraction <50 230 129 50 μg/L No Limit EP071: C10 - C14 Fraction 50 <50 140 92.7 No Limit μg/L EP071: C29 - C36 Fraction EM2319792-005 100 <100 <100 0.0 No Limit μg/L Anonymous EP071: C15 - C28 Fraction 50 μg/L <50 < 50 0.0 No Limit EP071: C10 - C14 Fraction ___ 19.7 50 μg/L 180 150 No Limit EP071: C29 - C36 Fraction EP080/071: Total Petroleum Hydrocarbons (QC Lot: 5410324) FM2319674-003 <20 0.0 No Limit Anonymous 20 <20 EP080: C6 - C9 Fraction μg/L FM2319721-004 Anonymous 20 μg/L <20 <20 0.0 No I imit EP080: C6 - C9 Fraction EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC Lot: 5405084) EM2319793-004 Anonymous EP071: >C10 - C16 Fraction 100 μg/L <100 220 76.4 No Limit EP071: >C16 - C34 Fraction 100 μg/L 100 290 95.0 No Limit

 Page
 : 4 of 8

 Work Order
 : EM2319725

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

Laboratory Duplicate (DUP) Report Sub-Matrix: WATER Laboratory sample ID Sample ID CAS Number LOR Unit Method: Compound Original Result **Duplicate Result** RPD (%) Acceptable RPD (%) EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC Lot: 5405084) - continued EM2319793-004 Anonymous 100 <100 120 19.1 No Limit μg/L EP071: >C34 - C40 Fraction ----EM2319792-005 Anonymous ---100 μg/L <100 <100 0.0 No Limit EP071: >C10 - C16 Fraction 220 24.8 ---100 μg/L 170 No Limit EP071: >C16 - C34 Fraction 100 140 120 12.5 No Limit μg/L EP071: >C34 - C40 Fraction EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC Lot: 5410324) EM2319674-003 Anonymous C6 C10 20 μg/L <20 <20 0.0 No Limit EP080: C6 - C10 Fraction C6_C10 EM2319721-004 Anonymous 20 μg/L <20 <20 0.0 No Limit EP080: C6 - C10 Fraction EP080: BTEXN (QC Lot: 5410324) EM2319674-003 Anonymous 71-43-2 μg/L <1 0.0 No Limit EP080: Benzene 1 <1 108-88-3 2 <2 <2 0.0 No Limit EP080: Toluene μg/L 2 100-41-4 <2 <2 0.0 No Limit EP080: Ethylbenzene μg/L 2 μg/L <2 <2 0.0 No Limit EP080: meta- & para-Xylene 108-38-3 106-42-3 95-47-6 2 μg/L <2 <2 0.0 No Limit EP080: ortho-Xylene 91-20-3 5 <5 <5 0.0 No Limit μq/L EP080: Naphthalene EM2319721-004 71-43-2 Anonymous 1 μq/L <1 <1 0.0 No Limit EP080: Benzene 108-88-3 0.0 No Limit 2 μg/L 9 8 EP080: Toluene 100-41-4 2 <2 <2 0.0 No Limit μg/L EP080: Ethylbenzene 108-38-3 2 μq/L <2 <2 0.0 No Limit EP080: meta- & para-Xylene 106-42-3 2 95-47-6 μg/L <2 <2 0.0 No Limit EP080: ortho-Xylene 91-20-3 5 μg/L <5 <5 0.0 No Limit EP080: Naphthalene

 Page
 : 5 of 8

 Work Order
 : EM2319725

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 5413243)								
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	97.8	89.0	111
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	97.2	85.0	112
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	97.7	83.6	113
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	98.6	83.5	111
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	96.1	83.2	109
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	96.8	84.3	110
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	96.6	83.1	107
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	100	84.6	108
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	98.2	84.8	110
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	97.0	84.3	110
EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	96.3	82.3	113
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	99.0	83.7	110
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	99.6	86.3	112
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	98.0	85.4	115
EG035F: Dissolved Mercury by FIMS (QCLot: 5413246)								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	103	71.6	116
EK026SF: Total CN by Segmented Flow Analyser (QCLot:	5405289)		1					
EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	0.2 mg/L	104	77.7	116
EK055G: Ammonia as N by Discrete Analyser (QCLot: 541	3355)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	103	90.0	110
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analy	ser (QCLot: 54	13354)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	96.0	90.0	110
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QC	CL of: 5414322)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	5 mg/L	98.4	70.0	117
EK067G: Total Phosphorus as P by Discrete Analyser (QC	Lot: 5414321)							
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	2.21 mg/L	94.0	71.9	114
EK085M: Sulfide as S2- (QCLot: 5411535)					-	2 112		
EK085: Sulfide as S2-	18496-25-8	0.1	mg/L	<0.1	0.5 mg/L	99.5	81.9	116
EP075(SIM)A: Phenolic Compounds (QCLot: 5405086)						55.5		110
EP075(SIM)A: Prienolic Compounds (QCLot: 5405086) EP075(SIM): Phenol	108-95-2	1	μg/L	<1.0	5 μg/L	41.5	17.8	51.1
Li orogonny, i nonor		· · · · · · · · · · · · · · · · · · ·	F-5:-		- 1-3	71.0		51.1

 Page
 : 6 of 8

 Work Order
 : EM2319725

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

ALS

Laboratory Control Spike (LCS) Report Method Blank (MB) Sub-Matrix: WATER Report Spike Spike Recovery (%) Acceptable Limits (%) CAS Number LOR Unit Concentration LCS Low Method: Compound Result High EP075(SIM)A: Phenolic Compounds (QCLot: 5405086) - continued EP075(SIM): 2-Chlorophenol 1 μg/L <1.0 5 µg/L 43.2 86.5 107 95-48-7 1 <1.0 5 µg/L 39.2 μg/L EP075(SIM): 2-Methylphenol 78.5 98.7 2 1319-77-3 < 2.0 35.5 EP075(SIM): 3- & 4-Methylphenol µg/L 10 μg/L 74.5 91.3 88-75-5 1 <1.0 34.4 μg/L 5 µg/L EP075(SIM): 2-Nitrophenol 79.8 124 105-67-9 1 <1.0 44.4 μg/L 5 µg/L EP075(SIM): 2.4-Dimethylphenol 86.9 112 120-83-2 1 μg/L <1.0 5 µg/L 45.3 EP075(SIM): 2.4-Dichlorophenol 88.1 115 87-65-0 1 <1.0 44.3 µg/L 5 µg/L EP075(SIM): 2.6-Dichlorophenol 88.0 116 59-50-7 1 <1.0 5 µg/L 46.6 EP075(SIM): 4-Chloro-3-methylphenol μg/L 93.2 117 88-06-2 1 μg/L <1.0 38.2 5 µg/L EP075(SIM): 2.4.6-Trichlorophenol 88.4 122 95-95-4 43.2 1 µg/L <1.0 5 µg/L 94.4 123 EP075(SIM): 2.4.5-Trichlorophenol 87-86-5 2 µg/L <2.0 10 µg/L 48.1 EP075(SIM): Pentachlorophenol 48.5 130 EP075I: Organochlorine Pesticides (QCLot: 5405088) EP075: alpha-BHC 319-84-6 2 μg/L <2 10 µg/L 56.2 80.8 112 2 319-85-7 μg/L <2 10 μg/L 56.2 EP075: beta-BHC 113 83.7 58-89-9 2 <2 10 μg/L 55.2 EP075: gamma-BHC μg/L 86.0 113 319-86-8 2 <2 EP075: delta-BHC 10 μg/L 52.6 µg/L 86.4 117 76-44-8 2 <2 10 μg/L 53.4 EP075: Heptachlor μg/L 84.3 111 2 EP075: Aldrin 309-00-2 μg/L <2 10 µg/L 54.0 88.7 112 1024-57-3 2 <2 54.2 EP075: Heptachlor epoxide μg/L 10 µg/L 113 81.8 959-98-8 2 <2 10 μg/L 49.3 EP075: alpha-Endosulfan μg/L 108 122 72-55-9 2 EP075: 4.4`-DDE μg/L <2 10 µg/L 56.0 82.2 121 2 60-57-1 <2 55.2 EP075: Dieldrin μg/L 10 μg/L 88.5 118 72-20-8 2 μg/L <2 10 µg/L 52.7 EP075: Endrin 84.1 121 33213-65-9 2 <2 55.1 μg/L 10 µg/L EP075: beta-Endosulfan 86.1 119 2 72-54-8 <2 55.4 EP075: 4.4`-DDD µg/L 10 μg/L 86.3 120 1031-07-8 2 <2 49.6 μg/L 10 μg/L EP075: Endosulfan sulfate 85.2 123 50-29-3 4 <4 47.8 μg/L 10 μg/L EP075: 4.4\`-DDT 92.4 127 EP080/071: Total Petroleum Hydrocarbons (QCLot: 5405084) 47.2 50 <50 4560 µg/L EP071: C10 - C14 Fraction μg/L 66.6 122 EP071: C15 - C28 Fraction 100 μg/L <100 16200 µg/L 70.7 52.9 131 50 μg/L <50 8650 µg/L 50.4 EP071: C29 - C36 Fraction 80.3 127 EP080/071: Total Petroleum Hydrocarbons (QCLot: 5410324) 20 <20 66.2 μg/L 360 µg/L EP080: C6 - C9 Fraction 71.8 134 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 5405084)

