WGA

WALLBRIDGE GILBERT A Z T E C

ACP Mooringe Pty Ltd

Plympton

Residential DPA

TRAFFIC ASSESSMENT REPORT
Project No. :190190
Doc No: WGA190190-RP-TT-0001
Rev. C
30 October 2019

Revision History

Rev	Date	Issue	Originator	Checker	Approver
A	12.04 .19	Draft for Client Review	JH	HSB	HSB
B	02.05 .19	Revised Draft for Client Review	JH	HSB	HSB
C	30.10 .19	Revised following Council Comments dated 21.10.19	JH	HSB	HSB

CONTENTS

1 Inroduction 1
1.1 Background 1
1.2 Purpose of the Assessment 2
2 Proposed Development 3
3 Existing Roadway and Traffic Conditions 4
3.1 Existing Conditions 4
3.1.1 Mooringe Avenue 4
3.1.2 Marion Road 5
3.1.3 Morphett Road 5
3.1.4 Streeters Road 5
3.1.5 Gardner Street 6
3.1.6 Errington Street 6
3.1.7 Whelan Avenue 6
3.2 Road Crash History 8
3.3 Planned Roadway Improvements 10
3.4 Exisiting Pedestrian and Cyclist Infrastructure 11
3.5 Exisiting Public Transport Infrastructure 12
3.6 Site Survey 14
4 Road Access Network 17
4.1 Street Layout 17
4.2 Traffic Management and Access Arrangements 18
4.3 On-Street and off-street Parking 19
4.4 Sight Distances 20
4.4.1 Access Point One 22
4.4.2 Access Point Two 23
4.5 Sustainable Transport Infrastructure 24
4.5.1 Pedestrian and Cyclist Infrastructure 24
4.5.2 Public Transport Infrastructure 24
5 Traffic Generation and Distribution 25
5.1 Trip Generation and Peak Period 25
5.2 Spatial Distribution of Trips 25
5.2.1 External Distribution 26
5.2.2 Internal Distribution 26
5.3 Peak Period Trip Distribution 26
6 Development Access Arrangements 32
7 Access Analysis 35
7.1 Mooringe Avenue Intersection Streeters Road Analysis 35
7.2 Mooringe Avenue intersection Access Point 1 Analysis 37
7.3 Mooringie avenue intersection Marion Road 38
8 Summary and Conclusions 40

Appendices

Appendix A City of West Torrens Development Plan References
Appendix B DPTI Vehicle Turning Movement Survey (2011 \& 2017)
Appendix C SIDRA Analysis Outputs

INRODUCTION

1.1 BACKGROUND

Wallbridge Gilbert Aztec (WGA) has been engaged to undertake a Traffic Assessment for proposed Rezoning in Plympton, SA.

A locality plan of the proposed rezoning is illustrated by the area shaded red, in Figure 1.

Figure 1: Proposed Land Rezoning, Locality Plan

1.2 PURPOSE OF THE ASSESSMENT

The purpose of this report is to provide analysis of the existing and proposed future traffic impacts that will be utilised to determine requirements and what they may be, for the proposed rezoning.

The purpose and key elements of the study are to review and assess:

- Existing traffic flow conditions on the roads adjacent to the site;
- Background traffic conditions and any programmed roadway improvements;
- The traffic impact of the proposed rezoning on the adjacent road network;
- The suitability of the access points and internal road layout for the Rezoning, and;
- Vehicle capacity, road safety, and / or traffic operational constraints for the proposal, as well as potential measures to mitigate such constraints, where appropriate.

The methodology used in this analysis has been based on the City of West Torrens Development Plan (CWTDP), City of West Torrens Transport Strategy (2009), relevant Australian Standards and Austroads guidelines.

PROPOSED DEVELOPMENT

The Rezoning scenario is for future residential use of the land (medium density, low rise development). Approximately 2300 square metres of new internal road network is proposed for the Rezoning, with three access points onto surrounding the local network.

The site is bounded to the north by Mooringe Avenue, to the south by Gardener Street and the west by Streeters Road, with existing development to the east of the Rezoning site. The proposed road layout of the Rezoning is shown in figure 2 - however note that the layout is only preliminary and may change during the Development Planning phase of the design and approvals process.

Figure 2: Proposed Rezoning Road Layout

3

 TRAFFIC CONDITIONS
3.1 EXISTING CONDITIONS

Currently the site is zoned industry land use. It has previously been used as a transport depot with warehousing and offices, and at the time of the preparation of this report the site was undergoing demolition and remediation. The proposed medium-density residential redevelopment will require rezoning of the current land use. Figure 1 indicates locations of the local road network and Figure 3 indicates the location of arterial and sub arterial connections to Mooringe Avenue in relation to the Rezoning.

3.1.1 Mooringe Avenue

Mooringe Avenue abuts the Rezoning site on the northern side and is anticipated to cater for the majority of trips to and from the Rezoning, either directly or through the adjoining local network.

The road comes under the care and control of City of West Torrens and they have defined the road hierarchy as an Urban Local Road - Major Collector in their Transport Strategy (2009). The road is also specified as a Primary Freight Route on Council's road network and frequently has general access and sometimes has restricted access vehicles using it to access the industrial areas of Camden Park and North Plympton. From our review we agree that the role and function of Mooringe Avenue aligns with a Major Collector road

Mooringe Avenue is a single lane in each direction with restricted parking both sides of the road. The road width is approximately 12 m kerb to kerb. The road reserve has footpaths and mature street trees. A part time bike lane is marked east of Errington Street. The southern (westbound) side of Mooringe Avenue is operational between 8-9am on school days and the northern (eastbound) side is operational 3-4pm on school days.

Mooringe Avenue adjoins Marion Road to the east and Morphett Road to the west. Mooringe Avenue is approximately 1.6 km in length, and the Rezoning site is roughly at the midpoint of Mooringe Avenue, IE 800 m west of Marion Road, 800 m east of Morphett Road.

A pedestrian actuated crossing (PAC) is located on Mooringe Avenue between Streeters Road and Errington Street. When the PAC is activated it assists traffic to egress Streeters Road onto Mooringe Avenue and would also assist to platoon traffic to improve gap acceptance for egress of traffic from other side roads (EG Streeters Road, Whelan Avenue) onto Mooringe Avenue.

Based on existing available data obtained from DPTI supplied counts near the Marion Road intersection, the Average Annual Daily Traffic (AADT) volumes are in the order of 10,500 VPD, with approximately 10 percent comprising of heavy vehicle traffic. AM peak hour is between 7.45-8.45 and PM peak hour is between $4.45-5.45 \mathrm{pm}$. A recent turning count supports DPTI's supplied counts. The posted speed limit is 60 kph .

3.1.2 Marion Road

Marion Road connects to Mooringe Avenue at the eastern end via a signalised intersection and is anticipated to cater for the majority of trips to and from the Rezoning due to its proximity to the broader arterial road network, connectivity to the southern and northern major arterials, links to inner western Adelaide and the Adelaide CBD. Marion Road is a two-way four lane divided arterial road that falls under the care, control and management of DPTI.

Based on existing available data obtained from DPTI supplied counts the Average Annual Daily Traffic (AADT) volumes are $33,500 \mathrm{VPD}$, with approximately 5.8 percent comprising of heavy vehicle traffic. The posted speed limit is 60 kph . Turning Counts for the signalised intersection is attached to Appendix B.

3.1.3 Morphett Road

Morphett Road connects to Mooringe Avenue at the western end via an uncontrolled at grade intersection and is anticipated to cater for a smaller proportion of trips to and from the Rezoning as it is in an anti-directional position to the Adelaide CBD, but may provide reasonably direct access to shops, schools, recreational facilities and the beach. Morphett Road is a single lane in both directions. Morphett Road falls under the care and control of West Torrens Council. The posted speed limit is $60 \mathrm{~km} / \mathrm{h}$. Volumes are unknown at the intersection, as a comparison AADT is 12,600 VPD with 5.5% CV south of Anzac Highway, however traffic volumes drop substantially north of Anzac Highway as the road no longer serves an arterial purpose.

3.1.4 Streeters Road

Streeters Road abuts the Rezoning site on the western side and may cater for a small proportion of trips to and from the Rezoning. The road comes under the care and control of West Torrens Council and they have defined the road hierarchy as an Urban Local Road - Local Collector in their Transport Strategy (2009) - although this only applies to Streeters Road north of Mooringe Avenue, with Whelan Road providing the continuation of the Local Collector role to the south of Mooringe Avenue.

Streeters Road south of Mooringe Avenue would be classified as an Urban Local Road - Local Street. Council has expressed a desire to limit access to the rezoning from Streeters Road adjacent to the development.

Streeters Road consists of a single lane in each direction and has street lighting on dedicated poles. Residential property is located on the west side of Streeters Road, with access provided to existing residential allotments via the road. Streeters Road has a narrow road width and verge width from the back of kerb to the site boundary and that this would need further investigation into widening, potentially acquiring land from the site to both facilitate the development and have an active interface to the street. Any potential acquisition required for road widening purposes could be dealt with during the land division stage.

The road width is approximately 6 m kerb to kerb, so available on-street parking is very limited. The new development will likely require parking bans along the length of road unless indented parking is provided (requiring transfer of land to road verge). Before the site was demolished, some parking had been created within private land at the northern end of the road, where the new development is proposed to have frontage. The road reserve on the western side has footpaths and lighting, however the eastern side of the road has undergone demolition with currently no street furniture or infrastructure (construction safety fencing borders the kerbing). Streeters Road forms a 4-way intersection with Mooringe Avenue and utilises a give way treatment to reinforce Mooringe Ave as the priority road. Streeters Road forms a junction with Gardner Street and does not have traffic control measures.

Traffic data was not supplied for this road, however, a turning count confirms that the Streeters Road leg north of Mooringe Avenue, carriers substantially more traffic than the southern leg (which has very low traffic volumes). Recorded volumes are discussed further in Section 3.5. The speed limit is 50 kph .

3.1.5 Gardner Street

Gardner Street abuts the Rezoning site on the southern side and is anticipated to cater for a reasonable proportion of trips to and from the Rezoning, when considering a suitable access point to the local road network generally. The road comes under the care and control of City of West Torrens and they have defined the road hierarchy as an Urban Local Road - Local Street in their Transport Strategy (2009).

Gardner Street is a single lane in each direction and has street lighting mounted on SAPN poles. The road width is approximately 9 m kerb to kerb, so street parking is currently available both sides of road. The road reserve has footpaths and mature street trees. Gardner Street adjoins/intersects Streeters Road, Errington Street and Whelan Street (roundabout).

Traffic data was not supplied for this road, however, on site observations at 5:45pm on a typical weekday indicated only low volumes adjacent to the Rezoning (approximately $100 \mathrm{Veh} / \mathrm{Hr}$). The posted speed limit is 50 kph .

3.1.6 Errington Street

Errington Street is located to the east of the Rezoning site and is anticipated to cater for a reasonable proportion of trips to and from the Rezoning, via Gardner Street. The road comes under the care and control of West Torrens Council and they have defined the road hierarchy as an Urban Local Road Local Street in their Transport Strategy (2009).

Errington Street is a single lane in each direction and has street lighting on dedicated poles. The road width is approximately 9 m kerb to kerb and has on street parking. A part time bike lane is marked and operational between 8-9am on school days for the southbound direction and 3-4pm on school days for the northbound direction. Plympton International College is located on Errington Street to the south of the proposed rezoning. The road reserve has footpaths and mature street trees.

Errington Street forms a 4-way intersection with Mooringe Avenue and utilises a give way treatment to reinforce Mooringe Ave as the priority road. Errington Street forms a 4-way intersection with Gardner Street with give way priority to Errington Street (Gardner Street has give way treatment).

Traffic Data was not supplied for this road, however, based on the adjacent land uses we anticipate traffic volumes in the order of 2000 VPD. The posted speed limit is 50 kph .

3.1.7 Whelan Avenue

Whelan Ave is located to the west of the Rezoning site, running parallel to Streeters Road. The road comes under the care and control of West Torrens Council and they have defined the road hierarchy as an Urban Local Road - Local Collector in their Transport Strategy (2009).

Whelan Avenue is a single lane in each direction and has street lighting on SAPN poles. The road width is approximately 9 m kerb to kerb and has temporary on street parking outside the hours of 910am and $2-3 p m$ Monday to Friday, when a no standing zone takes effect (both sides of road). The road reserve has footpaths and mature street trees. Whelan Avenue adjoins Mooringe Avenue and is controlled by a give way treatment. Whelan Avenue also forms an intersection with Gardner Road and is controlled by a roundabout.

Whelan Avenue is anticipated to cater for a reasonable proportion of trips to and from the Rezoning, considering that the junction with Mooringe Avenue (rather than intersections for example at Errington

Street and Streeters Road) and roundabout at Gardner Street, may attract traffic due to perceived convenience by some road users.

Based on existing available data from the City of West Torrens Transport Strategy (2009), the Average Annual Daily Traffic (AADT) volumes for this road are in the order of 3000 VPD, with only a low percent comprising of heavy vehicle traffic. The posted speed limit is 50 kph .

Figure 3: General Arterial and Sub Arterial Road network layout

3.2 ROAD CRASH HISTORY

DPTI provides road crash data via Location SA Map Viewer from 2013 to 2017 (5 year crash history). Figure 4 shows the locations of recorded crashes(circled in red) in the vicinity of the Rezoning site.

Figure 4: Location of crash(es) indicated by orange dots on plan around the highlighted development.
The local crash data is summarised below in Table 1. Only intersections with crash history between 2013-2017 are represented in the table, and separated into Serious Injury (requires hospitalisation), Injury (report of an injury usually accompanying review by doctor), and Property Damage Only (PDO). The major junctions at either end of Mooringe Ave are also considered.

Table 1: Road Crash History (2013-2017) - various locations, Plympton area

Mooringe Ave / Streeters Rd				
Crash Type	Serious Injury	Injury	PDO	
Right Angle	$1(25 \%)$	$2(50 \%)$	$1(25 \%)$	
TOTAL				

Mooringe Ave / Errington St

Crash Type	Serious Injury	Injury	PDO
Right Angle	0	0	$1(50 \%)$
Hit Pedestrian	0	$1(50 \%)$	0
TOTAL	$\mathbf{2}$		

Mooringe Ave / Marion Rd

Crash Type	Serious Injury	Injury	PDO
ALL CRASHES	0	6	8
Rear End			
Hit Pedestrian	$\mathbf{3}(42.9 \%)$		
Right Turn	$\mathbf{1}(7.1 \%)$		
TOTAL	$\mathbf{1 4}$		

Gardner St / Errington Rd

Crash Type	Serious Injury	Injury	PDO
Right Angle	0	0	1 (100\%)
TOTAL	1		
Mooringe Ave / Whelan Ave			
Crash Type	Serious Injury	Injury	PDO
Right Angle	0	0	2 (100\%)
TOTAL	2		
Mooringe Ave / Morphett Rd			
Crash Type	Serious Injury	Injury	PDO
All crashes	0	2	14
Rear End	5 (31.25\%)		
Hit Fixed Object	1 (6.25\%)		
Side Swipe	1 (6.25\%)		
Right Angle	7 (43.75\%)		
Roll Over	1 (6.25\%)		
Other	1 (6.25\%)		
TOTAL	16 (100\%)		

In summary the intersections and junctions around the Rezoning site are performing as would be expected for at grade intersections formed between local network roads and a collector road. As shown in Figure 3, all crashes occur at "conflict points" in the network (junctions or intersections where opposing movements are undertaken) with the exception of one crash on Errington Street south of the Gardener Street Intersection. No existing Black Spot Sites (where greater than 5 injury crashes/5 years are recorded) were identified in the vicinity of the Rezoning site, with the exception of Marion Road and Mooringe Avenue (discussed below).

The crash history of the intersection of Mooringe Avenue and Streeters Road is worthy of consideration as the proposed development will likely increase traffic on the Streeters Road (South) by approximately 500 VPD (discussed later in Section 5 of this report) with the majority of these volumes expected to be turning right out of Streeters Road onto Mooringe Avenue. The current intersection records on average less than one crash per year, with the predominant crash type being right-angle crashes. The predominant crash type is relatively common for an "uncontrolled" 4-way intersection, and moderate traffic volumes on Mooringe Avenue. Whilst the proportion of injury crashes is high for an urban road (75%), the lower frequency of crashes indicate that the intersection is performing adequately. It is recommended that the layout of the proposed development and landscaping observe the SISD sight line requirements as defined in Figure 9 - Austroads Guide to Road Design Part 4A "Figure 3.2".

The junctions either end of Mooringe Avenue have comparatively higher crash rate histories due to their larger volumes. The Marion Road arterial road junction is performing adequately, fundamentally due to the intersection being controlled by traffic signals, although it should be noted that the proportion of injury crashes is relatively high at 43\%. The site is technically a Black Spot, and would be eligible for Black Spot funding, however the responsibility for determination of treatment options and application for funding lies with DPTI.

In terms of total crashes, the Morphett Road junction has the worst performance out of those assessed, although the proportion of injury crashes is much lower than Marion Rad. The higher incidence of crashes is largely due to volumes (intersection of two sub arterial roads) which means that gap acceptance thresholds are lower, and as it is uncontrolled (give way treatment) requiring judgement from individual drivers to pick gaps (correspondingly right-angle crashes have the statistically highest crash type). Signalising of this junction would assist with both crash reductions and clearing of queues on Mooringe Avenue - however this is not part of the Transport Strategy Report (2009) or a priority for West Torrens Council.

3.3 PLANNED ROADWAY IMPROVEMENTS

Existing road geometries are relatively fixed by adjoining development and are expected to remain the same. All junctions and intersections assessed do not have any obscure intersecting geometry, however sight line impediments (such as mature vegetation, SAPN poles and boundary fencing) exist when exiting side roads onto Mooringe Avenue. Council's Transport Strategy (2009) mentions minor widening of Streeters Road at Mooringe Avenue for left and right turn exit lanes - as discussed above, potential acquisition and land transfer to council verge could occur during the land division stage.

The report also mentions the proposed upgrade of Mooringe Avenue and Marion Road intersection to cater for B-double turning movements - the responsibility for this upgrade lies with DPTI and the timing of the upgrade is unknown. Linking of Richmond Road and Morphett Road is also mention in the Transport Strategy - if that were to occur some freight may bypass Mooringe Avenue as improved links east-west could be established to the adjacent industrial areas that are located next to the airport. The Overlay Map WeTo/1 - Transport, referred to in CWTDP is attached in the Appendix A, however there are no impacts from the overlay map that need to be considered in this Traffic Assessment Report.

The City of West Torrens is currently preparing a Local Area Traffic Management (LATM) Plan which is in Stage 2 consultation at the time this report was written, this site fits within the study area. However, the proposed LATM Plan found traffic conditions around the location of interest to be acceptable in comparison with the strategic transport plan criteria. Hence proposed LATM projects will likely not impact the Rezoning site.

3.4 EXISITING PEDESTRIAN AND CYCLIST INFRASTRUCTURE

The CWTDP indicates cycling routes (Bikedirect Network) in its overlay plans - refer Overlay Map WeTo/12 Transport in Appendix A. There are no designated "Main Road - Bike Lane" roads within the vicinity of the Rezoning, Mooringe Avenue is designated as a "Secondary Road - Bike Lane" (east of the Rezoning), as is Morphett Road.

There is an existing shared pedestrian and cyclist path that runs adjacent to Osborne Terrace, known as the Westside Bikeway - this is indicated as a "Off Road Sealed Path" in the Bikedirect Network. These cycling and walking (shared) facilities will likely attract patronage from the subsequent development for both recreational and commuting activities, as the path connects "off road" as far as Mile End north-easterly and Novar Gardens south-westerly. The local network would generally be used to access the Westside Bikeway via Gardner Street and Errington Street, alternatively Mooringe Avenue bike lanes connect to the Westside Bikeway at the Marion Road intersection. Other links include the footpath at the south end of Streeters Road connecting through to Myer Avenue.

As mentioned in section 3, both Mooringe Avenue and Errington Street have part time bike lanes, however they are relatively discontinuous and established to provide safer cycling links to the nearby Plympton International College.

Strava Heat Map can be used to represent cycling activity in the proximity of the proposed development - refer Figure 5. The white layer represents the highest level of cycling activity, darker blue layers indicates "moderate" cycling activity where purple is "lower" cycling volumes. It is evident that Mooringe Avenue, Morphett Road, Marion Road and the Westside Bikeway have relatively more cycling patronage than the surrounding local areas. Comparatively Cross Road, Anzac Highway and Marion Road attract much higher cycling activity.

The proposed internal road network of the development will be designed in accordance with AMCORD guideline for "Characteristics of Street Types", and Councils requirements, to cater for safe pedestrian movements and sharing the road with cyclists.

In summary, the Rezoning is relatively well connected to existing on road bicycle routes and networks that facilitate cycling.

Figure 5: Strava Heat Map indicating cycling activity

3.5 EXISITING PUBLIC TRANSPORT INFRASTRUCTURE

Bus route 167 \& 168 services the Adelaide CBD and Glenelg from this location. Additional bus routes (EG J7, J8 servicing between Marion and West Lakes) - and school buses utilise Mooringe Avenue. Public transport infrastructure (bus stop 12) is located adjacent to Mooringe Avenue and the Rezoning, which is located mid-block on Mooringe Avenue between Streeters Road and Errington Street. The bus stops (12 both directions \& 13 eastbound only) have shelters and are well placed to service the Rezoning. Refer to Figure 6 for bus routes in the proximity of the proposed rezoning.

Figure 6: Bus routes in the proximity of The Rezoning

3.6 SITE SURVEY

A traffic survey of the existing 4-way intersection of Mooring Avenue and Streeters Road was conducted on 3 April 2019, between $4: 45$ pm and $5: 45 \mathrm{pm}$. This represented afternoon peak traffic during a typical weekday, coinciding with the peak hour determined from 11 hour counts conducted by DPTI on Marion Road / Mooringe Avenue Junction.

General observations were as follows:

- Weather fine, conditions clear and light (afternoon daylight saving).
- Traffic much heavier on Mooring Avenue compared to Streeters Road.
- Traffic volumes much heavier on Streeters Road north leg, Streeters Road south leg had very low volumes.
- Relatively high right out / left in volumes on Streeters Road north leg.
- The "collector road" nature of Whelan Avenue, which terminates at Mooring Avenue (northbound), appears to continue onto Streeters Road north leg.
- Around half a dozen cyclists were using Mooring Avenue during the count (cyclist volume is not included in below counts).
- The remedial site work at the Rezoning site may have influenced some of the Streeters Road traffic behaviour, however the site works are not expected to be a large influence.

Table 2 represents the PM Peak hour turning count results. Figure 7 represents the recorded turn counts diagrammatically. Note that in Figure 7, where no movement recorded any volume, it is not represented on the diagram - for example there were no vehicles turning left into Streeters Road south leg during the hour of traffic survey.

Table 2: Peak Hour Site Survey Results

Road	Direction of	Intersection Behaviour		
	Travel	Straight	Left	Right
Mooringe Avenue	East	334	40	0
Mooringe Avenue	West	495	0	25
Streeters Road	North	0	1	0
Streeters Road	South	2	30	83

Figure 7: PM Peak Hour Site Survey Results

These results yield traffic volumes for a typical hour afternoon peak period. For the purpose of this investigation, these results are extrapolated to an hour peak period and a 10% ratio of peak hour to two-way AADT volumes is assumed. Based on this methodology, the site results yielded:

Mooringe Avenue:

- Weekday peak hour flow (two-way) $=(334+495+40+25)=894$
- AADT (two-way) $=894 / 10 \%=8,940$
- The following commercial volumes were recorded on Mooringe Ave:
- 12 Trucks and 4 busses westbound
- 9 Trucks and 2 busses eastbound
- Total Commercial Volume (CV) in peak hour $=27$
- Total CV \% = 27 / $894=3 \%$

Streeters Road (North Side):

- Weekday peak hour (two-way) $=(2+30+83)=115$
- $\operatorname{AADT}($ two-way $)=115 / 10 \%=1,150$
- The following commercial volumes were recorded on Mooringe Ave:
- 2 busses (one left in, one right out)
- Total Commercial Volume (CV) in peak hour $=2$
- Total CV $\%=2$ / $115=2 \%$

Streeters Road (South Side):

- Weekday peak hour (two-way) = 1
- AADT (two-way) $=1 / 10 \%=10$
- No CV recorded on this side of Streeters Road.

The Mooringe Avenue AADT calculated from the site survey is similar to the AADT provided from DPTI (9,650-10,500). It is possible that Mooringe Avenue traffic volumes have reduced slightly from the early 2000's considering development is relatively established in the area already (little or no growth rate), and residents may have adopted a modal shift to alternative transport to commute to work (cycling, walking and public transport), car-pooling, and more flexible working hours allowing the commute outside of peak hour times.

In summary, during the PM traffic survey, the intersection operated relatively smoothly, with only the Streeters Road northern leg experiencing any reasonable delay due to waiting for breaks in traffic in both directions to turn right out. Mooringe Avenue flows without significant delays (sometimes right turning traffic into Streeters Roads will create a slowing of through traffic). Traffic on Mooringe Avenue (westbound) was generally travelling in platoons due to the upstream signals at Marion Road.

4

 ROAD ACCESS NETWORK
4.1 STREET LAYOUT

The proposed road network for the Rezoning is represented in Figure 8 and consists of a two-way through road access street (fronting and providing access to Mooringe Avenue (1) and Gardner Street (2)) and of which two cul-de-sac access lanes with stub ends branch off. Access lanes and cul-desacs have been designed to provide local access only to the Rezoning - however note that the layout is only preliminary and may change during the Development Planning phase of the design and approvals process. It is possible that "out only" access onto Streeters Road could be provided from the rezoning, but this is yet to be determined.

It is recommended these lanes will need to meet the specifications outlined in the City of West Torrens Requirements. The Access Street is to meet the AMCORD requirements for an Access Street (0-300 veh/day).

Figure 8: Internal Road Hierarchy

4.2 TRAFFIC MANAGEMENT AND ACCESS ARRANGEMENTS

The Rezoning internal road network will consider road geometry to assist in managing speed on the network and providing a safer environment.

Austroads Guide to Road Design Part 4A - Geometric Design (AGRD04A-17) table 7.2 "property access considerations on urban roads" states that: for local streets it is preferred that road networks are planned and designed so that property access points are located on local streets rather than arterial roads. Low travel speed and driver expectation of interference reduces the likelihood of conflict. Potential conflict with pedestrian movement must be identified and appropriate solutions adopted. However, the low speed environment should ensure that both the likelihood of conflict and the severity of crashes are minimised.

Four-way intersections have been avoided in order to minimise the likelihood of collisions. Austroads Guide to Road Design, Part 4A: Unsignalised and Signalised Intersections, states that unsignalised four-way intersections typically experience higher crash rates for the through movement from the minor road.

T-junctions (at right angles to the priority road) are favoured over four-way intersections and have been included at junctions between two local streets. A 90-degree intersecting angle provides the optimum sight line in both directions and the give way rule / priority is clear.

The following considerations must be made when detail designing the internal road layout for the Rezoning:

- Provide single manoeuvre turns by the design vehicle.
- Provide adequate clearance between the design vehicle's turning path and physical constraints within the property.
- Avoid reversing movements into or out of the Rezoning, except in the case of individual single residential houses.
- Provide adequate sight distance, including pedestrians (discussed further in section 4.4).
- Minimise pedestrian / vehicle conflict areas and control vehicle speed across footways.
- Access points will not be permitted within 6 m of the tangent point of the curve as indicated in AS2890.1 Parking Facilities Figure 3.1 (refer below Figure 9). Consideration will need to be given to placement of the access points for corner allotments, and allotments where adjacent indented parking is proposed.

NOTES:

1 Accesses to domestic driveways are excluded from the prohibition in respect of the kerb section marked $Y-Y$ (see Clause 3.2.3(a)).
2 The points marked X_{1} and X are respectively at the median end on divided road and at the intersection of the main road centre-line and the extensions of the side road property lines shown as dotted lines, on an undivided road. On a divided road, dimension $Y-Y$ extends to Point Y_{1}. DIMENSIONS IN METRES

FIGURE 3.1 PROHIBITED LOCATIONS OF ACCESS DRIVEWAYS

Figure 9 - from AS2890.1 Parking Facilities

4.3 ON-STREET AND OFF-STREET PARKING

The City of West Torrens has determined that the rezoning will fit under Residential Medium Density Policy Area 18, and the parking requirement would be determined by PDC12 and 16, and Table WeT0/2.

PDC12 states that on-street vehicle parking should be provided at a ratio of one car parking space for every two allotments.