 Page
 : 7 of 8

 Work Order
 : EM2319725

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Recoverable Hydrocarbons - NEF	PM 2013 Fractions (QC	Lot: 5405084) - co	ontinued					
EP071: >C10 - C16 Fraction		100	μg/L	<100	6190 μg/L	78.5	49.1	125
EP071: >C16 - C34 Fraction		100	μg/L	<100	22200 μg/L	68.9	51.6	128
EP071: >C34 - C40 Fraction		100	μg/L	<100	1520 μg/L	88.0	47.2	130
EP080/071: Total Recoverable Hydrocarbons - NEP	M 2013 Fractions (QC	Lot: 5410324)						
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	450 μg/L	77.8	66.2	132
EP080: BTEXN (QCLot: 5410324)								
EP080: Benzene	71-43-2	1	μg/L	<1	20 μg/L	73.8	68.8	127
EP080: Toluene	108-88-3	2	μg/L	<2	20 μg/L	77.2	72.9	129
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	20 μg/L	77.4	71.7	130
EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	40 μg/L	79.4	72.3	136
	106-42-3							
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	20 μg/L	82.7	75.9	134
EP080: Naphthalene	91-20-3	5	μg/L	<5	5 μg/L	78.9	68.3	131

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ma	Matrix Spike (MS) Report						
				Spike	SpikeRecovery(%)	Acceptable l	Limits (%)				
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High				
EG020F: Dissolved	Metals by ICP-MS (QCLot: 5413243)										
EM2319506-001	Anonymous	EG020A-F: Arsenic	7440-38-2	0.2 mg/L	115	76.6	124				
		EG020A-F: Beryllium	7440-41-7	0.2 mg/L	76.9	73.0	120				
	EG020A-F: Barium	7440-39-3	0.2 mg/L	94.8	75.0	127					
		EG020A-F: Cadmium	7440-43-9	0.05 mg/L	# 54.9	74.6	118				
		EG020A-F: Chromium	7440-47-3	0.2 mg/L	82.1	71.0	135				
		EG020A-F: Cobalt	7440-48-4	0.2 mg/L	90.6	78.0	132				
		EG020A-F: Copper	7440-50-8	0.2 mg/L	# 36.2	76.0	130				
		EG020A-F: Lead	7439-92-1	0.2 mg/L	# 34.1	75.0	133				
		EG020A-F: Manganese	7439-96-5	0.2 mg/L	# Not	64.0	134				
					Determined						
		EG020A-F: Nickel	7440-02-0	0.2 mg/L	86.9	73.0	131				
		EG020A-F: Vanadium	7440-62-2	0.2 mg/L	# 57.2	73.0	131				
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	# 66.8	75.0	131				
EG035F: Dissolved	l Mercury by FIMS (QCLot: 5413246)										
EM2319769-001	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	96.8	70.0	120				

 Page
 : 8 of 8

 Work Order
 : EM2319725

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

Sub-Matrix: WATER	ub-Matrix: WATER					t	
				Spike	SpikeRecovery(%)	Acceptable L	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK026SF: Total CI	N by Segmented Flow Analyser (QCLot: 5405289)						
EM2319601-002	Anonymous	EK026SF: Total Cyanide	57-12-5	0.4 mg/L	80.7	70.0	130
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 5413355)						
EM2319659-001	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	104	70.0	130
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 541	3354)					
EM2319659-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	# Not	70.0	130
					Determined		
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 5414322)						
EM2319722-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		10 mg/L	77.9	70.0	130
EK067G: Total Pho	sphorus as P by Discrete Analyser (QCLot: 5414321)						
EM2319674-017	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	102	70.0	130
EK085M: Sulfide as	S S2- (QCLot: 5411535)						
EM2319601-001	Anonymous	EK085: Sulfide as S2-	18496-25-8	0.5 mg/L	94.8	70.0	130
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 5405084)						
EM2319792-005	Anonymous	EP071: C10 - C14 Fraction		4460 μg/L	88.7	48.0	126
		EP071: C15 - C28 Fraction		14300 µg/L	99.2	51.7	132
		EP071: C29 - C36 Fraction		7300 μg/L	118	50.5	127
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 5410324)						
EM2319674-017	Anonymous	EP080: C6 - C9 Fraction		280 μg/L	78.3	33.9	126
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 5405084)					
EM2319792-005	Anonymous	EP071: >C10 - C16 Fraction		6090 μg/L	101	48.0	128
		EP071: >C16 - C34 Fraction		19400 µg/L	97.5	50.4	130
		EP071: >C34 - C40 Fraction		1300 μg/L	128	47.4	131
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 5410324)					
EM2319674-017	Anonymous	EP080: C6 - C10 Fraction	C6_C10	330 μg/L	77.2	34.0	122
EP080: BTEXN (Q	CLot: 5410324)						
EM2319674-017	Anonymous	EP080: Benzene	71-43-2	20 μg/L	85.5	56.3	133
		EP080: Toluene	108-88-3	20 μg/L	88.9	60.4	132

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM2319725** Page : 1 of 8

Client : LBW CO PTY LTD Laboratory : Environmental Division Melbourne

 Contact
 : Results Lbw
 Telephone
 : +61881625130

 Project
 : 231445-01
 Date Samples Received
 : 03-Nov-2023

 Site
 : -- Issue Date
 : 13-Nov-2023

Sampler : --- No. of samples received : 1
Order number : 231445-01 No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

 Page
 : 2 of 8

 Work Order
 : EM2319725

 Client
 : LBW CO PTY LTD

Project : 231445-01

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG020F: Dissolved Metals by ICP-MS	EM2319506001	Anonymous	Cadmium	7440-43-9	54.9 %	74.6-118%	Recovery less than lower data quality
							objective
EG020F: Dissolved Metals by ICP-MS	EM2319506001	Anonymous	Copper	7440-50-8	36.2 %	76.0-130%	Recovery less than lower data quality
							objective
EG020F: Dissolved Metals by ICP-MS	EM2319506001	Anonymous	Lead	7439-92-1	34.1 %	75.0-133%	Recovery less than lower data quality
							objective
EG020F: Dissolved Metals by ICP-MS	EM2319506001	Anonymous	Manganese	7439-96-5	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EG020F: Dissolved Metals by ICP-MS	EM2319506001	Anonymous	Vanadium	7440-62-2	57.2 %	73.0-131%	Recovery less than lower data quality
							objective
EG020F: Dissolved Metals by ICP-MS	EM2319506001	Anonymous	Zinc	7440-66-6	66.8 %	75.0-131%	Recovery less than lower data quality
							objective
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ar	EM2319659001	Anonymous	Nitrite + Nitrate as N		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type		Count		e (%)	Quality Control Specification
Method	QC 0	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	7	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds	0	1	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH/Phenols (GC/MS - SIM)	0	7	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: 🗴	= Hold	ling time	breach; ✓	= Within h	olding time.
---------------	--------	-----------	-----------	------------	--------------

			Analysis		
Container / Client Sample ID(s) Date extracted	ion Evaluation	Date analysed	Due for analysis	Evaluation	

 Page
 : 3 of 8

 Work Order
 : EM2319725

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

Matrix: WATER

Evaluation: × = Holding time breach: ✓ = Within holding time.

Matrix: WATER				Evaluation	: × = Holding time	breach; ✓ = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)							
Dup-2	01-Nov-2023				09-Nov-2023	29-Apr-2024	✓
EG035F: Dissolved Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)							
Dup-2	01-Nov-2023				10-Nov-2023	29-Nov-2023	✓
EK026SF: Total CN by Segmented Flow Analyser							
Black Opaque Plastic Bottle - NaOH (EK026SF)	04 Nov. 0000				00 Nov. 0000	15-Nov-2023	
Dup-2	01-Nov-2023				08-Nov-2023	15-1107-2023	✓
EK055G: Ammonia as N by Discrete Analyser	<u> </u>		ı		l	<u> </u>	
Clear Plastic Bottle - Sulfuric Acid (EK055G) Dup-2	01-Nov-2023				11-Nov-2023	29-Nov-2023	1
	01-1404-2020				11-1104-2020	20 1101 2020	V
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser Clear Plastic Bottle - Sulfuric Acid (EK059G)	<u> </u>						
Dup-2	01-Nov-2023				11-Nov-2023	29-Nov-2023	1
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G)							
Dup-2	01-Nov-2023	10-Nov-2023	29-Nov-2023	✓	11-Nov-2023	29-Nov-2023	✓
EK067G: Total Phosphorus as P by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK067G)							
Dup-2	01-Nov-2023	10-Nov-2023	29-Nov-2023	✓	11-Nov-2023	29-Nov-2023	✓
EK085M: Sulfide as S2-							
Clear Plastic Bottle - Zinc Acetate/NaOH (EK085)						00 Nov. 0000	
Dup-2	01-Nov-2023				08-Nov-2023	08-Nov-2023	✓
EP075(SIM)A: Phenolic Compounds						ı	
Amber Glass Bottle - Unpreserved (EP075(SIM))	01-Nov-2023	08-Nov-2023	08-Nov-2023	1	08-Nov-2023	18-Dec-2023	1
Dup-2	01-1404-2020	00-1107-2020	00 1107 2020	•	00-N0V-2020	10 BC0 2020	V
EP075I: Organochlorine Pesticides	<u> </u>	<u> </u>	l		<u> </u>	<u> </u>	
Amber Glass Bottle - Unpreserved (EP075) Dup-2	01-Nov-2023	08-Nov-2023	08-Nov-2023	1	08-Nov-2023	18-Dec-2023	✓
EP080/071: Total Petroleum Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP071)							
Dup-2	01-Nov-2023	08-Nov-2023	08-Nov-2023	✓	08-Nov-2023	18-Dec-2023	✓
Clear glass VOC vial - HCl (EP080)							
Dup-2	01-Nov-2023	09-Nov-2023	15-Nov-2023	✓	09-Nov-2023	15-Nov-2023	✓
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071)	04 Nov. 0000	00 Nov. 0000	08-Nov-2023	,	00 No: 0000	18-Dec-2023	
Dup-2	01-Nov-2023	08-Nov-2023	UO-INUV-ZUZ3	✓	08-Nov-2023	10-10-023	✓
Clear glass VOC vial - HCI (EP080) Dup-2	01-Nov-2023	09-Nov-2023	15-Nov-2023	1	09-Nov-2023	15-Nov-2023	1
Sup 2	27.1.07. 2020	17.1.0. 2020			13 2020		V

 Page
 : 4 of 8

 Work Order
 : EM2319725

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

Matrix: WATER Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Method	Sample Date	E)	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080: BTEXN							
Clear glass VOC vial - HCI (EP080) Dup-2	01-Nov-2023	09-Nov-2023	15-Nov-2023	✓	09-Nov-2023	15-Nov-2023	✓

 Page
 : 5 of 8

 Work Order
 : EM2319725

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: × = Quality Control frequency not within specification: ✓ = Quality Control frequency within specification.

Matrix: WATER							not within specification ; ✓ = Quality Control frequency within specification
Quality Control Sample Type	A		ount		Rate (%)	E . (. ()	Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Ammonia as N by Discrete analyser	EK055G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	8	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	7	0.00	10.00	3£	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds	EP075	0	1	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
Sulfide as S2-	EK085	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Ammonia as N by Discrete analyser	EK055G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds	EP075	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfide as S2-	EK085	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds	EP075	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfide as S2-	EK085	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard

 Page
 : 6 of 8

 Work Order
 : EM2319725

 Client
 : LBW CO PTY LTD

231445-01

Project

TRH Volatiles/BTEX

NEPM 2013 B3 & ALS QC Standard

Matrix: WATER Evaluation: * = Quality Control frequency not within specification; * = Quality Control frequency within specification. Quality Control Sample Type Count Rate (%) Quality Control Specification Method Evaluation Analytical Methods QC Regular Expected Actual Method Blanks (MB) - Continued TRH - Semivolatile Fraction 20 5.00 NEPM 2013 B3 & ALS QC Standard EP071 1 5.00 1 TRH Volatiles/BTEX 18 NEPM 2013 B3 & ALS QC Standard 1 5.56 5.00 EP080 Matrix Spikes (MS) Ammonia as N by Discrete analyser EK055G 1 19 5.26 5.00 1 NEPM 2013 B3 & ALS QC Standard Dissolved Mercury by FIMS 1 8 EG035F 12.50 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A 1 18 5.56 5.00 NEPM 2013 B3 & ALS QC Standard EG020A-F 1 15 Nitrite and Nitrate as N (NOx) by Discrete Analyser EK059G 1 6.67 5.00 NEPM 2013 B3 & ALS QC Standard 1 PAH/Phenols (GC/MS - SIM) 0 7 NEPM 2013 B3 & ALS QC Standard EP075(SIM) 0.00 5.00 ¥ Semivolatile Organic Compounds 0 1 EP075 0.00 5.00 NEPM 2013 B3 & ALS QC Standard × Sulfide as S2-1 11 9.09 5.00 NEPM 2013 B3 & ALS QC Standard EK085 1 20 Total Cyanide by Segmented Flow Analyser EK026SF 1 5.00 5.00 1 NEPM 2013 B3 & ALS QC Standard Total Kjeldahl Nitrogen as N By Discrete Analyser 1 17 NEPM 2013 B3 & ALS QC Standard 5.88 5.00 EK061G 1 Total Phosphorus as P By Discrete Analyser 1 17 5.88 5.00 NEPM 2013 B3 & ALS QC Standard EK067G 1 TRH - Semivolatile Fraction 1 20 NEPM 2013 B3 & ALS QC Standard 5.00 ✓ EP071 5.00

5.56

5.00

18

EP080

1

 Page
 : 7 of 8

 Work Order
 : EM2319725

 Client
 : LBW CO PTY LTD

 Project
 : 231445-01

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Total Cyanide by Segmented Flow Analyser	EK026SF	WATER	In house: Referenced to APHA 4500-CN C&O / ASTM D7511 / ISO 14403. Sodium hydroxide preserved samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)

Page : 8 of 8 EM2319725 Work Order : LBW CO PTY LTD Client Project 231445-01

Analytical Methods	Method	Matrix	Method Descriptions
Sulfide as S2-	EK085	WATER	In house: Referenced to APHA 4500-S2- D. Sulfide species present in water samples are immediately precipitated when collected in pretreated caustic/zinc acetate preserved sample containers. The sulphides are coloured using methylene blue indicator. Non-detects may be screened by comparison against a standard at half-LOR, otherwise samples are measured using UV-VIS detection at 664nm. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)
Semivolatile Organic Compounds	EP075	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

Company	LBWco			Labora	atory					Report To				Billing			72							
Project ID	231445-	01			ation Lab	ALS				Primary	LBWco Laborato	ory Results		Purchase	e Order#	23144	45-01							
Project Name			akes Dewatering	Profession and	uote No	10000	LBWENV	0007		Contact	results@lbwco.d			Org to b	e Billed	LBWc	LBWco							
	Assessm			Lab Co		ALS Me	bourne (03854996	500)	Secondary	Tess O'Leary			Bill To		financ	ce@lbwco.com.au							
SDG/COC#	10581041 1500	-01-ALS-AB						ne@alsgl		Contact	tess.oleary@lbw	co.com.au		Attentio	ttention T		Tess O'Leary							
Request / Versio	n 1/1		-,										Mark Ournance X											
SPECIAL INSTRUCE EK026 CYANIDE (URNAROUND REQUEST: 5 DAYS PECIAL INSTRUCTIONS: PLEASE ALSO ASSIGN ANAL K026 CYANIDE (TOTAL) AND EK086 SULFITE. SAMPLED BY: LBWCO TAB1			DR definition	ED041G:Sulfate (Turbidimetric) as SO4 2 by Discrete Analyser	EK085M:Sulfide as S 2-	P030:BOD		EP075 SIM Phenols only:SIM - Phenols only	EP0751:SVOC - Organochlorine Pesticides	NT-08A:Total Nitrogen + NO2 + NO3 + NH3 + Total P + Reactive P	W-03:15 Metals (NEPM Suite)	W-04:TRH/BTEXN			Q	COMMENTS							
FIELD ID		MATRIX	DATE	200	Turk SO4	EK08	EP03		EP075 only:SI only	P07 Drga	Zitro ZO3	W-03:1 (NEPM	\ \ \ \ \ \			Ногр								
Dup-2		Water	01/11/2023 11:0		/	- · · ·		1	1	1	7	1		1			Pef Comment							
																							Environmental Melbourne Work Order Ref	ference
																-00	EM231	9725						
																		W4						
																		8						
																		111 BE						
Hand Over			Reli	inquish	ed	R	eceived		R	telinquished		Received			e-Requ	e:	Telephone: + 61-3-8549 (9600						
# of Delivery Bo	ixes 1	5	Signature												Name									
Cooled	no	1	Name Anto	onio Brit	:0										Org	-								
Con Note	-	(Org -												Date	141								
		1	Date 01/1	11/2023	11:03AM																			
Comments D	etails																							
SAMPLES		Con	MENTS																					
Du	p-2	Alc	o analyse for EK	026 and	4 EKUSE																			