The City of West Torrens Development Plan (CWTDP), General Section, Land Division, Roads and Access (PDC16), indicates land divisions should provide space sufficient for on-street visitor car parking for the number and size of the allotments, taking account for:

- The size of proposed allotments and sites and opportunities for on-street parking
- The availability and frequency of public and community transport
- On-street parking demand likely to be generated by nearby uses.

CWTDP Table WeTo/2 indicates that 2 off-street car parking spaces are required per dwelling, one covered, one uncovered, refer to Figure 10 below.Assuming 82 dwellings for this development 164 car parking spaces are to be incorporated into the Rezoning, of which 82 are to be covered, 82 not required to be covered. There is potential for some of the uncovered parking spaces to be a combination of parking within driveways and on street parking, and this will need to be further investigated during the DPA phase.

West Torrens Council
Table Section
Table WeTo/2 - Off Street Vehicle Parking Requirements

Form of development	Number of Required Car Parking Spaces
Accommodation	
Dwelling	For detached, semi detached, row dwelling and multiple
. detached	dwellings to provide:
. semi-detached	2 car parking spaces per dwelling, one of which is
. row	covered.
. multiple	For group dwelling and residential flat building to provide:
. group	2 car parking spaces per dwelling, one of which is covered
(within a residential flat building	+ an additional 0.25 car parking spaces per dwelling.

Figure 10: Table WeTo/2 Car Parking Spaces Requirement.

4.4 SIGHT DISTANCES

Austroads Guide to Road Design Part 4A - Geometric Design (AGRD04A-17) sets out requirements for minimum sight distances for intersections in Section 3. All intersections must achieve minimum approach sight distances (ASD), safe intersection sight distances (SISD) and minimum gap sight distances (MGSD). The internal junctions and new access points are shown in Figure 7 and SISD diagrammatic representation in figure 11.

The internal road network has not been assessed as part of this report, this relates to the ASD component of the analysis, which will be reviewed during the Rezoning Application Process. The proposed access points onto Streeters Road and Gardner Avenue will be assessed against the existing roads' theoretical speeds. The following parameters were adopted for sight distance calculations:

- Reaction Time, $R_{T}=2.0 \mathrm{sec}$ (note $\mathrm{D}_{\mathrm{T}}=\mathrm{R}_{\mathrm{T}}+3.0$ seconds)
- Coefficient of deceleration, $\mathrm{d}=0.36$
- Critical Acceptance Time, ta $=5 \mathrm{sec}$
- Longitudinal grade, a = 0\%

Figure 3.2: Safe intersection sight distance (SISD)

Figure 11: Austroads GTRDP4A "Figure 3.2"

4.4.1 Access Point One

Access Point One (AP1) is proposed to front Mooringe Avenue, between the two driveways of the former industrial site, 55 m east of Streeters Road. Mooringe Avenue has a posted speed limit of 60 kph , this is thought to be a reasonable $85^{\text {th }}$ percentile speed to adopt. The following minimum sight distances required of AP1 are:

- ASD AP1 = Not Reviewed
- SISD AP1 East and Westbound $=\mathrm{V} \times \mathrm{D}_{\mathrm{T}} / 3.6+\mathrm{V}^{2} /(254 \times 0.36)$

$$
=60 \times(2+3) / 3.6+60^{2} /(254 \times 0.36)=123 m \text { (in excess of } 200 \mathrm{~m} \text { available both directions) }
$$

- MGSD AP1 = 83m (east and westbound) (from Table 3.6 AGRD04A-17)

All of these minimum sight distance requirements are achieved. A photo of Mooringe Ave adjacent to the Rezoning is shown in Figure 12.

Figure 12: Mooringe Avenue at the Streeters Road Intersection, looking easterly.

4.4.2 Access Point Two

Gardner Ave has a specified speed limit of 50 kph , this is thought to be a reasonable $85^{\text {th }} \%$ speed to adopt. The following minimum sight distances required of AP2 are:

- ASD AP2 = Not Reviewed
- SISD AP2 $=50 X(2+3) / 3.6+50^{2} /(254 X 0.36)=96.8 \mathrm{~m}(>100 \mathrm{~m}$ available $)$
- MGSD AP2 $=69 \mathrm{~m}$ (from Table 3.6 AGRD04A-17) (>100m available)

All sight distances requirements are achieved. A photo of Gardner Ave adjacent to the Rezoning is shown in Figure 13.

Figure 13: Gardner Street at the south eastern corner of the Rezoning looking westerly.

4.5 SUSTAINABLE TRANSPORT INFRASTRUCTURE

Sustainable transport infrastructure for pedestrians and cyclists will be provided as part of the proposed Rezoning. This is to be consistent with details of the proposed are provided below.

4.5.1 Pedestrian and Cyclist Infrastructure

The WTCDP suggests developments should provide a permeable street and path network that encourages walking and cycling through the provision of safe, convenient and attractive routes with connections to adjoining streets, paths, open spaces, schools, pedestrian crossing points on arterial roads, public community transport centres and activity centres.

Linkage to the existing Westside Bikeway shared pedestrian and cyclist path is provided through the established local road and footpath network, which is considered sufficient to cater for the expected levels of patronage.

4.5.2 Public Transport Infrastructure

The CPDP requires new developments to be integrated with existing public transport corridors. The Rezoning is relatively well serviced with existing route services and the Rezoning located midway between bus stops 12 and 13 located on Mooringe Avenue (either of these bus stops are approximately 100 m from the Rezoning). Tram Stop 10 is located approximately 1 km south east from the Rezoning site and could be utilised as an alternative form of public transport with an excellent frequency of services, possibly in combination with cycling or "park and ride" transport options.

5.1 TRIP GENERATION AND PEAK PERIOD

Adopted traffic generation rates for the proposed Rezoning have been based on the "Residential House", and 'Residential - Medium Density Flats' contained within the RMS Guide to Traffic Generating Developments Version 2.2. They are shown in Table 3 below along with the estimated number of trips to be generated by the proposed Rezoning.

There are 82 dwellings proposed, nominated as 'Medium Density' - these have been assumed to be townhouses. The generation rates for townhouses are assumed the same as houses, and the apartment trip generation rates are assumed to fall under 'Medium Density Residential Flat Building larger units and townhouses (three or more bedrooms)". The guideline provides a range of rates, for the purposes of sensitivity testing. The analysis will utilise the higher of the rates (in bold) which are considered to be a conservative representation of the Rezoning proposal.

Table 3: Proposed Development Traffic Generation

		Daily Trips		Weekday Peak Hour	
Land Use	Estimated Number of Dwellings	Rate/Dwelling	Trips	Rate/Dwelling	Trips
Townhouses	82	5.0 (minimum) 6.5 (maximum)	$\begin{aligned} & 410 \\ & 533 \end{aligned}$	0.5 (minimum) 0.65 (maximum)	$\begin{aligned} & 41 \\ & 54 \end{aligned}$

The use of the term 'trip' represents a one-way vehicular movement from one point to another but excluding the return journey. Therefore, a vehicle entering and leaving the Rezoning corresponds to two trips. The proposed Rezoning is expected to generate a total of 533 trips on a daily basis and approximately 54 trips during a weekday peak hour.

5.2 SPATIAL DISTRIBUTION OF TRIPS

The spatial distributions of traffic generated by the Rezoning/Site can be discussed separately as internal distribution within the site and the utilisation of each access point, and external distribution i.e. the interaction of traffic flow with the wider road network.

5.2.1 External Distribution

Trips generated by the Rezoning have been assumed to be distributed in two general directions - the CBD to the East via Marion Road and Glenelg to the West via Morphett Road. The assumed proportion of trips to each of these directions is shown in Figure 14 below.

It is assumed the CBD will attract majority of peak hour traffic due to the morning and evening commute for workers in the Rezoning. Local schools and the closest shopping centre are located both east (EG Kurralta Central, Hilton Plaza, Richmond Village) and west (Harbour Town, Glenelg) of the Rezoning. For the modelling it has been assumed that 85% of trips will be eastbound and 15% of trips will be westbound, which is considered to be a conservative approach for the traffic modelling that will intensify the volume of right turning vehicles out of Streeters Road South.

Figure 14: Spatial Distribution of Trips (External)

5.2.2 Internal Distribution

The Rezoning is proposed to accommodate three Access Points (APs) - discussed in Section 4.1. It is assumed that traffic within the site will opt for the closest AP by driving distance when arriving/exiting the site and make their way onto Mooringe Ave in the shortest distance possible. For the sake of modelling all trips are assumed to access the Rezoning via Streeters Road onto Mooringe Avenue, however in reality a proportion of trips will likely distribute to other parts of the local network IE Errington Street and Whelan Street via Gardner Street. In consideration of the above and also that the traffic from the industrial facility that was previously in operation at this location has not been discounted from the proposed new volumes, these modelling assumptions will result in a conservative traffic analysis.

5.3 PEAK PERIOD TRIP DISTRIBUTION

The resultant number of trips expected to be generated per AP is summarised in Table 4 based on the internal distribution of traffic and the amount of traffic generated at the north and south sides of the Rezoning.

The number of incoming/outgoing trips have been calculated based on the assumption that for residential lots in the Morning Peak, 90% of trips will be leaving the Rezoning with 10% entering the Rezoning and these ratios reversed in the Afternoon Peak Hour (this is considered to be a highly conservative estimation).

The following access point traffic proportions are assumed, based on rough area of dwellings on the site:

- AP1: 75\% IE 75\% of the total development will access / egress from this point;
- AP2: 25\% IE 25\% of the total development will access / egress from this point;

Daily trips have assumed to be 50\% incoming and 50\% outgoing.
Table 4: Number of Trips per Access Point

Access Point	Daily Trips IN	Daily Trips OUT	AM Peak Trips IN	AM Peak Trips OUT	PM Peak Trips IN	PM Peak Trips OUT
AP1	200	200	4	36	36	4
AP2	67	67	2	12	12	2
Total	267	267	$\mathbf{6}$	48	48	$\mathbf{6}$

The generated traffic at each AP has is visualised below in Figure 15 (AM Peak) and Figure 16 (PM Peak) based on the above assumptions. The generated traffic distribution onto Mooringe Avenue via Streeters Road is shown in Figure 17 (AM Peak) and Figure 18 (PM Peak).

Figure 15: Internal Traffic Generation - AM / Morning Peak Hour

Figure 16: Internal Traffic Generation - PM / Afternoon Peak Hour

Figure 17: Development Traffic onto Mooringe Ave AM Peak

Figure 18: Development Traffic onto Mooringe Ave PM Peak
Table 5 and 6 demonstrate the new demand at the intersection of Streeters Road and Mooringe Avenue following the proposed completion of the Rezoning. The volumes are based upon the turning count undertaken on 3 April 2018, with the AM peak volumes assuming a reversal of volumes IE eastbound traffic on Mooringe Avenue in the PM peak converts to westbound traffic in the AM peak. Right turn out of Streeters Avenue (westbound) in the PM peak converts to left turn in (northbound) etc. The volumes have had the Rezoning trips added to their respective movement (represented within the brackets).

The Sidra Modelling also applies some sensitivity testing by increasing all entering volumes by 5% for all movements on all legs, both for existing and post development analysis.

Table 5: Mooringe Ave / Streeters Road AM Peak Hour proposed distribution post development

Road	Leg	Intersection Behaviour		
		Straight	Left	Right
Mooringe Avenue	West	495	83	$(0+1)=1$
Mooringe Avenue	East	334	$(0+1)=1$	30
Streeters Road	South	2	$(0+2)=2$	$(0+10)=10$
Streeters Road	North	0	25	40

Table 6: Mooringe Ave / Streeters Road PM Peak Hour proposed distribution post development

Road	Leg	Intersection Behaviour		
		Straight	Left	Right
Mooringe Avenue	West	334	40	$(0+2)=2$
Mooringe Avenue	East	495	$(0+10)=10$	25
Streeters Road	South	0	$(0+1)=1$	$(0+1)=1$
Streeters Road	North	2	30	83

Table 7: Access Point 1 AM Peak Hour proposed distribution post development

Road	Leg	Intersection Behaviour		
		Straight	Left	Right
Mooringe Avenue		495	NA	$(1+1)=2$
Mooringe Avenue	East	$334+30=374$	$(0+3)=3$	NA
Access Point 1	South	NA	6	30

Table 8: Access Point 1 PM Peak Hour proposed distribution post development

Road	Leg	Intersection Behaviour		
		Straight	Left	Right
Mooringe Avenue	West	334	NA	$(0+6)=6$
Mooringe Avenue	East	$495+25=520$	$(0+30)=30$	NA
Access Point 1	South	NA	1	3

The impact of the Rezoning's generated traffic on the Mooringe Avenue / Marion Road intersection was also considered, as shown in figure 19 below.

Figure 19 - Additional Trip Generation on Marion Road - AM and PM peak
Table 9: Marion Road / Mooringe Road Signals AM Peak Hour proposed distribution post development

Road	Leg	Intersection Behaviour		
		Straight	Left	Right
Mooringe Avenue	West	NA	$(427+30)=457$	$(223+10)=233$
Marion Road	North	854	NA	$(260+3)=263$
Marion Road	South	1476	$(99+1)=100$	NA

Table 10: Marion Road / Mooringe Road Signals PM Peak Hour proposed distribution post development

Road	Leg	Intersection Behaviour		
		Straight	Left	Right
Mooringe Avenue	West	NA	$(206+3)=209$	$(210+1)=211$
Marion Road	North	1151	NA	$(257+30)=287$
Marion Road	South	992	$(147+10)=157$	NA

6

DEVELOPMENT ACCESS

 ARRANGEMENTS
Abstract

The Rezoning assessment has assumed that the three proposed access points as discussed in Section 4. These accesses will be assessed against Austroads Guide to Traffic Management Part 6 Intersections, Interchanges and Crossings (AGTM06-17) Figure 2.26(c) and Austroads Guide to Road Design Part 4A - Unsignalised and Signalised Intersections (AGRD04A-17) to finalise the junction layouts. The existing AADT volumes can be found in Section 3.1 and generated traffic in Section 5.3.

Access Point 1 (AP1) is proposed on Mooringe Road, and caters for the highest turning volumes, therefore it is considered to be the "critical" access.

Figure 20 below suggests that with a maximum of 30 vehicles/hour turning left into the Rezoning at AP1 (exceeding the volumes for any other access point and equalling the proposed volumes at Mooringe Avenue intersection with Streeters Road), the warrant for turning facilities has been triggered for an AUL(S) for the left in movement. The dimensions for an AUL(S) for the relevant 60km/h speed zone (Mooringe Avenue), are indicated in Figure 20.