184 Magill Road, Norwood SA 5067 PO Box 225 Stepney SA 5069 P: 08 8331 2417 F: 08 8331 2415

SAMPLE REGISTER & CHAIN OF CUSTODY

Project Title: Riverlea Saltwater Lakes Dewatering Job Number: 231445-01

Project manager: Tess O'Leary
Email: <u>fess.oleary@lbwco.com.au</u>
Phone: 8331 2417
Send results to: <u>results@lbwco.com.au</u>, <u>lbwco@esdat.com.au</u>
Send invoice to: <u>finance@lbwco.com.au</u>

Primary Lab: Eurofins Lab Quote Ref: 230303LBWS

Secondary lab: ALS

EN/111/23

COC Reference: (sample delivery group) 231445-01_COC_ 20231102

					Sample Details 1
					Sample Details 2
Signature: 3/4 (ruco	Received by: Date/Time Received:	Relingished by: Date/Time Relinquished: Signature:	Date/Time Received: Signature:	Signature: Courier and consignment number: Received by:	Refinqished by: O'Le Quy Date/Time Refinquished:

Page

Appendix L Dewatering Storage Modelling

Calculations - Construction program, dewatering time period, dewatering flows per day, dewatering volumes, evaporation losses, period to fill lined bays

SWL1 Bay	(exc batters) (m³)	Excavation Timeframe (Days, @ 5,400 m³/day)	(weeks, @ 6-days/wk)	Dewatering Period for Excavation (Days)	(m²)	@1500 m ² /Day)	Liner Installation Period (weeks, @ 6-days/wk)		depth (m³)	Volume (% at E40) (m³)
1	91320	16.91	2.8	20	20760	13.84	2.3	16	62,280	43,596
2	93900	17.39	2.9	20	22740	15.16	2.5	18	68,220	47,754
3	112935	20.91	3.5	24	29280	19.52	3.3	23	87,840	61,488
4	78900	14.61	2.4	17	17880	11.92	2.0	14	53,640	37,548
5	87150	16.14	2.7	19	19980	13.32	2.2	16	59,940	41,958
6	38640	7.16	1.2	8	13200	8.8	1.5	10.3	39,600	27,720
Total			15.5	109			13.8	96	371,520	260,064

		Dewatering to 0.5					
Bay	Dewatering On	mAHD Complete	Excavation Start	Excavation Finish	Liner Install Start	Liner Install Finish	Dewatering Off
1	0	30	30	50	45	61	65
2	0	30	30	50	62	80	84
3	20	50	51	75	81	104	109
4	50	80	76	93	105	119	123
5	80	110	111	130	120	135	139
6	100	130	131	139	136	146	147

				Flow Rate P	er Day (m³)					
Day From	Day To	Bay 1	Bay 2	Bay 3	Bay 4	Bay 5	Bay 6	Flow Rate (m³/Day)	Dewatering Volume (m³)	Cumulative Volume (m³)
0	10	5747						5,747	57,466	57,466
10	21	3424	3424					6,847	75,321	75,321
21	51	1119	1119	1119				3,356	100,684	158,149
51	65	970	970	970	970			3,879	54,299	212,448
65	81		573	573	573			1,719	27,510	239,958
81	84		1505	1505	1505	1505		6,020	18,059	258,017
84	101			764	764	764		2,291	38,947	296,964
101	109			673	673	673	673	2,694	21,552	318,516
109	123				520	520	520	1,559	21,821	340,338
123	139					532	532	1,065	17,038	357,376
139	147					_	393	393	3,147	360,522
								TOTAL	435,844	<u>.</u>

Day From	Day To	Action
63	64	Fill Aquadam to Bay 1
65	70	Fill Bay 1 with groundwater
-	65	Turn off Bay 1
82	83	Fill Aquadam to Bay 2
83	85	Remove Aquadam 1
84	89	Fill Bay 2 with groundwater
-	84	Turn off Bay 2
106	107	Fill Aquadam to Bay 3
107	109	Remove Aquadam 2
108	114	Fill Bay 3 with groundwater
-	109	Turn off Bay 3
121	122	Fill Aquadam to Bay 4
122	124	Remove Aquadam 3
123	127	Fill Bay 4 with groundwater
-	123	Turn off Bay 4
137	139	Remove Aquadam 4
139	144	Fill Bay 5 with groundwater
-	139	Turn off Bay 5
147	151	Fill Bay 6 with groundwater
-	147	Turn off Bay 6

Dewatering On Dewatering Off

Filling	of	Lined	Bays
---------	----	-------	------

70% % of bay to fill with groundwater
10000 m³/Day Flow rate to fill bay with groundwater

Filling of Aquadam (Coffer dam)

 21000 L/m
 3.7m tall Aquadam - Volume

 128 m
 Aquadam 1 length

 2688 m³
 Aquadam 1 volume

 2 Days
 Av time to fill Aquadam

 1500 m³/Day
 Flow rate to fill Aquadam

 2 Days
 Av time to remove Aquadam

Earthworks Demand for Dewatered Groundwater

2 Moxies/Day 40 m³/load 8 loads/Day 640 m³

SWL 2 Evaporation Losses

Area 103000 m2 Filled surface area 51500 m2 50% Spring pan evap 500 mm 800 mm Summer pan evap Autumn pan evap 400 mm Correction factor 0.75 Pan evap to pond evap 19312.5 m3/90 days Spring vol. loss 220 m3/day Summer vol. loss 30900 m3/90 days 350 m3/day Autumn vol. loss 15450 m3/90 days 180 m3/day

http://www.bom.gov.au/jsp/ncc/climate_averages/evaporation/ind_ex.jsp?period=an#maps

Calculations - Daily dewatering flows in/out of SWL2 + Channels storage, Filling of lined bays

		Bay 1	Bay 1 Bay 2					Bay 3 Bay 4			Bay 5				Bay 6			
Days	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	FIII Bay	Dewater	Fill	FIII Bay	Dewater	Fill Aquadam	FIII Bay
1	5747																	
2	5747																	
3	5747																	
4	5747	-	-										_					<u> </u>
5 6	5747 5747	-	-															
7	5747																	
8	5747																	
9	5747																	
10	5747																	
11	3424			3424														
12	3424			3424														
13	3424		-	3424														
14	3424			3424	\vdash				\vdash			-	<u> </u>					<u> </u>
15 16	3424 3424			3424 3424					\vdash		_	-	<u> </u>	_				<u> </u>
17	3424		-	3424	\vdash		\vdash		\vdash									<u> </u>
18	3424	-		3424														
19	3424			3424														
20	3424			3424														
21	3424			3424														
22	1119			1119			1119											
23	1119			1119			1119											
24	1119			1119			1119											
25	1119			1119			1119											
26	1119		-	1119			1119											
27	1119			1119			1119											<u> </u>
28 29	1119			1119 1119			1119 1119											-
30	1119			1119			1119											
31	1119			1119			1119											
32	1119			1119			1119											
33	1119			1119			1119											
34	1119			1119			1119											
35	1119			1119			1119											
36	1119			1119			1119											
37	1119			1119			1119											
38_	1119			1119			1119											<u> </u>
39	1119		-	1119			1119		\vdash			-	<u> </u>					<u> </u>
40 41	1119		-	1119	\vdash		1119 1119		\vdash									<u> </u>
42	1119			1119			1119											
43	1119			1119			1119											
44	1119			1119			1119											
45	1119			1119			1119					İ			İ			
46	1119			1119			1119											
47	1119			1119			1119											
48	1119			1119			1119											
49_	1119			1119	\vdash		1119		\square									
50	1119		-	1119	\vdash		1119		\vdash			-	_					<u> </u>
51	1119 970		-	1119 970			1119 970		\vdash	970		-	<u> </u>					<u> </u>
52 53	970		-	970	\vdash		970		\vdash	970								<u> </u>
54 54	970	-		970			970			970	_	 		_	-			
55	970			970			970			970								
56	970	-		970			970			970								
57	970		$\neg \neg$	970			970			970								