In this instance Mooringe Avenue westbound lane is already a total of 6.0 m in width. The existing roadway width provides sufficient space to pass a left turning vehicle without delaying the through lane traffic, provided that this road width is maintained on Mooringe Avenue for 35 m on westbound approach to AP1 (note the proposed rezoning indicates indented parking on Mooringe Avenue adjacent to the development). The offset between Streeters Road and AP1 is 55 m .

Austroads Guide to Road Design Part 4 Intersections and Crossings discusses the minimum spacing of driveways in Appendix E Table E3. For a design speed of $60 \mathrm{~km} / \mathrm{h}$ the minimum spacing is 30 m and desirable spacing is 40 m between access points (AP1 and Streeters Road), therefore the spacing between AP1 and Streeters Road exceeds the requirement. Even when a design speed of $70 \mathrm{~km} / \mathrm{h}$ is adopted, 55 m is indicated to be the desirable spacing.

The 55m also provides sufficient distance for a through vehicle on Mooringe Avenue heading westbound to weave between a slowing left turning vehicle into AP1, then shift laterally to the left to avoid vehicles (up to 5 queuing vehicles) right turning into Streeters Road (heading northbound). According to the Taper Equation only 20m is required (refer to Figure 21). In addition, it would be considered unreasonable to impose an Auxiliary Left Turn Treatment on this proposal at AP1, when many side roads along Mooringe Avenue have much higher levels of "left in" turning volumes.

Figure 20 below also suggests that with a maximum of 12 vehicles/hour turning left into the Rezoning at AP2, the warrant for turning facilities is not met to require a painted turn lane, until the AADT on Streeter's Road or Gardner Street exceed approximately 6000 VPD, which is not likely to occur for the foreseeable future.

The highest volume for right in turns is a maximum of 6 vehicles/hour for AP1, this is within the Basic Auxiliary Right (BAR) level.

Basic Auxiliary Right (BAR) / Basic Auxiliary Left (BAL) treatments cannot be conveniently provided where the road is kerbed, and existing driveways are located opposite to the new access. However, Council could consider some parking bans to ensure area is free of standing vehicles around the proposed access points to undertake manoeuvring around turning vehicles.

Therefore, no junction treatments are required at proposed AP1, AP2. Some minor linemarking revisions on Mooringe Avenue could be undertaken to differentiate Access Point 1.

(c) Design Speed $\leqslant 100 \mathrm{~km} / \mathrm{h}$

Figure 20: Major Road Turn Treatments Design Speed (suitable for urban environments)

Figure 8.3: Rural AUL(S) treatment with a short left-turn lane

Notes:

- \# For setting out details of the left-turn geometry, use vehicle turning path templates and/or Table 8.2.
- Approaches to left-turn slip lanes can create hazardous situations between cyclists and left-turning motor vehicles. Treatments to reduce the number of potential conflicts at left-tum slip lanes are given in AGRD Part 4 (Austroads 2017).
- The dimensions of the treatment are defined as follows. Values of D and T are provided in Table 8.2.
$W=$ Nominal through lane width (m) (including widening for curves). For a new intersection on an existing road, the width is to be in accordance with the current link strategy.
$W_{T}=$ Nominal width of the turn lane (m), including widening for curves based on the design tuming vehicle $=3.0 \mathrm{~m}$ minimum .
$T=$ Physical taper length (m) given by Equation 5 being: $T=\frac{0.33 \mathrm{~V} W_{T}}{3.6}$
$V=$ Design speed of major road approach $(\mathrm{km} / \mathrm{h})$.
Source: Department of Main Roads (2006) ${ }^{37}$.

Table 8.2: \quad Dimensions for AUL(S) treatment on major leg

Design speed of major road approach (km/h)	Diverge/deceleration length $D(m)^{1}$	Taper length T $(m)^{2}$
50	15	15
60	25	15
70	35	20
80	45	20
90	55	25
100	70	30
110	85	30
120	100	35

1 Based on a 20% reduction in through road speed at the start of the taper and a value of deceleration of $3.5 \mathrm{~m} / \mathrm{s}^{2}$ (Table 5.2). Adjust for grade using the 'correction to grade', (Table 5.3).
2 Based on a turn lane width of 3.0 m .
Source: Department of Main Roads (2006) ${ }^{38}$.

Figure 21: Dimensions for an AUL(S)
$\mathrm{W}=6.0 \mathrm{~m}$ (width available kerb to centreline at this location)
$W_{T}=3.0 \mathrm{~m}$
$\mathrm{T}=(0.33 \times 70 \times 3.0) / 3.6=19.25 \mathrm{~m}($ say 20 m$)$
$D=35 m$

ACCESS ANALYSIS

7.1 MOORINGE AVENUE INTERSECTION STREETERS ROAD ANALYSIS

SIDRA Intersection 7.0 was utilised for the assessment the existing intersections influenced by the proposed Rezoning, for morning and afternoon peak hour periods.

Figures 21 shows the simple intersection layout that the model is based on.
SITE LAYOUT
∇ site: [Mooringe Ave Existing Pm]

Giveway / Yield (Two-Way)

Figure 21: Diagrammatic representation of the Sidra Intersection model

Table 9 and 10 below present a summary of the pre and post development operation of the unsignalised Mooringe Avenue / Streeters Road Intersection for the morning and afternoon periods respectively.

Table 9: Summary: Morning Peak Hour (Shaded Post Development)

Lane	Degree of Saturation	Average Delay (sec)	Queue Distance (m)	Level of Service
Streeters Rd (S) Existing	0.01	10.7	0.2	B
Streeters Rd (S) Post Development	0.038	12.4	0.8	B
Mooringe Ave (E) Existing	0.210	1.3	3.4	NA
Mooringe Ave (E) Post Development	0.214	1.3	3.2	NA
Streeters Rd (N) Existing	0.158	12.3	3.7	B
Streeters Rd (N) Post Development	0.158	12.3	3.7	B
Mooringe Av (W) Existing	0.303	0.8	0.1	NA
Mooringe Av (W) Post Development	0.303	0.8	0.1	NA
Intersection Existing	0.303	1.8	3.7	NA
Intersection Post Development	0.303	1.9	3.7	NA

Table 10: Summary: Afternoon Peak Hour (Shaded Post Development)

Lane	Degree of Saturation	Average Delay (sec)	Queue Distance (m)	Level of Service
Streeters Rd (S) Existing	0.006	10.4	0.1	B
Streeters Rd (S) Post Development	0.007	10.5	0.3	B
Mooringe Ave (E) Existing	0.287	0.6	2.3	NA
Mooringe Ave (E) Post Development	0.292	0.6	2.4	NA
Streeters Rd (N) Existing	0.287	13.7	7.8	B
Streeters Rd (N) Post Development	0.286	13.6	7.7	B
Mooringe Av (W) Existing	0.199	0.7	0.1	NA
Mooringe Av (W) Post Development	0.199	0.7	0.3	NA
Intersection Existing	0.287	2.1	7.8	NA
Intersection Post Development	0.292	2.1	7.7	NA

The SIDRA analysis shows that the current average delay for the Streeters Road North Leg was around 12-14 seconds. This is commensurate with the observations on site.

The results shown in the above tables indicate the intersection would operate satisfactorily if the proposed Rezoning were to go ahead, and that the intersection adequately facilitates the relatively free flow of traffic during morning and afternoon peak periods, with only minimal queues forming in Streeters Road (south) post development, and very little change in flows for Streeters Road (north) however the difference in intersection performance would be virtually imperceptible to road users.

In conclusion, the SIDRA analysis shows that even using a highly conservative model with all development traffic filtered through the one intersection and 5\% growth applied, the performance of the unmodified local network will adequately cope with the proposed development trip generation.

7.2 MOORINGE AVENUE INTERSECTION ACCESS POINT 1 ANALYSIS

SIDRA Intersection 7.0 was utilised for the assessment the proposed access point onto Mooringe Avenue for the proposed Rezoning, for morning and afternoon peak hour periods.

Figure 22 below shows the simple junction layout that the model is based on.

Figure 22: Diagrammatic representation of the Sidra Intersection model

Access Point 1 (AP1) was modelled for its impact on Mooringe Avenue. Table 11 \& 12 show the results from SIDRA Intersection 7.0 analysis of this proposed access point.

Table 11: Summary: Morning Peak Hour

LaneDegree of Saturation	Average Delay (sec)	Queue Distance (m)	Level of Service	
Access Point 1	0.056	7.7	1.3	A
Mooringe Ave (E) Post Development	0.217	5.6	0	NA
Mooringe Ave (W) Post Development	0.272	0	0.2	NA
Intersection Post Development	$\mathbf{0 . 2 7 2}$	$\mathbf{2 . 6}$	$\mathbf{1 . 3}$	NA

Table 12: Summary: Afternoon Peak Hour

| LaneDegree of
 Saturation | Average Delay
 (sec) | Queue Distance
 (m) | Level of Service | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Access Point 1 | 0.005 | 6.8 | 0.1 | A |
| Mooringe Ave (E)
 Post Development | 0.315 | 5.6 | 0.0 | NA |
| Mooringe Ave (W)
 Post Development | 0.189 | 0.2 | 0.6 | NA |
| Intersection
 Post Development | $\mathbf{0 . 3 1 5}$ | $\mathbf{3 . 4}$ | $\mathbf{0 . 6}$ | NA |

The results of the analysis indicate that the proposed Access Point 1 onto Mooringe Avenue will operate with minimal delays to the new access point and present no expected traffic issues for Mooringe Avenue.

7.3 MOORINGIE AVENUE INTERSECTION MARION ROAD

SIDRA Intersection 7.0 was utilised for the assessment of the effects of proposed generated additional traffic from the proposed Rezoning at the Mooringe Avenue intersection with Marion Road, for morning and afternoon peak hour periods.

Figures 23 below shows the signalised junction layout that the model is based on.

Figure 23: Diagrammatic representation of the Sidra Intersection model (Existing AM Peak LOS shown)

Table13 and 14 below present a summary of the pre and post development operation of the Mooringe Avenue / Marion Road Signalised Intersection for the morning and afternoon periods respectively.

Table 13: Summary: Morning Peak Hour (Shaded Post Development)

Lane Saturation	Average Delay (sec)	Queue Distance (m)	Level of Service	
Marion Rd (S) Existing	0.839	29.7	315.8	C
Marion Rd (S) Post Development	0.853	32.2	329.5	C
Marion Rd (N) Existing	0.328	16.4	64.4	B
Marion Rd (N) Post Development	0.691	17.1	108.8	B
Mooringe Av (W) Existing	0.832	52.3	179.6	D
Mooringe Av (W) Post Development	0.869	54.8	204.9	D
Intersection Existing	$\mathbf{0 . 8 3 9}$	29.7	$\mathbf{3 1 5 . 8}$	C
Intersection Post Development	$\mathbf{0 . 8 6 9}$	31.8	329.5	C

Table 14: Summary: Afternoon Peak Hour (Shaded Post Development)

Lane Segree of Saturation	Average Delay (sec)	Queue Distance (m)	Level of Service	
Marion Rd (S) Existing	0.699	29.0	210.0	C
Marion Rd (S) Post Development	0.719	30.0	215.8	C
Marion Rd (N) Existing	0.444	13.0	100.7	B
Marion Rd (N) Post Development	0.557	13.4	104.6	B
Mooringe Av (W) Existing	0.289	42.8	90.6	D
Mooringe Av (W) Post Development	0.737	43.6	93.9	D
Intersection Existing	$\mathbf{0 . 6 9 9}$	$\mathbf{2 3 . 3}$	$\mathbf{2 1 0 . 0}$	C
Intersection Post Development	$\mathbf{0 . 7 3 7}$	$\mathbf{2 3 . 9}$	$\mathbf{2 1 5 . 8}$	C

The results of the analysis show that the performance of the Marion Road signalised intersection with Mooringe Avenue is only marginally affected by the increased volumes from the proposed rezoning. The greatest affects of the rezoning are shown in the AM peak, with queues on Mooringe Avenue expected to increase by 25 m and Marion Road North leg by 40 m . The probability of queues exceeding the allocated short left turn lane storage on Marion Road (South leg) increase from existing 50\% to proposed 55% in the AM peak and from 13% to 16% in the PM Peak. However, the level of service remains the same for either leg and incurred additional delays are expected to be minimal. SUMMARY AND CONCLUSIONS

The traffic assessment has provided a background on the existing conditions of the site, the likely traffic generated by the proposed rezoning and its impacts on the external road network. From the assessment, the following key findings and recommendations are summarised below:

- The proposed rezoning is proposed to amend land use from industrial to residential in the form of medium density townhouses. The Rezoning proposes an internal road access of approximately 2300 square meters of road network, accessing via two access points (Gardner Street and Mooringe Avenue). The Rezoning's internal road network still requires detail design and assessment.
- The proposed rezoning would likely increase local area traffic by around 533 vehicles per day, with around 54 vehicle trips generated during peak hour traffic.
- The majority of the Rezoning traffic will access the arterial road network directly from Access Point 1 (AP1 via Mooringe Avenue), however it is likely that some development traffic will redistribute to Whelan Avenue and Errington Street via Access Point 2 (Gardner Road), potentially lessening the volumes placed on AP1 assumed in the traffic model.
- The Rezoning has no impact on programmed road upgrades in the area, nor do any programmed upgrades impact the proposal. Given the narrow verge on Streeters Road, Council's proposal to widen Streeters Road will likely benefit traffic behaviour for the Rezoning but requires further assessment to gauge the impact on the proposal. Council has suggested that land could be provided from the subject site to enable a wider verge to be provided to accommodate future footpath and landscaping requirements.
- The existing road network flows reasonably well during peak hour, with observations indicating only minor increase in delays experienced for traffic entering Mooringe Avenue from adjacent side roads.
- Crash history indicates that crashes in the vicinity of the Rezoning are at established "conflict points" IE intersections and junctions. All intersections and junctions reviewed are considered to be performing adequately for the types of intersection and volumes experienced.
- The Rezoning site is already well serviced by existing public transport modes and reasonably good connections to cycling and pedestrian facilities and networks within the local area. Internal road network design should consider the requirements in the CWTDP for pedestrian and cyclist connectivity to infrastructure.
- The City of West Torrens has determined that the rezoning will fit under Residential Medium Density Policy Area 18, and the parking requirement would be determined by PDC12 and 16, and Table WeT0/2. In essence this requires 1 covered and 1 uncovered off-street park and 0.5 onstreet parks, per dwelling.
- All sight distances are likely to be achieved for the proposed access points onto Mooringe Avenue, Streeters Road and Gardner Avenue.
- In consideration of the Austroad Guidelines, the proposed Access Points for the Rezoning do not warrant and will not require any turning treatments for Mooringe Avenue, Streeters Road or Gardner Street. The 55m separation between Access Point 1 and Streeters Road meets Austroads Guidelines.
- Traffic modelling (SIDRA) indicates that the Mooringe Avenue / Streeters Road Intersection performs to an acceptable level of service for the estimated post-development traffic flows. Traffic performance will remain similar to existing levels of service, creating only minimal delays to traffic on the minor legs of the intersection. No significant changes to the Mooringe Avenue / Streeters Road Intersection are required to cater for the traffic impacts generated by the Rezoning.
- Traffic modelling (SIDRA) indicates that the Mooringe Avenue / Access Point 1 Intersection performs to a good level of service for the estimated post-development traffic flows. Traffic flow on Mooringe Avenue will be generally unimpeded and delays to the traffic queuing out of Access Point 1 are expected to be minimal. No significant changes to the proposed Mooringe Avenue / Access Point 1 Intersection are required to cater for the traffic impacts generated by the Rezoning.
- Traffic modelling for the Mooringe Avenue / Marion Road Traffic Signals with the anticipated 54 veh/hr increase during peak times, indicated minimal impact on the performance of the signalised intersection with levels of service remaining the same.