	SWL2 + Cho	annels Storage		Capacity
Daily Volume Stored (m³)	Less Evaporation (m3)	Less Earthworks Demand (m3)	Cumulative Volume (m3)	300000
5747	-220	-640	4887	295113
5747	-220	-640	9773	290227
5747	-220	-640	14660	285340
5747	-220	-640	19546	280454
5747	-220	-640	24433	275567
5747	-220	-640	29319	270681
5747	-220	-640	34206	265794
5747	-220	-640	39093	260907
5747	-220	-640	43979	256021
5747	-220	-640	48866	251134
6847	-220	-640	54853	245147
6847	-220	-640	60840	239160
6847	-220	-640	66828	233172
6847	-220	-640	72815	227185
6847	-220	-640	78803	221197
6847	-220	-640	84790	215210
6847	-220	-640	90777	209223
6847	-220	-640	96765	203235
6847	-220	-640	102752	197248
6847	-220	-640	108739	191261
6847	-220	-640	114727	185273
3356	-220	-640	117223	182777
3356	-220	-640	119719	180281
3356	-220	-640	122215	177785
3356	-220	-640	124711	175289
3356	-220	-640	127207	172793
3356	-220	-640	129704	170296
3356	-220	-640	132200	167800
3356	-220	-640	134696	165304
3356	-220	-640	137192	162808
3356	-220	-640	139688	160312
3356	-220	-640	142184	157816
3356	-220	-640	144680	155320
3356	-220	-640	147176	152824
3356	-220	-640	149673	150327
3356	-220	-640	152169	147831
3356	-220	-640	154665	145335
3356	-220	-640 -640	157161 159657	142839 140343
3356 3356	-220			137847
3356	-220 -220	-640 -640	162153 164649	13/84/
3356	-220	-640	167145	132855
3356	-220	-640	169641	130359
3356	-220	-640	172138	127862
3356	-220	-640	172136	125366
3356	-220	-640	177130	123366
3356	-220	-640	177136	120374
3356	-220	-640	182122	117878
3356	-220	-640	184618	115382
3356	-220	-640	187114	112886
3356	-220	-640	189610	110390
3879	-220	-640	192629	107371
3879	-220	-640	195647	104353
3879	-220	-640	198666	101334
3879	-220	-640	201684	98316
3879	-220	-640	204703	95297
3879	-220	-640	207721	92279
22.7				

Spring pan evaporation 500mm/day for 90 days

\$8 970	[Bay 1			Bay 2			Bay 3			Bay 4			Bay 5			Bay 6	
\$8 970	Days	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay
	58	970			970			970			970								
1																			
60																			
60 970 1500 970 1 970 970 970 970 970 970 970 970 970 970	- 1	-																	
64 970 -1500 970			-1500																
66 1.0000 573 573 573 573 573 6 6 6 6 6 6 6 6 6																			
	65	970		-10000	970			970											
88																			
70 573 573 573 573 573																			
77				-5000															
72	- 1																		
73 5	- 1																		
76																			
76	74				573														
77	75																		
78																			
80 573 5																			
81	- 1																		
82 1505 1500 1505																			
83						-1500								1505					
85																			
86 -10000 764 764 764 764 -76	84				1505		-10000	1505			1505			1505					
87 -10000 764 </td <td>85</td> <td></td>	85																		
88 -10000 764 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																			
89 764 764 764 764 90 764 764 764 90 90 764 974 90																			
90							-10000				_								
91																			
92	- 1																		
93																			
94																			
96	94																		
97	95							764			764			764					
98																			
99										\square		\Box							
100 764 763 673 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																			
101 764 764 764 764 673 <td>- 1</td> <td></td> <td>\vdash</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	- 1											\vdash							
102 673 673 673 673 103 673 673 673 673 104 673 673 673 673 105 673 673 673 673 106 673 -1500 673 673 673 107 673 -1500 673 673 673 108 673 -1000 673 673 673 109 673 -1000 673 673 673 110 -1000 520 520 520 111 -1000 520 520 520 112 -1000 520 520 520 113 -1000 520 520 520 114 520 520 520 520	- 1										_								
103 673 673 673 673 673 104 673 673 673 673 673 105 673 673 673 673 673 106 673 -1500 673 673 673 673 107 673 -1500 673 673 673 673 108 673 -1000 673 673 673 673 109 673 -1000 673 673 673 673 110 -1000 520 520 520 520 111 -1000 520 520 520 520 112 -1000 520 520 520 520 113 -1000 520 520 520 520 114 520 520 520 520	102																673		
105 673 673 673 673 673 106 673 -1500 673 673 673 673 107 673 -1500 673 673 673 673 108 673 -1000 673 673 673 673 109 673 -1000 673 673 673 673 110 -1000 520 520 520 520 111 -1000 520 520 520 520 112 -1000 520 520 520 520 113 -1000 520 520 520 520 114 520 520 520 520	103																		
106 673 -1500 673 673 673 107 673 -1500 673 673 673 108 673 -1000 673 673 673 109 673 -1000 673 673 673 110 -1000 520 520 520 111 -1000 520 520 520 112 -1000 520 520 520 113 -1000 520 520 520 114 520 520 520	104							673			673			673			673		
107 673 -1500 673 673 673 108 673 -10000 673 673 673 109 673 -10000 673 673 673 110 -10000 520 520 520 111 -10000 520 520 520 112 -10000 520 520 520 113 -10000 520 520 520 114 520 520 520	105																		
108 673 -10000 673 673 673 109 673 -10000 673 673 673 110 -10000 520 520 520 111 -10000 520 520 520 112 -10000 520 520 520 113 -10000 520 520 520 114 520 520 520	106																		
109 673 -10000 673 673 673 110 -10000 520 520 520 111 -10000 520 520 520 112 -10000 520 520 520 113 -10000 520 520 520 114 520 520 520	107								-1500										
110	- 1																		
111	- 1							6/3											
112 -10000 520 520 520 113 -10000 520 520 520 114 520 520 520				\vdash												\vdash			
113 -10000 520 520 520 114 520 520 520 520												\vdash							
114 520 520 520	113																		
115 520 520 520	114																		
	115										520			520			520		

Stored (m³) Evapora (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	ess tion n3)	Less Earthworks Demand			
3879 -: 3879 -:	20	(m3)	Cumulative Volume (m3)	300000	Comment
3879 -		-640	210740	89260	
	220	-640	213759	86241	
3879	220	-640	216777	83223	
	220	-640	219796	80204	
	20	-640	222814	77186	
	220	-640	224333	75667	
	220	-640 -640	225851 218870	74149 81130	
	20	-640	209729	90271	
	20	-640	200588	99412	
	220	-640	191448	108552	
	220	-640	187307	112693	
	20	-640	188166	111834	
1719 -	20	-640	189026	110974	
1719 -	20	-640	189885	110115	
1719 -	20	-640	190745	109255	
1719 -	220	-640	191604	108396	
	220	-640	192463	107537	
	220	-640	193323	106677	
	220	-640	194182	105818	
	20	-640 -640	195041 195901	104959 104099	
	20	-640	195901	103240	
	20	-640	197619	102381	
	220	-640	201279	98721	
	20	-640	204939	95061	
-3980 -:	20	-640	200099	99901	
-7709 -:	20	-640	191530	108470	
-7709 -:	220	-640	182961	117039	
	220	-640	174392	125608	
	220	-640	165823	134177	
	20	-640 -640	167254 168685	132746 131315	
	50	-640	169986	130014	Summer pan evaporation
	50	-640	171287	128713	800 mm/day for 90 days
	50	-640	172588	127412	
2291	50	-640	173889	126111	
2291	50	-640	175190	124810	
2291 -	50	-640	176491	123509	
	50	-640	177792	122208	
	50	-640	179093	120907	
	50 50	-640 -640	180394 181695	119606 118305	
	50	-640	182996	117004	
	50	-640	184700	115300	
	50	-640	186403	113597	
	50	-640	188107	111893	
2694	50	-640	189811	110189	
1194	50	-640	190015	109985	
	50	-640	190219	109781	
	50	-640	181923	118077	
	50	-640	173627	126373	
	50	-640	164196	135804	
	50 50	-640 -640	154765 145333	145235 154667	
	50	-640	135902	164098	
	50	-640	136471	163529	
	50	-640	137039	162961	

		Bay 1			Bay 2			Bay 3			Bay 4		Bay 5				Bay 6		
300 Days	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	
116			_	_						520		_	520		_	520			
117										520			520			520			
118										520			520			520			
119										520			520			520			
120										520			520			520			
121										520			520			520			
122										520	-1500		520			520			
123										520	-1500		520			520			
124												-10000	532			532			
125												-10000	532			532			
126												-10000	532			532			
127												-10000	532			532			
128													532			532			
129													532			532			
130													532			532			
131													532			532			
132													532			532			
133													532			532			
134													532			532			
135													532			532			
136													532			532			
137													532			532			
138													532			532			
139													532		-10000	532			
140															-10000	393			
141															-10000	393			
142															-10000	393			
143																393			
144													\vdash			393			
145													\vdash			393			
146				<u> </u>					\vdash				\vdash			393		10000	
147													\vdash			393		-10000	
148													\vdash			\vdash		-10000	
149													\vdash			\vdash		-10000	
150													\vdash			\vdash			
151																			

	SWL2 + Cho	annels Storage	Capacity]	
Daily Volume Stored (m³)	Less Evaporation (m3)	Less Earthworks Demand (m3)	Cumulative Volume (m3)	300000	Comment
1559	-350	-640	137608	162392	
1559	-350	-640	138177	161823	
1559	-350	-640	138745	161255	
1559	-350	-640	139314	160686	
1559	-350	-640	139883	160117	
1559	-350	-640	140451	159549	
59	-350	-640	139520	160480	
59	-350	-640	138589	161411	
-8935	-350	-640	128664	171336	
-8935	-350	-640	118739	181261	
-8935	-350	-640	108813	191187	
-8935	-350	-640	98888	201112	
1065	-350	-640	98963	201037	
1065	-350	-640	99038	200962	
1065	-350	-640	99113	200887	
1065	-350	-640	99188	200812	1
1065	-350	-640	99263	200737	
1065	-350	-640	99338	200662	1
1065	-350	-640	99413	200587	1
1065	-350	-640	99487	200513	1
1065	-350	-640	99562	200438	1
1065	-350	-640	99637	200363	1
1065	-350	-640	99712	200288	1
-8935	-350	-640	89787	210213	1
-9607	-350	-640	79190	220810	1
-9607	-350	-640	68594	231406	1
-9607	-350	-640	57997	242003]
393	-350	-640	57400	242600]
393	-350	-640	56804	243196]
393	-350	-640	56207	243793	
393	-350	-640	55610	244390	
-9607	-350	-640	45014	254986	
-10000	-350	-640	34024	265976	
-10000	-350	-640	23034	276966]

Calculations - Construction program, dewatering time period, dewatering flows per day, dewatering volumes, evaporation losses, period to fill lined bays

SWL1 Bay	Excavation Volume (exc batters) (m³)	Excavation Timeframe (Days, @ 5,400 m³/day)	Excavation Timeframe (weeks, @ 6-days/wk)	Dewatering Period for Excavation (Days)	Liner area (m²)		Liner Installation Period (weeks, @ 6-days/wk)		SWL1 Lined Storage Capacity - ~Liner Area x 3 m depth (m³)	SWL1 Lined Bay Balance Water Fill Volume (% at E40) (m³)
1	91320	16.91	2.8	20	20760	13.84	2.3	16	62,280	43,596
2	93900	17.39	2.9	20	22740	15.16	2.5	18	68,220	47,754
3	112935	20.91	3.5	24	29280	19.52	3.3	23	87,840	61,488
4	78900	14.61	2.4	17	17880	11.92	2.0	14	53,640	37,548
5	87150	16.14	2.7	19	19980	13.32	2.2	16	59,940	41,958
6	38640	7.16	1.2	8	13200	8.8	1.5	10.3	39,600	27,720
Total			15.5	109			13.8	96	371,520	260,064

Bay	Dewatering On	Dewatering to 0.5 mAHD Complete		Excavation Finish	Liner Install Start	Liner Install Finish	Dewatering Off
1	0	30	30	50	45	61	155
2	0	30	30	50	62	80	173
3	20	50	51	75	81	104	197
4	50	80	76	93	105	119	213
5	80	110	111	130	120	135	231
6	100	130	131	139	136	146	#REF!

			Flow Rate Per Day (m³)							
Day From	Day To	Bay 1	Bay 2	Bay 3	Bay 4	Bay 5	Bay 6	Flow Rate (m³/Day)	Dewatering Volume (m³)	Cumulative Volume (m³)
0	10	5747						5,747	57,466	57,466
10	21	3424	3424					6,847	75,321	75,321
21	51	1119	1119	1119				3,356	100,684	158,149
51	65	970	970	970	970			3,879	54,299	212,448
65	155	350	350	350	350			1,400	126,000	338,448
155	171		573	573	573			1,719	27,510	365,958
171	174		1505	1505	1505	1505		6,020	18,059	384,017
174	191			764	764	764		2,291	38,947	422,964
191	199			673	673	673	673	2,694	21,552	444,516
199	213				520	520	520	1,559	21,821	466,338
213	229					532	532	1,065	17,038	483,376
229	237						393	393	3,147	486,522
								TOTAL	561.844	

90 day construction delay

Day From	Day To	Action					
63	64	Fill Aquadam to Bay 1					
65	70	Fill Bay 1 with groundwater					
65	155	90 day construction delay					
-	155	Turn off Bay 1					
153	154	Fill Aquadam to Bay 2					
154	156	Remove Aquadam 1					
155	160	Fill Bay 2 with groundwater					
-	174	Turn off Bay 2					
172	173	Fill Aquadam to Bay 3					
173	175	Remove Aquadam 2					
174	179	Fill Bay 3 with groundwater					
-	199	Turn off Bay 3					
196	197	Fill Aquadam to Bay 4					
197	199	Remove Aquadam 3					
198	204	Fill Bay 4 with groundwater					
-	213	Turn off Bay 4					
211	213	Remove Aquadam 4					
213	217	Fill Bay 5 with groundwater					
-	229	Turn off Bay 5					
226	231	Fill Bay 6 with groundwater					
-	237	Turn off Bay 6					

Dewatering On Dewatering Off

Filling of Lined Bays	

70% % of bay to fill with groundwater 10000 m³/Day Flow rate to fill bay with groundwater

Filling of Aquadam (Coffer dam)

 21000 L/m
 3.7m tall Aquadam - Volume

 128 m
 Aquadam 1 length

 2688 m³
 Aquadam 1 volume

 2 Days
 Av time to fill Aquadam

 1500 m³/Day
 Flow rate to fill Aquadam

 2 Days
 Av time to remove Aquadam

Earthworks Demand for Dewatered Groundwater

2 Moxies/Day 40 m³/load 8 loads/Day 640 m³

SWL 2 Evaporation Losses

103000 m2 Area 51500 m2 Filled surface area 50% Spring pan evap 500 mm Summer pan evap 800 mm 400 mm Autumn pan evap Correction factor 0.75 Pan evap to pond evap 19312.5 m3/90 days Spring vol. loss 220 m3/day Summer vol. loss 30900 m3/90 days 350 m3/day 15450 m3/90 days Autumn vol. loss 180 m3/day

http://www.bom.gov.au/jsp/ncc/climate averages/evaporation/index_isp?period=an#maps

Calculations - Daily dewatering flows in/out of SWL2 + Channels storage, Filling of lined bays

		Bay 1			Bay 2		Bay 3 Bay 4				Bay 5				Bay 6			
Days	Dewater	Fill Aquadam	FIII Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill	FIII Bay	Dewater	Fill	Fill Bay
1	5747																	
2	5747																	
3	5747 5747																	
5	5747																	
6	5747																	
才	5747																	
8	5747																	
9	5747																	
10	5747																	
П	3424			3424														
12	3424			3424														
13	3424			3424														
14 15	3424 3424	 		3424 3424	\vdash	-			\vdash						<u> </u>			
16	3424			3424	\vdash	-												
7	3424			3424														
18	3424			3424														
19	3424			3424														
20	3424			3424														
21	3424			3424														
22	1119			1119			1119											
23 24	1119 1119			1119 1119			1119 1119											
25	1119			1119			1119						_					
26	1117			1119			1117											
27	1119			1119			1119											
28	1119			1119			1119											
29	1119			1119			1119											
30	1119			1119			1119											
31	1119			1119			1119											
32	1119			1119			1119											
33 34	1119			1119 1119			1119 1119											
35	1119 1119			1119			1119											
36	1119			1119			1119											
37	1119			1119			1119											
38	1119			1119			1119											
39	1119			1119			1119											
10	1119			1119			1119											
11	1119			1119			1119		\square									
12	1119			1119	\vdash		1119											
13	1119			1119 1119			1119 1119		\vdash									
14 15	1119	 		1119	\vdash	-	1119		\vdash									
16 16	1119			1119		-	1119											
17	1119			1119			1119											
18	1119			1119			1119											
19	1119			1119			1119											
50	1119			1119			1119											
51	1119			1119			1119											
52	970			970			970		\square	970								
3	970			970		-	970		\vdash	970								
54 55	970 970			970 970	\vdash		970 970			970 970							-	
56	970			970	\vdash		970			970			<u> </u>		-			
57	970			970	\vdash		970		\vdash	970								