APPENDIX A CWTDP REFERENCES

Overlay Map WeTo/1 TRANSPORT contsindared

Location Map WeTo/12

Primary Arterial Roads
Secondary Arterial Roads Bkedrect Network
$===3$ Main Road - Bike Lane

- Main Road

Un-a Secondary Road - Blike Lane

- Secondary Road
$\square=m=:=3$ Of Road Sealed Path

Overlay Map WeTo/12 TRANSPORT

Overlay Map WeTo/12 STRATEGIC TRANSPORT ROUTES

Policy Area Map WeTo/12

Policy Area Boundary
Development Plan Boundary

\longrightarrow Pimary Arterial Roads
Bakedrect Network
$=\square$ Main Road - Blxe Lane
Main Road
$y==3$ Secondary Road - Bike Lane

- Secondary Road
ranser of Road Sealed Path
Public Transport

Overlay Map WeTo/13
 TRANSPORT

WEST TORRENS COUNCIL

$\Longrightarrow=\Longrightarrow$ Main Road - Bke Lane
\longrightarrow Main Road

- Secondary Road

Heller of Road Sealed Path
,unumanum Ot Road Track
Public Transport
-.-..-. Development Plan Boundary

Overlay Map WeTo/14 TRANSPORT

Overlay Map WeTo/15 TRANSPORT

APPENDIX B

DPTI VEHICLE
TURNING MOVEMENT SURVEY (2011\&2017)

Intersection of: MARION ROAD / MOORINGE AVENUE
Locality: PLYMPTON
AMG Reference:TG766285
Date of Count: 17/05/2017
Weather: Dry
Survey Status:

Day: Wednesday
Control: SIGNALS

	Arm	1		2		3	
	Exit Arm	2	3 (R)	3 (L)	1	1 (L)	2 (R)
11 hour	Cars	9527	2130	1249	10568	2241	1725
	CV	463	285	115	506	266	134
	Total	9990	2415	1364	11074	2507	1859
AM Peak	Cars	811	236	93	1429	399	207
$\left\lvert\, \begin{aligned} & \text { ho } \\ & \text { (os } \end{aligned}\right.$	CV	43	24	6	47	28	16
	Total	854	260	99	1476	427	223
PM Peak	Cars	1127	230	130	942	185	203
	CV	24	27	17	50	21	7
	Total	1151	257	147	992	206	210

		1		2		3	
Oneway Flows	11 Hour Totals	(IN) 12405	(OUT) 13581	(IN) 12438	(OUT) 11849	(IN) 4366	(OUT) 3779
	AM Peak Hour	08:00 1118	08:15 1903	06:45 1580	08:00 1087	08:00 677	08:15 359
	PM Peak Hour	16:30 1555	15:15 1198	15:15 1139	16:30 1412	14:45 452	17:00 434
Twoway Flows	AM Peak Hour	08:15	3017	08:15	2652	08:00	1022
	PM Peak Hour	15:15	2606	15:15	2500	14:45	879
All Vehicles	11 Hour Totals	25986	5.8\% CV	24287	5.0\% CV	8145	9.8\% CV
	Estimated AADT	33500 SF(1.00) ZF(1.29)		31300 SF(1.00) ZF(1.29)		10500 SF(1.00) ZF(1.29)	

[^0]

Arm		Road Number - Name
2		$6001-$ MARION RD
3		Mooringie Ave

			1		2		3
One-way Flows	11 Hour Totals	(IN) 11846	(OUT) 12239	(IN) 10596	(OUT) 10868	(IN) 4138	(OUT) 3473
	AM Peak Hour	11:00 970	07:30 2091	07:30 1716	11:00 883	07:45 649	11:00 324
	PM Peak Hour	16:45 1757	15:00 990	14:00 849	16:45 1467	15:00 472	17:00 506
Two-way Flows	AM Peak Hour	07:45	2866	07:45	2468	07:45	906
	PM Peak Hour	16:45	2633	16:45	2224	15:00	847
All Vehicles	11 Hour Totals	24085	6.7\% CV	21464	5.3\% CV	7611	10.9\% CV
	Estimated AADT	30600 SF(1.00) ZF(1.27)		27300 SF(1.00) ZF(1.27)		9650 SF(1.00) ZF(1.27)	

[^1]SF - Seasonal Factor

ZF - Zone Factor

APPENDIX C SIDRA RESULTS

INTERSECTION SUMMARY

Site: [Mooringe Ave post Am]

Giveway / Yield (Two-Way)

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average)	$57.9 \mathrm{~km} / \mathrm{h}$	$57.9 \mathrm{~km} / \mathrm{h}$
Travel Distance (Total)	1089.8 veh-km/h	1307.8 pers-km/h
Travel Time (Total)	18.8 veh-h/h	22.6 pers-h/h
Demand Flows (Total)	1078 veh/h	1293 pers/h
Percent Heavy Vehicles (Demand)	2.0 \%	
Degree of Saturation	0.303	
Practical Spare Capacity	222.9 \%	
Effective Intersection Capacity	3552 veh/h	
Control Delay (Total)	0.56 veh-h/h	0.67 pers-h/h
Control Delay (Average)	1.9 sec	1.9 sec
Control Delay (Worst Lane)	12.4 sec	
Control Delay (Worst Movement)	15.1 sec	15.1 sec
Geometric Delay (Average)	1.1 sec	
Stop-Line Delay (Average)	0.8 sec	
Idling Time (Average)	0.4 sec	
Intersection Level of Service (LOS)	NA	
95\% Back of Queue - Vehicles (Worst Lane)	0.5 veh	
95\% Back of Queue - Distance (Worst Lane)	3.7 m	
Queue Storage Ratio (Worst Lane)	0.00	
Total Effective Stops	144 veh/h	172 pers/h
Effective Stop Rate	0.13 per veh	0.13 per pers
Proportion Queued	0.11	0.11
Performance Index	21.7	21.7
Cost (Total)	428.91 \$/h	428.91 \$/h
Fuel Consumption (Total)	$74.2 \mathrm{~L} / \mathrm{h}$	
Carbon Dioxide (Total)	$175.5 \mathrm{~kg} / \mathrm{h}$	
Hydrocarbons (Total)	$0.013 \mathrm{~kg} / \mathrm{h}$	
Carbon Monoxide (Total)	$0.214 \mathrm{~kg} / \mathrm{h}$	
NOx (Total)	$0.163 \mathrm{~kg} / \mathrm{h}$	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay

Intersection Performance - Annual Values		
Performance Measure	Vehicles	Persons
Demand Flows (Total)	$517,390 \mathrm{veh} / \mathrm{y}$	$620,867 \mathrm{pers} / \mathrm{y}$
Delay	$269 \mathrm{veh}-\mathrm{h} / \mathrm{y}$	$323 \mathrm{pers}-\mathrm{h} / \mathrm{y}$
Effective Stops	$68,973 \mathrm{veh} / \mathrm{y}$	$82,768 \mathrm{pers} / \mathrm{y}$
Travel Distance	$523,127 \mathrm{veh}-\mathrm{km} / \mathrm{y}$	$627,752 \mathrm{pers}-\mathrm{km} / \mathrm{y}$
Travel Time	$9,043 \mathrm{veh}-\mathrm{h} / \mathrm{y}$	$10,851 \mathrm{pers}-\mathrm{h} / \mathrm{y}$
Cost	$205,878 \mathrm{\$} / \mathrm{y}$	$205,878 \mathrm{\$} / \mathrm{y}$
Fuel Consumption	$35,625 \mathrm{~L} / \mathrm{y}$	
Carbon Dioxide	$84,250 \mathrm{~kg} / \mathrm{y}$	
Hydrocarbons	$6 \mathrm{~kg} / \mathrm{y}$	
Carbon Monoxide	$103 \mathrm{~kg} / \mathrm{y}$	
NOx	$78 \mathrm{~kg} / \mathrm{y}$	

MOVEMENT SUMMARY

∇ site: [Mooringe Ave post Am]

Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Deman Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Streeters Rd (S)											
1	L2	2	0.0	0.038	6.7	LOS A	0.1	0.8	0.65	0.82	48.7
2	T1	2	0.0	0.038	11.7	LOS B	0.1	0.8	0.65	0.82	48.9
3	R2	11	2.0	0.038	13.7	LOS B	0.1	0.8	0.65	0.82	48.2
Appr	ch	15	1.4	0.038	12.4	LOS B	0.1	0.8	0.65	0.82	48.3
East: Mooringe Avenue (E)											
4	L2	1	0.0	0.214	9.0	LOS A	0.5	3.2	0.15	0.06	57.2
5	T1	352	2.0	0.214	0.6	LOS A	0.5	3.2	0.15	0.06	58.8
6	R2	32	2.0	0.214	9.0	LOS A	0.5	3.2	0.15	0.06	56.5
Appr		384	2.0	0.214	1.3	NA	0.5	3.2	0.15	0.06	58.6
North: Streeters Rd (N)											
7	L2	26	2.0	0.158	7.8	LOS A	0.5	3.7	0.65	0.83	48.7
8	T1	1	0.0	0.158	11.5	LOS B	0.5	3.7	0.65	0.83	49.0
9	R2	42	2.0	0.158	15.1	LOS C	0.5	3.7	0.65	0.83	48.5
Appr		69	2.0	0.158	12.3	LOS B	0.5	3.7	0.65	0.83	48.6
West: Mooringe Avenue (W)											
10	L2	87	2.0	0.303	5.6	LOS A	0.0	0.1	0.00	0.09	57.5
11	T1	521	2.0	0.303	0.0	LOS A	0.0	0.1	0.00	0.09	59.2
12	R2	1	0.0	0.303	7.3	LOS A	0.0	0.1	0.00	0.09	57.2
Approach		609	2.0	0.303	0.8	NA	0.0	0.1	0.00	0.09	58.9
All Vehicles		1078	2.0	0.303	1.9	NA	0.5	3.7	0.11	0.13	57.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WGA SA PTY LTD TRADING AS WALLBRIDGE GILBERT AZTEC | Processed: 4 November 2019 10:24:43 AM
Project: V:\2019\190100-190199\190190 - Mooringe AvelDesign\Calculations\Traffic\SIDRA\190190-CA-TT-A-0001[B].sip7

LANE SUMMARY

Site: [Mooringe Ave post Am]

Giveway / Yield (Two-Way)

Lane Use and Performance													
		ows	Cap.	Deg. Satn	Lane Util.	Average Delay	Level of Service	95\% Bac	ueue	Lane Config	Lane Length		Prob. Block.
	Total veh/h	$\begin{gathered} \mathrm{HV} \\ \% \end{gathered}$	$\mathrm{veh} / \mathrm{h}$	v/c	\%	sec		Veh	Dist m		m	\%	\%
South: Streeters Rd (S)													
Lane 1	15	1.4	392	0.038	100	12.4	LOS B	0.1	0.8	Full	500	0.0	0.0
Approach	15	1.4		0.038		12.4	LOS B	0.1	0.8				
East: Mooringe Avenue (E)													
Lane 1	384	2.0	1796	0.214	100	1.3	LOS A	0.5	3.2	Full	500	0.0	0.0
Approach	384	2.0		0.214		1.3	NA	0.5	3.2				
North: Streeters Rd (N)													
Lane 1	69	2.0	439	0.158	100	12.3	LOS B	0.5	3.7	Full	500	0.0	0.0
Approach	69	2.0		0.158		12.3	LOS B	0.5	3.7				
West: Mooringe Avenue (W)													
Lane 1	609	2.0	2008	0.303	100	0.8	LOS A	0.0	0.1	Full	500	0.0	0.0
Approach	609	2.0		0.303		0.8	NA	0.0	0.1				
Intersectio n	1078	2.0		0.303		1.9	NA	0.5	3.7				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Lane LOS values are based on average delay per lane.
Minor Road Approach LOS values are based on average delay for all lanes.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE FLOWS

Site: [Mooringe Ave post Am]

Giveway / Yield (Two-Way)

Approach Lane Flows (veh/h)									
South: Streeters Rd (S)									
Mov. From S To Exit:	L2 W	T1 N	R2 E	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. $\% \text { \% }$	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	2	2	11	15	1.4	392	0.038	100 NA	NA
Approac h	2	2	11	15	1.4		0.038		
East: Mooringe Avenue (E)									
Mov. From E To Exit:	L2 S	T1 W	R2 N	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. $\% \quad \%$	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	1	352	32	384	2.0	1796	0.214	100 NA	NA
Approac h	1		32	384	2.0		0.214		
North: Streeters Rd (N)									
Mov. From N To Exit:	$\begin{gathered} \mathrm{L} 2 \\ \mathrm{E} \end{gathered}$	T1 S	R2 W	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov.	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	26	1	42	69	2.0	439	0.158	100 NA	NA
Approac h	26	1	42	69	2.0		0.158		
West: Mooringe Avenue (W)									
Mov. From W To Exit:	L2 N	T1 E	R2 s		\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	87	521	1	609	2.0	2008	0.303	100 NA	NA
Approac h	87		1		2.0		0.303		
Total \%HV Deg.Satn (v/c)									
Intersec tion				0.303					

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.

[^2]
LANE LEVEL OF SERVICE

Lane Level of Service

Site: [Mooringe Ave post Am]

Giveway / Yield (Two-Way)

All Movement Classes

	South	East	North	West	Intersection
LOS	B	NA	B	NA	NA

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Lane LOS values are based on average delay per lane.
Minor Road Approach LOS values are based on average delay for all lanes.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

DELAY (CONTROL)

Average control delay per vehicle, or average pedestrian delay (seconds)
∇ site: [Mooringe Ave post Am]

Giveway / Yield (Two-Way)
All Movement Classes

	South	East	North	West	Intersection
Delay (Control)	12.4	1.3	12.3	0.8	1.9
LOS	B	NA	B	NA	NA

Streeters Rd (N)

Colour code based on Level of Service
LOS A LOS B LOS C LOS D LOS E LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WGA SA PTY LTD TRADING AS WALLBRIDGE GILBERT AZTEC | Processed: 4 November 2019 10:24:43 AM
Project: V:\2019\190100-190199\190190 - Mooringe AvelDesign\Calculations\Traffic\SIDRA\190190-CA-TT-A-0001[B].sip7

INTERSECTION SUMMARY

Site: [Mooringe Ave \& New development AM]
Giveway / Yield (Two-Way)

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average)	57.0 km/h	57.0 km/h
Travel Distance (Total)	1207.1 veh-km/h	1448.6 pers-km/h
Travel Time (Total)	21.2 veh-h/h	25.4 pers-h/h
Demand Flows (Total)	958 veh/h	1149 pers/h
Percent Heavy Vehicles (Demand)	1.9 \%	
Degree of Saturation	0.272	
Practical Spare Capacity	259.7 \%	
Effective Intersection Capacity	3516 veh/h	
Control Delay (Total)	0.70 veh-h/h	0.84 pers-h/h
Control Delay (Average)	2.6 sec	2.6 sec
Control Delay (Worst Lane)	7.7 sec	
Control Delay (Worst Movement)	8.4 sec	8.4 sec
Geometric Delay (Average)	2.5 sec	
Stop-Line Delay (Average)	0.2 sec	
Idling Time (Average)	0.1 sec	
Intersection Level of Service (LOS)	NA	
95\% Back of Queue - Vehicles (Worst Lane)	0.2 veh	
95\% Back of Queue - Distance (Worst Lane)	1.3 m	
Queue Storage Ratio (Worst Lane)	0.00	
Total Effective Stops	249 veh/h	299 pers/h
Effective Stop Rate	0.26 per veh	0.26 per pers
Proportion Queued	0.00	0.00
Performance Index	22.5	22.5
Cost (Total)	481.78 \$/h	481.78 \$/h
Fuel Consumption (Total)	85.1 L/h	
Carbon Dioxide (Total)	201.2 kg/h	
Hydrocarbons (Total)	$0.015 \mathrm{~kg} / \mathrm{h}$	
Carbon Monoxide (Total)	$0.240 \mathrm{~kg} / \mathrm{h}$	
NOx (Total)	$0.189 \mathrm{~kg} / \mathrm{h}$	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Intersection Performance - Annual Values		
Performance Measure	Vehicles	Persons
Demand Flows (Total)	$459,790 \mathrm{veh} / \mathrm{y}$	$551,747 \mathrm{pers} / \mathrm{y}$
Delay	$336 \mathrm{veh}-\mathrm{h} / \mathrm{y}$	40 pers - $/ \mathrm{y}$
Effective Stops	$119,618 \mathrm{veh} / \mathrm{y}$	$143,542 \mathrm{pers} / \mathrm{y}$
Travel Distance	$579,426 \mathrm{veh}-\mathrm{km} / \mathrm{y}$	$695,311 \mathrm{pers}-\mathrm{km} / \mathrm{y}$
Travel Time	$10,169 \mathrm{veh}-\mathrm{h} / \mathrm{y}$	$12,203 \mathrm{pers}$-h/y
Cost	$231,256 \mathrm{\$} / \mathrm{y}$	$231,256 \mathrm{\$} / \mathrm{y}$
Fuel Consumption	$40,855 \mathrm{~L} / \mathrm{y}$	
Carbon Dioxide	$96,592 \mathrm{~kg} / \mathrm{y}$	
Hydrocarbons	$7 \mathrm{~kg} / \mathrm{y}$	
Carbon Monoxide	$115 \mathrm{~kg} / \mathrm{y}$	
NOx	$91 \mathrm{~kg} / \mathrm{y}$	

MOVEMENT SUMMARY

∇ site: [Mooringe Ave \& New development AM]
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Deman Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Access point 1											
1	L2	6	0.0	0.056	4.6	LOS A	0.2	1.3	0.03	0.56	44.8
3	R2	32	0.0	0.056	8.4	LOS A	0.2	1.3	0.03	0.56	45.4
Appr		38	0.0	0.056	7.7	LOS A	0.2	1.3	0.03	0.56	45.3
East: Mooringe Ave											
4	L2	394	2.0	0.217	5.6	LOS A	0.0	0.0	0.00	0.57	54.7
5	T1	3	0.0	0.217	0.0	LOS A	0.0	0.0	0.00	0.57	55.9
Appr		397	2.0	0.217	5.6	NA	0.0	0.0	0.00	0.57	54.7
West: Mooringe Ave											
11	T1	521	2.0	0.272	0.0	LOS A	0.0	0.2	0.01	0.00	60.0
12	R2	2	0.0	0.272	7.5	LOS A	0.0	0.2	0.01	0.00	57.7
Approach		523	2.0	0.272	0.0	NA	0.0	0.2	0.01	0.00	60.0
All Vehicles		958	1.9	0.272	2.6	NA	0.2	1.3	0.00	0.26	57.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: [Mooringe Ave \& New development AM]
Giveway / Yield (Two-Way)

Lane Use and Performance													
	Demand Flows		Cap.	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \end{aligned}$	Lane Util.	Average Delay	Level of Service	95\% Back of Queue		Lane Config	Lane Length		Prob. Block.
	Total veh/h	$\begin{gathered} \text { HV } \\ \% \end{gathered}$	veh/h	v/c	\%	sec		Veh	Dist m		m	\%	\%
South: Access point 1													
Lane 1	38	0.0	679	0.056	100	7.7	LOS A	0.2	1.3	Full	500	0.0	0.0
Approach	38	0.0		0.056		7.7	LOS A	0.2	1.3				
East: Mooringe Ave													
Lane 1	397	2.0	1832	0.217	100	5.6	LOS A	0.0	0.0	Full	750	0.0	0.0
Approach	397	2.0		0.217		5.6	NA	0.0	0.0				
West: Mooringe Ave													
Lane 1	523	2.0	1920	0.272	100	0.0	LOS A	0.0	0.2	Full	500	0.0	0.0
Approach	523	2.0		0.272		0.0	NA	0.0	0.2				
Intersectio n	958	1.9		0.272		2.6	NA	0.2	1.3				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Lane LOS values are based on average delay per lane.
Minor Road Approach LOS values are based on average delay for all lanes.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE FLOWS

Site: [Mooringe Ave \& New development AM]
Giveway / Yield (Two-Way)

Approach Lane Flows (veh/h)								
South: Access point 1								
Mov. From S To Exit:	$\begin{aligned} & \mathrm{L} 2 \\ & \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{array}{r} \text { R2 } \\ \mathrm{E} \end{array}$	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. $\% \quad \%$	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	6	32	38	0.0	679	0.056	100 NA	NA
Approac h	6	32	38	0.0		0.056		
East: Mooringe Ave								
Mov. From E To Exit	L2 s	T1 W		\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	394	3	397	2.0	1832	0.217	100 NA	NA
Approac h	394	3	397	2.0		0.217		
West: Mooringe Ave								
Mov. From W To Exit:	$\begin{gathered} \text { T1 } \\ \text { E } \end{gathered}$	$\begin{array}{r} \text { R2 } \\ \mathrm{S} \end{array}$		\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	521	2	523	2.0	1920	0.272	100 NA	NA
Approac h	521	2	523	2.0		0.272		
Total \%HV Deg.Satn (v/c)								
Intersec tion	958	1.9		0.272				

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.

[^3]
LANE LEVEL OF SERVICE

Lane Level of Service

Site: [Mooringe Ave \& New development AM]

Giveway / Yield (Two-Way)

All Movement Classes

	South	East	West	Intersection
LOS	A	NA	NA	NA

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Lane LOS values are based on average delay per lane.
Minor Road Approach LOS values are based on average delay for all lanes.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

DELAY (CONTROL)

Average control delay per vehicle, or average pedestrian delay (seconds)

∇ Site: [Mooringe Ave \& New development AM]

Giveway / Yield (Two-Way)
All Movement Classes

	South	East	West	Intersection
Delay (Control)	7.7	5.6	0.0	2.6
LOS	A	NA	NA	NA

Colour code based on Level of Service

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

INTERSECTION SUMMARY

Site: [Mooringe Ave post Pm]

Giveway / Yield (Two-Way)

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average)	57.6 km/h	57.6 km/h
Travel Distance (Total)	1089.8 veh-km/h	1307.8 pers-km/h
Travel Time (Total)	18.9 veh-h/h	22.7 pers-h/h
Demand Flows (Total)	1078 veh/h	1293 pers/h
Percent Heavy Vehicles (Demand)	2.0 \%	
Degree of Saturation	0.292	
Practical Spare Capacity	180.0 \%	
Effective Intersection Capacity	3693 veh/h	
Control Delay (Total)	0.64 veh-h/h	0.77 pers-h/h
Control Delay (Average)	2.1 sec	2.1 sec
Control Delay (Worst Lane)	13.6 sec	
Control Delay (Worst Movement)	15.8 sec	15.8 sec
Geometric Delay (Average)	1.1 sec	
Stop-Line Delay (Average)	1.1 sec	
Idling Time (Average)	0.6 sec	
Intersection Level of Service (LOS)	NA	
95\% Back of Queue - Vehicles (Worst Lane)	1.1 veh	
95\% Back of Queue - Distance (Worst Lane)	7.7 m	
Queue Storage Ratio (Worst Lane)	0.01	
Total Effective Stops	154 veh/h	185 pers/h
Effective Stop Rate	0.14 per veh	0.14 per pers
Proportion Queued	0.12	0.12
Performance Index	22.8	22.8
Cost (Total)	430.91 \$/h	430.91 \$/h
Fuel Consumption (Total)	$74.2 \mathrm{~L} / \mathrm{h}$	
Carbon Dioxide (Total)	$175.4 \mathrm{~kg} / \mathrm{h}$	
Hydrocarbons (Total)	$0.013 \mathrm{~kg} / \mathrm{h}$	
Carbon Monoxide (Total)	$0.214 \mathrm{~kg} / \mathrm{h}$	
NOx (Total)	$0.162 \mathrm{~kg} / \mathrm{h}$	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay

Intersection Performance - Annual Values		
Performance Measure	Vehicles	Persons
Demand Flows (Total)	517,390 veh/y	620,867 pers/y
Delay	308 veh-h/y	370 pers-h/y
Effective Stops	74,145 veh/y	88,974 pers/y
Travel Distance	523,100 veh-km/y	627,721 pers-km/y
Travel Time	9,086 veh-h/y	10,903 pers-h/y
Cost	206,835 \$/y	206,835 \$/y
Fuel Consumption	35,594 L/y	
Carbon Dioxide	84, $177 \mathrm{~kg} / \mathrm{y}$	
Hydrocarbons	$6 \mathrm{~kg} / \mathrm{y}$	
Carbon Monoxide	$103 \mathrm{~kg} / \mathrm{y}$	
NOx	$78 \mathrm{~kg} / \mathrm{y}$	

MOVEMENT SUMMARY

∇ site: [Mooringe Ave post Pm]

Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Deman Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Streeters Rd (S)											
1	L2	1	0.0	0.007	7.5	LOS A	0.0	0.1	0.61	0.70	50.0
2	T1	1	0.0	0.007	10.6	LOS B	0.0	0.1	0.61	0.70	50.2
3	R2	1	0.0	0.007	13.3	LOS B	0.0	0.1	0.61	0.70	49.5
Appr		3	0.0	0.007	10.5	LOS B	0.0	0.1	0.61	0.70	49.9
East: Mooringe Avenue (E)											
4	L2	11	2.0	0.292	7.3	LOS A	0.3	2.4	0.08	0.04	57.6
5	T1	521	2.0	0.292	0.2	LOS A	0.3	2.4	0.08	0.04	59.3
6	R2	26	2.0	0.292	7.6	LOS A	0.3	2.4	0.08	0.04	57.0
Appr	ch	558	2.0	0.292	0.6	NA	0.3	2.4	0.08	0.04	59.2
North: Streeters Rd (N)											
7	L2	32	2.0	0.286	7.6	LOS A	1.1	7.7	0.66	0.86	47.9
8	T1	2	0.0	0.286	12.4	LOS B	1.1	7.7	0.66	0.86	48.1
9	R2	87	2.0	0.286	15.8	LOS C	1.1	7.7	0.66	0.86	47.7
Appr		121	2.0	0.286	13.6	LOS B	1.1	7.7	0.66	0.86	47.7
West: Mooringe Avenue (W)											
10	L2	42	2.0	0.198	5.7	LOS A	0.0	0.3	0.01	0.07	57.6
11	T1	352	2.0	0.198	0.0	LOS A	0.0	0.3	0.01	0.07	59.3
12	R2	2	0.0	0.198	8.2	LOS A	0.0	0.3	0.01	0.07	57.3
Approach		396	2.0	0.198	0.7	NA	0.0	0.3	0.01	0.07	59.1
All Vehicles		1078	2.0	0.292	2.1	NA	1.1	7.7	0.12	0.14	57.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WGA SA PTY LTD TRADING AS WALLBRIDGE GILBERT AZTEC | Processed: 4 November 2019 10:29:32 AM
Project: V:\2019\190100-190199\190190 - Mooringe Ave\Design\Calculations\Traffic\SIDRAI190190-CA-TT-A-0001[B].sip7

LANE SUMMARY

Site: [Mooringe Ave post Pm]

Giveway / Yield (Two-Way)