	SWL2 + Cho	annels Storage		Capacity
Daily Volume Stored (m³)	Less Evaporation (m3)	Less Earthworks Demand (m3)	Cumulative Volume (m3)	300000
5747	-220	-640	4887	295113
5747	-220	-640	9773	290227
5747	-220	-640	14660	285340
5747	-220	-640	19546	280454
5747	-220	-640	24433	275567
5747	-220	-640	29319	270681
5747	-220	-640	34206	265794
5747	-220	-640	39093	260907
5747	-220	-640	43979	256021
5747	-220	-640	48866	251134
6847	-220	-640	54853	245147
6847	-220	-640	60840	239160
6847	-220	-640	66828	233172
6847	-220	-640	72815	227185
6847	-220	-640	78803	221197
6847	-220	-640	84790	215210
6847	-220	-640	90777	209223
6847	-220	-640	96765	203235
6847	-220	-640	102752	197248
6847	-220	-640	108739	191261
6847	-220	-640	114727	185273
3356	-220	-640	117223	182777
3356	-220	-640	119719	180281
3356	-220	-640	122215	177785
3356	-220	-640	124711	175289
3356	-220	-640	127207	172793
3356	-220	-640	129704	170296
3356	-220	-640	132200	167800
3356	-220	-640	134696	165304
3356	-220	-640	137192	162808
3356	-220	-640	139688	160312
3356	-220	-640	142184	157816
3356	-220	-640	144680	155320
3356	-220	-640	147176	152824
3356	-220	-640	149673	150327
3356	-220	-640	152169	147831
3356	-220	-640	154665	145335
3356	-220	-640	157161	142839
3356	-220	-640	159657	140343
3356	-220	-640	162153	137847
3356 3356	-220 -220	-640 -640	164649 167145	135351 132855
3356	-220	-640	167145	132855
3356	-220	-640	172138	127862
3356	-220	-640	172138	125366
3356	-220	-640	174634	125366
3356	-220	-640	177136	120374
3356	-220	-640	182122	117878
3356	-220	-640	184618	115382
3356	-220	-640	187114	112886
3356	-220	-640	189610	110390
3879	-220	-640	192629	107371
3879	-220	-640	195647	10/3/1
3879	-220	-640	198666	101334
3879	-220	-640	201684	98316
3879	-220	-640	201864	95297
3879	-220	-640	207721	92279
30/7	-220	-040	20//21	122/7

Spring pan evaporation 500mm/day for 90 days

		Bay 1			Bay 2		Bay 3		Bay 4		Bay 5			Bay 6				
s Days 58	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay
	970			970			970			970								
59	970			970			970			970								
60 61	970 970			970 970			970 970			970 970								
62	970			970			970			970								
63	970			970			970			970								
64	970			970			970			970								
65	970			970			970			970								
1	350			350			350			350								
2	350 350			350 350			350 350			350 350								
4	350			350			350			350								
5	350			350			350			350								
6	350			350			350			350								
7	350			350			350			350								
8	350			350			350			350								
9	350			350			350			350								<u> </u>
10 11	350 350			350 350			350 350			350 350								
12	350			350			350			350								
13	350			350			350			350								
14	350			350			350			350								
15	350			350			350			350								
16	350			350			350			350								
17	350			350			350			350								<u> </u>
18 19	350 350			350 350			350 350			350 350								
20	350			350			350			350								
21	350			350			350			350								
22	350			350			350			350								
23	350			350			350			350								
24	350			350			350			350								
25 26	350 350			350 350			350 350			350 350								
27	350			350			350			350								
28	350			350			350			350								
29	350			350			350			350								
30	350			350			350			350								
31	350			350			350			350								
32	350			350			350			350								<u> </u>
33 34	350 350			350 350			350 350			350 350								
35	350			350			350			350								
36	350			350			350			350								
37	350			350			350			350								
38	350			350			350			350								
39	350			350			350			350								
40	350			350			350			350								
41	350 350			350 350			350 350			350 350	\vdash		\vdash					——
42 43	350			350			350			350								
44	350			350			350			350								
45	350			350			350			350								
46	350			350			350			350								
47	350			350			350			350								
48	350			350			350			350	\Box		\Box					
49	350			350			350			350								
50	350			350			350			350								

SWL	L2 + Ch	annels Storage		Capacity	
Evapo	Less poration (m3)	Demand	Cumulative Volume (m3)	300000	Comment
	-220	-640	210740	89260	
	-220	-640	213759	86241	
	-220	-640	216777	83223	
	-220	-640	219796	80204	
	-220	-640	222814	77186	
	-220	-640	225833	74167	
	-220	-640	228851	71149	
	-220	-640	231870	68130	
	-220	-640	232410	67590	Construction delay for 90 days
	-220	-640	232950	67050	
	-220	-640	233490	66510	
	-220	-640	234030	65970	
	-220	-640	234570	65430	
	-220	-640	235110	64890	
	-220		235650	64350	
	-220	-640	236190	63810	
	-220	-640	236730	63270	
	-220	-640	237270	62730	
	-220	-640	237810	62190	
	-220	-640	238350	61650	
	-220	-640	238890	61110	
	-220	-640	239430	60570	
	-220	-640	239970	60030	
	-220	-640	240510	59490	
	-220	-640	241050	58950	
	-220	-640	241590	58410	
	-220	-640	242130	57870	
	-220	-640	242670	57330	
	-220	-640	243210	56790	
	-220	-640	243750	56250	
	-220	-640	244290	55710	
	-220	-640	244830	55170	
	-220	-640	245370	54630	
	-350	-640	245780	54220	Summer pan evaporation
	-350	-640	246190	53810	800 mm/day for 90 days
	-350	-640	246600	53400	
	-350	-640	247010	52990	
	-350	-640	247420	52580	
	-350	+	247830	52170	
	-350	-	248240	51760	
	-350	_	248650	51350	
	-350	-640	249060	50940	
	-350	-640	249470	50530	
	-350	-640	249880	50120	
	-350	+	250290	49710	
	-350	_	250700	49300	
	-350	-640	251110	48890	
	-350	-640	251520	48480	
	-350		251930	48070	
	-350	-640	252340	47660	
	-350		252750	47250	
	-350	_	253160	46840	
	-350		253570	46430	
	-350	-640	253980	46020	
	-350	-	254390	45610	
	-350	-640	254800	45200	
	-350	-640	255210	44790	
	-350	-640	255620	44380	1

[Bay 1			Bay 2		Bay 3		Bay 4		Bay 5			Bay 6				
Days	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay
51	350			350			350			350								
52	350			350			350			350								
53 54	350 350			350 350			350 350			350 350								
55	350			350			350			350								
56	350			350			350			350								
57	350			350			350			350								
58	350			350			350			350								
59	350			350			350			350								
60	350 350			350 350			350 350			350 350								
61 62	350			350			350			350								
63	350			350			350			350								
64	350			350			350			350								
65	350			350			350			350								
66	350			350			350			350								
67	350			350			350			350								
68 69	350 350			350 350			350 350			350 350								
70	350			350			350			350								
71	350			350			350			350								
72	350			350			350			350								
73	350			350			350			350								
74	350			350			350			350								
75	350			350			350			350								
76 77	350 350			350 350			350 350			350 350								
78	350			350			350			350								
79	350			350			350			350								
80	350			350			350			350								
81	350			350			350			350								
82	350			350			350			350								
83	350			350			350			350								
84 85	350 350			350 350			350 350			350 350								
86	350			350			350			350								
87	350			350			350			350								
88	350	-1500		350			350			350								
89	350	-1500		350			350			350								
90	350		-10000	350			350			350								
66 67			-10000 -10000	573 573			573 573			573 573								
68			-10000	573			573			573								
69			-5000	573			573			573								
70				573			573			573								
71				573			573			573								
72				573			573			573								
73				573			573	\vdash		573	\vdash		\vdash					
74 75				573 573			573 573			573 573								
75 76				573			573			573								
77				573			573			573								
78				573			573			573								
79				573			573			573								
80				573			573			573								
81				573	1500		573			573			1505					
82 83				1505 1505	-1500 -1500		1505 1505			1505 1505			1505 1505					
ಯ				1303	-1300		1303			1303			1303					

SWL2 + Channels Storage				Capacity]
Daily Volume Stored (m³)	Less Evaporation (m3)	Less Earthworks Demand (m3)	Cumulative Volume (m3)	300000	Comment
1400	-350	-640	256030	43970	
1400	-350	-640	256440	43560	
1400	-350	-640	256850	43150	
1400	-350	-640	257260	42740	
1400	-350	-640	257670	42330	
1400	-350	-640	258080	41920	
1400	-350	-640	258490	41510	
1400	-350	-640	258900	41100	
1400	-350	-640	259310	40690	
1400	-350	-640	259720	40280	
1400	-350	-640	260130	39870	
1400	-350	-640	260540	39460	
1400	-350	-640	260950	39050	
1400	-350	-640	261360	38640	
1400	-350	-640	261770	38230	
1400	-350	-640	262180	37820	
1400	-350	-640	262590	37410	
1400	-350	-640	263000	37000	
1400	-350	-640	263410	36590	
1400	-350	-640	263820	36180	
1400	-350	-640	264230	35770	
1400	-350	-640	264640	35360	
1400	-350	-640	265050	34950	
1400	-350	-640	265460	34540	
1400	-350	-640	265870	34130	
1400	-350	-640	266280	33720	
1400	-350	-640	266690	33310	
1400	-350	-640	267100	32900	
1400	-350	-640	267510	32490	
1400	-350	-640	267920	32080	
1400	-350	-640	268330	31670	
1400	-350	-640	268740	31260	
1400	-350	-640	269150	30850	
1400	-350	-640	269560	30440	
1400	-350	-640	269970	30030	
1400	-350	-640	270380	29620	
1400	-350	-640	270790	29210	
-100	-350	-640	269700	30300	
-100	-350	-640	268610	31390	
-8600	-350	-640	259020	40980	
-8281	-350	-640	249749	50251	
-8281	-350	-640	240478	59522	
-8281	-350	-640	231208	68792	
-3281	-350	-640	226937	73063	
1719	-350	-640	227666	72334	
1719	-350	-640	228396	71604	
1719	-350	-640	229125	70875	
1719	-350	-640	229855	70145	
1719	-350	-640	230584	69416	
1719	-350	-640	231313	68687	
1719	-350	-640	232043	67957	
1719	-350	-640	232772	67228	
1719	-350	-640	233501	66499	
1719	-350	-640	234231	65769	
1719	-350	-640	234960	65040	
1719	-350	-640	235689	64311	
4520	-350	-640	239219	60781	
4520	-350	-640	242749	57251	

		Bay 1	1 Bay 2			Bay 3			Bay 4			Bay 5			Bay 6			
Days	Dewater	Fill Aquadam	FIII Bay	Dewater 1505	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater 1505	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill Aquadam	Fill Bay
84				1505		-10000	1505			1505			1505					
85				\vdash		-10000	764			764			764					
86 87						-10000 -10000	764 764			764 764			764 764					
88						-10000	764			764			764					
89							764			764			764					
90							764			764			764					
91				\vdash			764			764			764					
92 93							764 764			764 764			764 764					
94							764			764			764					
95							764			764			764					
96							764			764			764					
97							764			764			764					
98				\square			764			764			764					
99				$\vdash\vdash$			764 764			764 764			764					
100 101				\vdash			764			764			764 764					
102	-			$\vdash \vdash$	\vdash		673			673			673		\vdash	673		
103							673			673			673			673		
104							673			673			673			673		
105							673			673			673			673		
106				\vdash			673	-1500		673			673			673		
107 108							673 673	-1500	-10000	673 673			673 673			673 673		
108				\vdash			673		-10000	673			673			673		
110							0,0		-10000	520			520			520		
111									-10000	520			520			520		
112									-10000	520			520			520		
113									-10000	520			520			520		
114										520			520			520		
115 116										520 520			520 520			520 520		
117										520			520			520		
118										520			520			520		
119										520			520			520		
120										520			520			520		
121				\vdash						520			520			520		
122 123				\vdash						520 520	-1500 -1500		520 520			520 520		
123	-			$\vdash \vdash$	\vdash		\vdash			320	-1300	-10000	532		\vdash	532		
125				\vdash						\Box		-10000	532			532		
126												-10000	532			532		
127												-10000	532			532		
128													532			532		
129	-			$\vdash \vdash$	\vdash		\vdash			\vdash			532			532		
130 131	-			$\vdash\vdash$	\vdash		\vdash			$\vdash \vdash$			532 532			532 532		
132				\vdash						\vdash			532			532		
133													532			532		
134													532			532		
135													532			532		
136				\vdash						\vdash			532			532		
137 138													532 532			532 532		
139	-			\vdash	\vdash		\vdash			$\vdash \vdash$			532		-10000	532		
140	$\neg \neg$			\vdash	-		-			\vdash					-10000	393		
141															-10000	393		

	SWL2 + Cho	annels Storage		Capacity]
Daily Volume Stored (m³)	Less Evaporation (m3)	Less Earthworks Demand (m3)	Cumulative Volume (m3)	300000	Comment
-3980	-350	-640	237779	62221	
-7709	-350	-640	229080	70920	1
-7709	-350	-640	220381	79619	1
-7709	-350	-640	211682	88318	1
-7709	-350	-640	202983	97017	
2291	-350	-640	204284	95716	
2291	-350	-640	205585	94415	
2291	-180	-640	207056	92944	Autumn pan evaporation
2291	-180	-640	208527	91473	400 mm/day for 90 days
2291	-180	-640	209998	90002	
2291	-180	-640	211469	88531	
2291	-180	-640	212940	87060	
2291	-180	-640	214411	85589	
2291	-180	-640	215882	84118	
2291	-180	-640	217353	82647	
2291	-180	-640	218824	81176	
2291	-180	-640	220295	79705	
2291	-180	-640	221766	78234	
2694	-180	-640	223640	76360	
2694	-180	-640	225513	74487	
2694	-180	-640	227387	72613	
2694	-180	-640	229261	70739	
1194	-180	-640	229635	70365	
1194	-180	-640	230009	69991	
-7306	-180	-640	221883	78117	
-7306	-180	-640	213757	86243	
-8441	-180	-640	204496	95504	
-8441	-180	-640	195235	104765	
-8441	-180	-640	185973	114027	
-8441	-180	-640	176712	123288	
1559	-180	-640	177451	122549	
1559	-180	-640	178189	121811	
1559	-180	-640	178928	121072	
1559	-180	-640	179667	120333	
1559	-180	-640	180405	119595	
1559	-180	-640	181144	118856	
1559	-180	-640	181883	118117	
1559	-180	-640	182621	117379	
59	-180	-640	181860	118140	
-8935	-180 -180	-640	181099	118901	
0,00		-640	171344	128656	
-8935	-180	-640	161589	138411	
-8935	-180	-640	151833	148167	
-8935 1065	-180 -180	-640	142078 142323	157922 157677	
		-640			
1065	-180 -180	-640 -640	142568	157432 157187	
1065			142813		
1065	-180	-640	143058	156942	
1065	-180 -180	-640	143303	156697	-
1065 1065	-180	-640 -640	143548 143793	156452 156207	-
1065	-180	-640	144037	155963	-
1065	-180	-640 -640	144037	155763	-
1065	-180	-640 -640	144282	155/18	-
		-640 -640	144527		-
1065 -8935	-180 -180	-640 -640	135017	155228 164983	-
-8935 -9607	-180	-640	124590	175410	-
-9607 -9607	-180	-640	114164	185836	
-700/	-100	-640	114164	103036	J

SWL1 - SCENARIO

		Bay 1			Bay 2			Bay 3			Bay 4			Bay 5			Bay 6	
Days	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill	Fill Bay	Dewater	Fill Aquadam	Fill Bay	Dewater	Fill	Fill Bay	Dewater	Fill	Fill Bay	Dewater	Fill Aquadam	Fill Bay
142															-10000	393		
143																393		
144																393		
145																393		
146																393		
147																393		-10000
148																		-10000
149																		-10000
150																		
151																		

	SWL2 + Cha	nnels Storage	Capacity		
Daily Volume Stored (m³)	Less Evaporation (m3)	Less Earthworks Demand (m3)	Cumulative Volume (m3)		Comment
-9607	-180	-640	103737	196263	
393	-180	-640	103310	196690	
393	-180	-640	102884	197116	
393	-180	-640	102457	197543	
393	-180	-640	102030	197970	
-9607	-180	-640	91604	208396	
-10000	-180	-640	80784	219216	
-10000	-180	-640	69964	230036	