Lane Use and Performance													
		and	Cap.	Deg. Satn	Lane Util.	Average Delay	Level of Service	95\% Bac	ueue	Lane Config	Lane Length	Cap. Adj.	Prob. Block.
	Total veh/h	$\begin{gathered} \text { HV } \\ \% \end{gathered}$		v/c	\%	sec		Veh	Dist m		m	\%	\%
South: Streeters Rd (S)													
Lane 1	3	0.0	482	0.007	100	10.5	LOS B	0.0	0.1	Full	500	0.0	0.0
Approach	3	0.0		0.007		10.5	LOS B	0.0	0.1				
East: Mooringe Avenue (E)													
Lane 1	558	2.0	1911	0.292	100	0.6	LOS A	0.3	2.4	Full	500	0.0	0.0
Approach	558	2.0		0.292		0.6	NA	0.3	2.4				
North: Streeters Rd (N)													
Lane 1	121	2.0	424	0.286	100	13.6	LOS B	1.1	7.7	Full	500	0.0	0.0
Approach	121	2.0		0.286		13.6	LOS B	1.1	7.7				
West: Mooringe Avenue (W)													
Lane 1	396	2.0	2004	0.198	100	0.7	LOS A	0.0	0.3	Full	500	0.0	0.0
Approach	396	2.0		0.198		0.7	NA	0.0	0.3				
Intersectio n	1078	2.0		0.292		2.1	NA	1.1	7.7				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Lane LOS values are based on average delay per lane.
Minor Road Approach LOS values are based on average delay for all lanes.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE FLOWS

Site: [Mooringe Ave post Pm]

Giveway / Yield (Two-Way)

Approach Lane Flows (veh/h)									
South: Streeters Rd (S)									
Mov. From S To Exit:	L2 W	T1 N	R2 E	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. $\% \text { \% }$	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	1	1	1	3	0.0	482	0.007	100 NA	NA
Approac h	1	1	1	3	0.0		0.007		
East: Mooringe Avenue (E)									
Mov. From E To Exit:	L2 s	T1 W	R2 N	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	11	521	26	558	2.0	1911	0.292	100 NA	NA
Approac h	11	521	26	558	2.0		0.292		
North: Streeters Rd (N)									
Mov. From N To Exit:	$\begin{gathered} \mathrm{L} 2 \\ \mathrm{E} \end{gathered}$	T1 S	R2 W	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov.	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	32	2	87	121	2.0	424	0.286	100 NA	NA
Approac h	32	2	87	121	2.0		0.286		
West: Mooringe Avenue (W)									
Mov. From W To Exit:	L2 N	T1 E	R2 s		\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	42	352	2	396	2.0	2004	0.198	100 NA	NA
Approac h	42		2		2.0		0.198		
Total \%HV Deg.Satn (v/c)									
Intersec tion				0.292					

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.

[^4]
LANE LEVEL OF SERVICE

Lane Level of Service

Site: [Mooringe Ave post Pm]

Giveway / Yield (Two-Way)

All Movement Classes

	South	East	North	West	Intersection
LOS	B	NA	B	NA	NA

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Lane LOS values are based on average delay per lane.
Minor Road Approach LOS values are based on average delay for all lanes.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

DELAY (CONTROL)

Average control delay per vehicle, or average pedestrian delay (seconds)
∇ site: [Mooringe Ave post Pm]

Giveway / Yield (Two-Way)
All Movement Classes

	South	East	North	West	Intersection
Delay (Control)	10.5	0.6	13.6	0.7	2.1
LOS	B	NA	B	NA	NA

Streeters Rd (N)

Colour code based on Level of Service
LOS A LOS B LOS C LOS D LOS E LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WGA SA PTY LTD TRADING AS WALLBRIDGE GILBERT AZTEC | Processed: 4 November 2019 10:29:32 AM
Project: V:\2019\190100-190199\190190 - Mooringe AvelDesign\Calculations\Traffic\SIDRA\190190-CA-TT-A-0001[B].sip7

INTERSECTION SUMMARY

Site: [Mooringe Ave \& New development PM]
Giveway / Yield (Two-Way)

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average)	56.6 km/h	56.6 km/h
Travel Distance (Total)	1187.0 veh-km/h	1424.4 pers-km/h
Travel Time (Total)	21.0 veh-h/h	25.2 pers-h/h
Demand Flows (Total)	941 veh/h	1129 pers/h
Percent Heavy Vehicles (Demand)	1.9 \%	
Degree of Saturation	0.315	
Practical Spare Capacity	211.0 \%	
Effective Intersection Capacity	2986 veh/h	
Control Delay (Total)	0.89 veh-h/h	1.06 pers-h/h
Control Delay (Average)	3.4 sec	3.4 sec
Control Delay (Worst Lane)	6.8 sec	
Control Delay (Worst Movement)	8.5 sec	8.5 sec
Geometric Delay (Average)	3.3 sec	
Stop-Line Delay (Average)	0.1 sec	
Idling Time (Average)	0.0 sec	
Intersection Level of Service (LOS)	NA	
95\% Back of Queue - Vehicles (Worst Lane)	0.1 veh	
95\% Back of Queue - Distance (Worst Lane)	0.6 m	
Queue Storage Ratio (Worst Lane)	0.00	
Total Effective Stops	322 veh/h	387 pers/h
Effective Stop Rate	0.34 per veh	0.34 per pers
Proportion Queued	0.01	0.01
Performance Index	22.6	22.6
Cost (Total)	522.70 \$/h	522.70 \$/h
Fuel Consumption (Total)	$87.7 \mathrm{~L} / \mathrm{h}$	
Carbon Dioxide (Total)	207.3 kg/h	
Hydrocarbons (Total)	$0.016 \mathrm{~kg} / \mathrm{h}$	
Carbon Monoxide (Total)	$0.247 \mathrm{~kg} / \mathrm{h}$	
NOx (Total)	$0.205 \mathrm{~kg} / \mathrm{h}$	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Intersection Performance - Annual Values		
Performance Measure	Vehicles	Persons
Demand Flows (Total)	$451,705 \mathrm{veh} / \mathrm{y}$	$542,046 \mathrm{pers} / \mathrm{y}$
Delay	$426 \mathrm{veh}-\mathrm{h} / \mathrm{y}$	511 pers -h/y
Effective Stops	$154,798 \mathrm{veh} / \mathrm{y}$	$185,758 \mathrm{pers} / \mathrm{y}$
Travel Distance	$569,767 \mathrm{veh}-\mathrm{km} / \mathrm{y}$	$683,721 \mathrm{pers}-\mathrm{km} / \mathrm{y}$
Travel Time	$10,065 \mathrm{veh}-\mathrm{h} / \mathrm{y}$	$12,078 \mathrm{pers}$-h/y
Cost	$250,894 \mathrm{\$} / \mathrm{y}$	$250,894 \mathrm{\$} / \mathrm{y}$
Fuel Consumption	$42,104 \mathrm{~L} / \mathrm{y}$	
Carbon Dioxide	$99,503 \mathrm{~kg} / \mathrm{y}$	
Hydrocarbons	$8 \mathrm{~kg} / \mathrm{y}$	
Carbon Monoxide	$118 \mathrm{~kg} / \mathrm{y}$	
NOx	$99 \mathrm{~kg} / \mathrm{y}$	

MOVEMENT SUMMARY

∇ site: [Mooringe Ave \& New development PM]
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \hline \text { ID } \end{aligned}$	$\begin{gathered} \hline \text { OD } \\ \text { Mov } \end{gathered}$	Deman Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Access point 1 dec per veh kmm											
1	L2	1	0.0	0.005	4.6	LOS A	0.0	0.1	0.14	0.56	45.3
3	R2	3	0.0	0.005	7.5	LOSA	0.0	0.1	0.14	0.56	45.8
Appro		4	0.0	0.005	6.8	LOS A	0.0	0.1	0.14	0.56	45.7
East: Mooringe Ave											
4	L2	547	2.0	0.315	5.6	LOS A	0.0	0.0	0.00	0.55	54.9
5	T1	32	0.0	0.315	0.1	LOSA	0.0	0.0	0.00	0.55	56.1
Appro		579	1.9	0.315	5.3	NA	0.0	0.0	0.00	0.55	54.9
West: Mooringe Ave											
11	T1	352	2.0	0.189	0.1	LOS A	0.1	0.6	0.03	0.01	59.8
12	R2	6	0.0	0.189	8.5	LOS A	0.1	0.6	0.03	0.01	57.5
Approach		358	2.0	0.189	0.2	NA	0.1	0.6	0.03	0.01	59.8
All Vehicles		941	1.9	0.315	3.4	NA	0.1	0.6	0.01	0.34	56.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: [Mooringe Ave \& New development PM]
Giveway / Yield (Two-Way)

Lane Use and Performance													
	Demand Flows		Cap.	Deg. Satn	Lane Util.	Average Delay	Level of Service	95\% Back of Queue		Lane Config	Lane Length	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \end{aligned}$	Prob. Block.
	Total veh/h	$\begin{aligned} & \mathrm{HV} \\ & \% \end{aligned}$	veh/h	v/c	\%	sec		Veh	Dist m		m	\%	\%
South: Access point 1													
Lane 1	4	0.0	789	0.005	100	6.8	LOS A	0.0	0.1	Full	500	0.0	0.0
Approach	4	0.0		0.005		6.8	LOS A	0.0	0.1				
East: Mooringe Ave													
Lane 1	579	1.9	1837	0.315	100	5.3	LOS A	0.0	0.0	Full	750	0.0	0.0
Approach	579	1.9		0.315		5.3	NA	0.0	0.0				
West: Mooringe Ave													
Lane 1	358	2.0	1892	0.189	100	0.2	LOS A	0.1	0.6	Full	500	0.0	0.0
Approach	358	2.0		0.189		0.2	NA	0.1	0.6				
Intersectio n	941	1.9		0.315		3.4	NA	0.1	0.6				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Lane LOS values are based on average delay per lane.
Minor Road Approach LOS values are based on average delay for all lanes.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE FLOWS

Site: [Mooringe Ave \& New development PM]
Giveway / Yield (Two-Way)

Approach Lane Flows (veh/h)								
South: Access point 1								
Mov. From S To Exit:	L2 W	$\begin{gathered} \text { R2 } \\ \mathrm{E} \end{gathered}$	Total	\%HV	Cap. veh/h	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \text { v/c } \end{aligned}$	Lane Prob. Util. SL Ov. \% \%	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	1	3	4	0.0	789	0.005	100 NA	NA
Approac h	1	3	4	0.0		0.005		
East: Mooringe Ave								
Mov. From E To Exit:	$\begin{array}{r} \mathrm{L} 2 \\ \mathrm{~S} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~W} \end{aligned}$		\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov.	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	547	32	579	1.9	1837	0.315	100 NA	NA
Approac h		32		1.9		0.315		
West: Mooringe Ave								
Mov. From W To Exit:	T1 E	$\begin{array}{r} \text { R2 } \\ \mathrm{S} \end{array}$		\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. $\% \quad \%$	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	352	6	358	2.0	1892	0.189	100 NA	NA
Approac h	352	6	358	2.0		0.189		
Total \%HV Deg.Satn (v/c)								
Intersec tion	941	1.9		0.315				

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.

[^5]
LANE LEVEL OF SERVICE

Lane Level of Service

Site: [Mooringe Ave \& New development PM]

Giveway / Yield (Two-Way)

All Movement Classes

	South	East	West	Intersection
LOS	A	NA	NA	NA

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Lane LOS values are based on average delay per lane.
Minor Road Approach LOS values are based on average delay for all lanes.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

DELAY (CONTROL)

Average control delay per vehicle, or average pedestrian delay (seconds)

∇ Site: [Mooringe Ave \& New development PM]

Giveway / Yield (Two-Way)

All Movement Classes

	South	East	West	Intersection
Delay (Control)	6.8	5.3	0.2	3.4
LOS	A	NA	NA	NA

Colour code based on Level of Service

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay

INTERSECTION SUMMARY

Site: [Mooringe \& marion Rd Future Am]

Three-way intersection with "Seagull" treatment (Signals)
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average)	34.1 km/h	34.1 km/h
Travel Distance (Total)	2538.7 veh-km/h	3046.4 pers-km/h
Travel Time (Total)	74.4 veh-h/h	89.3 pers-h/h
Demand Flows (Total)	3561 veh/h	4273 pers/h
Percent Heavy Vehicles (Demand)	4.9 \%	
Degree of Saturation	0.869	
Practical Spare Capacity	3.5 \%	
Effective Intersection Capacity	4096 veh/h	
Control Delay (Total)	31.49 veh-h/h	37.78 pers-h/h
Control Delay (Average)	31.8 sec	31.8 sec
Control Delay (Worst Lane)	64.9 sec	
Control Delay (Worst Movement)	64.9 sec	64.9 sec
Geometric Delay (Average)	1.8 sec	
Stop-Line Delay (Average)	30.1 sec	
Idling Time (Average)	26.1 sec	
Intersection Level of Service (LOS)	LOS C	
95\% Back of Queue - Vehicles (Worst Lane)	45.7 veh	
95\% Back of Queue - Distance (Worst Lane)	329.5 m	
Queue Storage Ratio (Worst Lane)	1.05	
Total Effective Stops	2763 veh/h	3316 pers/h
Effective Stop Rate	0.78 per veh	0.78 per pers
Proportion Queued	0.80	0.80
Performance Index	281.5	281.5
Cost (Total)	2393.76 \$/h	2393.76 \$/h
Fuel Consumption (Total)	313.8 L/h	
Carbon Dioxide (Total)	746.1 kg/h	
Hydrocarbons (Total)	$0.068 \mathrm{~kg} / \mathrm{h}$	
Carbon Monoxide (Total)	$0.786 \mathrm{~kg} / \mathrm{h}$	
NOx (Total)	$1.565 \mathrm{~kg} / \mathrm{h}$	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Intersection LOS value for Vehicles is based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Intersection Performance - Annual Values

Performance Measure	Vehicles	Persons
Demand Flows (Total)	1,709,305 veh/y	2,051,167 pers/y
Delay	15,113 veh-h/y	18,135 pers-h/y
Effective Stops	1,326,271 veh/y	1,591,525 pers/y
Travel Distance	1,218,563 veh-km/y	1,462,276 pers-km/y
Travel Time	35,733 veh-h/y	42,879 pers-h/y
Cost	1,149,002 \$/y	1,149,002 \$/y
Fuel Consumption	150,638 L/y	
Carbon Dioxide	$358,150 \mathrm{~kg} / \mathrm{y}$	
Hydrocarbons	$33 \mathrm{~kg} / \mathrm{y}$	
Carbon Monoxide	$377 \mathrm{~kg} / \mathrm{y}$	
NOx	$751 \mathrm{~kg} / \mathrm{y}$	

MOVEMENT SUMMARY

Site: [Mooringe \& marion Rd Future Am]

Three-way intersection with "Seagull" treatment (Signals)
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Deman Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Marion Rd (S)											
4	L2	105	6.0	0.853	37.2	LOS D	45.7	329.5	0.95	0.91	33.2
5	T1	1554	3.2	0.853	31.9	LOS C	45.7	329.5	0.95	0.91	32.6
Appr	ch	1659	3.4	0.853	32.2	LOS C	45.7	329.5	0.95	0.91	32.7
North: Marion Rd (N)											
11	T1	899	5.0	0.331	5.9	LOS A	9.1	66.5	0.38	0.34	52.0
12	R2	277	10.3	0.691	53.3	LOS D	14.3	108.8	0.97	1.02	30.4
Appr	ch	1176	6.3	0.691	17.1	LOS B	14.3	108.8	0.52	0.50	42.5
West: Mooringe Ave (W)											
1	L2	481	6.1	0.869	49.6	LOS D	27.8	204.9	0.90	0.92	31.5
3	R2	245	6.9	0.831	64.9	LOS E	15.3	113.8	1.00	0.92	23.2
Approach		726	6.4	0.869	54.8	LOS D	27.8	204.9	0.93	0.92	28.7
All Vehicles		3561	4.9	0.869	31.8	LOS C	45.7	329.5	0.80	0.78	34.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: [Mooringe \& marion Rd Future Am]
Three-way intersection with "Seagull" treatment (Signals)
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Lane Use and Performance													
		$\begin{aligned} & \text { mand } \\ & \text { Flows } \\ & \text { HV } \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Back	Queue Dist m	Lane Config	Lane Length	Cap. Adj. $\%$	Prob. Block.
South: Marion Rd (S)													
Lane 1	850	3.5	996	0.853	100	32.2	LOS C	45.7	329.5	Full	192	0.0	54.7
Lane 2	809	3.2	948	0.853	100	32.2	LOS C	44.0	316.2	Full	192	0.0	50.9
Approach	1659	3.4		0.853		32.2	LOS C	45.7	329.5				
North: Marion Rd (N)													
Lane 1	452	5.0	1363	0.331	100	5.9	LOS A	9.1	66.5	Full	433	0.0	0.0
Lane 2	447	5.0	1349	0.331	100	5.9	LOS A	9.0	65.8	Full	433	0.0	0.0
Lane 3	277	10.3	401	0.691	100	53.3	LOS D	14.3	108.8	Short	130	0.0	NA
Approach	1176	6.3		0.691		17.1	LOS B	14.3	108.8				
West: Mooringe Ave (W)													
Lane 1	481	6.1	$553{ }^{1}$	0.869	100	49.6	LOS D	27.8	204.9	Short	70	0.0	NA
Lane 2	245	6.9	295	0.831	100	64.9	LOS E	15.3	113.8	Full	500	0.0	0.0
Approach	726	6.4		0.869		54.8	LOS D	27.8	204.9				
Intersectio n	3561	4.9		0.869		31.8	LOS C	45.7	329.5				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Lane LOS values are based on average delay per lane.
Intersection and Approach LOS values are based on average delay for all lanes.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
1 Reduced capacity due to a short lane effect. Short lane queues may extend into the full-length lanes. Some upstream delays at entry to short lanes are not included.

LANE FLOWS

Site: [Mooringe \& marion Rd Future Am]

Three-way intersection with "Seagull" treatment (Signals)
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Approach Lane Flows (veh/h)} \\
\hline \multicolumn{9}{|l|}{South: Marion Rd (S)} \\
\hline \begin{tabular}{l}
Mov. \\
From S \\
To Exit:
\end{tabular} \& \begin{tabular}{l}
L2 \\
W
\end{tabular} \& \begin{tabular}{l}
T1 \\
N
\end{tabular} \& Total \& \%HV \& Cap. veh/h \& Deg. Satn v/c \& \[
\begin{array}{cc}
\text { Lane } \& \text { Prob. } \\
\text { Util. SL Ov. } \\
\% \& \%
\end{array}
\] \& \\
\hline Lane 1 \& 105 \& 745 \& 850 \& 3.5 \& 996 \& 0.853 \& 100 NA \& NA \\
\hline Lane 2 \& - \& 809 \& 809 \& 3.2 \& 948 \& 0.853 \& 100 NA \& NA \\
\hline Approac h \& \[
105
\] \& \[
1554
\] \& 1659 \& 3.4 \& \& 0.853 \& \& \\
\hline \multicolumn{9}{|l|}{North: Marion Rd (N)} \\
\hline \begin{tabular}{l}
Mov. \\
From N To Exit:
\end{tabular} \& T1 S \& \begin{tabular}{l}
R2 \\
W
\end{tabular} \& Total \& \%HV \& Cap. veh/h \& Deg. Satn v/c \& \[
\begin{array}{cr}
\text { Lane } \& \text { Prob. } \\
\text { Util. SL Ov. } \\
\% \& \%
\end{array}
\] \& \[
\begin{aligned}
\& \text { Ov. } \\
\& \text { Lane } \\
\& \text { No. }
\end{aligned}
\] \\
\hline Lane 1 \& 452 \& - \& 452 \& 5.0 \& 1363 \& 0.331 \& 100 NA \& NA \\
\hline Lane 2 \& 447 \& - \& \& 5.0 \& 1349 \& 0.331 \& 100 NA \& NA \\
\hline Lane 3 \& - \& 277 \& 277 \& 10.3 \& 401 \& 0.691 \& 1000.0 \& 2 \\
\hline Approac h \& \[
899
\] \& 277 \& 1176 \& 6.3 \& \& 0.691 \& \& \\
\hline \multicolumn{9}{|l|}{West: Mooringe Ave (W)} \\
\hline \begin{tabular}{l}
Mov. \\
From W \\
To Exit:
\end{tabular} \& L2
N \& R2

S \& Total \& \%HV \& Cap. veh/h \& Deg. Satn v/c \& $$
\begin{array}{cc}
\text { Lane } & \text { Prob. } \\
\text { Util. SL Ov. } \\
\% & \%
\end{array}
$$ \&

\hline Lane 1 \& 481 \& - \& \& 6.1 \& $553{ }^{1}$ \& 0.869 \& 100100.0 \& 2

\hline Lane 2 \& - \& 245 \& 245 \& 6.9 \& 295 \& 0.831 \& 100 NA \& NA

\hline Approac h \& $$
481
$$ \& 245 \& 726 \& 6.4 \& \& 0.869 \& \&

\hline \multicolumn{9}{|c|}{Total \%HV Deg.Satn (v/c)}

\hline Intersec tion \& 3561 \& 4.9 \& \& 0.869 \& \& \& \&

\hline
\end{tabular}

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.
1 Reduced capacity due to a short lane effect. Short lane queues may extend into the full-length lanes. Some upstream delays at entry to short lanes are not included.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WGA SA PTY LTD TRADING AS WALLBRIDGE GILBERT AZTEC | Processed: 4 November 2019 10:29:32 AM
Project: V:I2019\190100-190199\190190 - Mooringe AvelDesign\Calculations\Traffic\SIDRAI190190-CA-TT-A-0001[B].sip7

LANE LEVEL OF SERVICE

Lane Level of Service

Site: [Mooringe \& marion Rd Future Am]

Three-way intersection with "Seagull" treatment (Signals)
Signals - Fixed Time Isolated Cycle Time = 120 seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

All Movement Classes

	South	North	West	Intersection
LOS	C	B	D	C

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Lane LOS values are based on average delay per lane.
Intersection and Approach LOS values are based on average delay for all lanes.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

DELAY (CONTROL)

Average control delay per vehicle, or average pedestrian delay (seconds)

B Site: [Mooringe \& marion Rd Future Am]

Three-way intersection with "Seagull" treatment (Signals)
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.
All Movement Classes

	South	North	West	Intersection
Delay (Control)	32.2	17.1	54.8	31.8
LOS	C	B	D	C

Colour code based on Level of Service
LOS A LOS B LOS C LOS D LOS E LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

INTERSECTION SUMMARY

Site: [Mooringe \& marion Rd Future Pm]

Three-way intersection with "Seagull" treatment (Signals)
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average)	$37.9 \mathrm{~km} / \mathrm{h}$	$37.9 \mathrm{~km} / \mathrm{h}$
Travel Distance (Total)	2214.9 veh-km/h	2657.9 pers-km/h
Travel Time (Total)	58.5 veh-h/h	70.2 pers-h/h
Demand Flows (Total)	3165 veh/h	3798 pers/h
Percent Heavy Vehicles (Demand)	4.9 \%	
Degree of Saturation	0.737	
Practical Spare Capacity	22.1 \%	
Effective Intersection Capacity	4295 veh/h	
Control Delay (Total)	21.05 veh-h/h	25.26 pers-h/h
Control Delay (Average)	23.9 sec	23.9 sec
Control Delay (Worst Lane)	59.7 sec	
Control Delay (Worst Movement)	59.7 sec	59.7 sec
Geometric Delay (Average)	1.6 sec	
Stop-Line Delay (Average)	22.3 sec	
Idling Time (Average)	19.0 sec	
Intersection Level of Service (LOS)	LOS C	
95\% Back of Queue - Vehicles (Worst Lane)	29.2 veh	
95\% Back of Queue - Distance (Worst Lane)	215.8 m	
Queue Storage Ratio (Worst Lane)	0.69	
Total Effective Stops	2087 veh/h	2504 pers/h
Effective Stop Rate	0.66 per veh	0.66 per pers
Proportion Queued	0.70	0.70
Performance Index	199.8	199.8
Cost (Total)	1869.76 \$/h	1869.76 \$/h
Fuel Consumption (Total)	260.6 L/h	
Carbon Dioxide (Total)	$620.4 \mathrm{~kg} / \mathrm{h}$	
Hydrocarbons (Total)	$0.055 \mathrm{~kg} / \mathrm{h}$	
Carbon Monoxide (Total)	$0.660 \mathrm{~kg} / \mathrm{h}$	
NOx (Total)	$1.378 \mathrm{~kg} / \mathrm{h}$	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Intersection LOS value for Vehicles is based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Intersection Performance - Annual Values

Performance Measure	Vehicles	Persons
Demand Flows (Total)	$1,519,327 \mathrm{veh} / \mathrm{y}$	$1,823,192 \mathrm{pers} / \mathrm{y}$
Delay	$10,106 \mathrm{veh}-\mathrm{h} / \mathrm{y}$	$12,127 \mathrm{pers}$-h/y
Effective Stops	$1,001,571 \mathrm{veh} / \mathrm{y}$	$1,201,886 \mathrm{pers} / \mathrm{y}$
Travel Distance	$1,063,145 \mathrm{veh}-\mathrm{km} / \mathrm{y}$	$1,275,774 \mathrm{pers}-\mathrm{km} / \mathrm{y}$
Travel Time	$28,078 \mathrm{veh}-\mathrm{h} / \mathrm{y}$	$33,694 \mathrm{pers-h} / \mathrm{y}$
Cost	$897,484 \mathrm{\$} / \mathrm{y}$	$897,484 \mathrm{\$} / \mathrm{y}$
Fuel Consumption	$125,081 \mathrm{~L} / \mathrm{y}$	
Carbon Dioxide	$297,793 \mathrm{~kg} / \mathrm{y}$	
Hydrocarbons	$26 \mathrm{~kg} / \mathrm{y}$	
Carbon Monoxide	$317 \mathrm{~kg} / \mathrm{y}$	
NOx	$661 \mathrm{~kg} / \mathrm{y}$	

MOVEMENT SUMMARY

Site: [Mooringe \& marion Rd Future Pm]

Three-way intersection with "Seagull" treatment (Signals)
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Deman Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Marion Rd (S)											
4	L2	165	10.8	0.719	34.9	LOS C	29.2	215.8	0.88	0.81	33.8
5	T1	1044	5.0	0.719	29.3	LOS C	29.2	215.8	0.88	0.80	33.8
Appr	ch	1209	5.8	0.719	30.0	LOS C	29.2	215.8	0.88	0.80	33.8
North: Marion Rd (N)											
11	T1	1212	2.1	0.438	6.6	LOS A	13.7	97.7	0.43	0.39	51.2
12	R2	302	9.4	0.557	40.4	LOS D	13.8	104.6	0.89	0.96	34.3
Appr		1514	3.5	0.557	13.4	LOS B	13.8	104.6	0.52	0.50	45.2
West: Mooringe Ave (W)											
1	L2	220	10.0	0.287	27.2	LOS C	7.9	60.4	0.66	0.76	39.6
3	R2	222	3.8	0.737	59.7	LOS E	13.0	93.9	1.00	0.86	24.5
Approach		442	6.9	0.737	43.6	LOS D	13.0	93.9	0.83	0.81	31.3
All V	cles	3165	4.9	0.737	23.9	LOS C	29.2	215.8	0.70	0.66	37.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: [Mooringe \& marion Rd Future Pm]
Three-way intersection with "Seagull" treatment (Signals)
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Lane Use and Performance													
		mand =lows HV \%	Cap. veh/h	Deg. Satn v/c	Lane Util.	Average Delay sec	Level of Service	95\% Bac	Queue Dist m	Lane Config	Lane Length	Cap. Adj. \%	Prob. Block.
South: Marion Rd (S)													
Lane 1	615	6.6	855	0.719	100	30.8	LOS C	29.2	215.8	Full	192	0.0	15.6
Lane 2	595	5.0	827	0.719	100	29.3	LOS C	28.3	206.4	Full	192	0.0	11.5
Approach	1209	5.8		0.719		30.0	LOS C	29.2	215.8				
North: Marion Rd (N)													
Lane 1	609	2.1	1389	0.438	100	6.6	LOS A	13.7	97.7	Full	433	0.0	0.0
Lane 2	603	2.1	1374	0.438	100	6.6	LOS A	13.6	96.6	Full	433	0.0	0.0
Lane 3	302	9.4	543	0.557	100	40.4	LOS D	13.8	104.6	Short	130	0.0	NA
Approach	1514	3.5		0.557		13.4	LOS B	13.8	104.6				
West: Mooringe Ave (W)													
Lane 1	220	10.0	765	0.287	100	27.2	LOS C	7.9	60.4	Short	70	0.0	NA
Lane 2	222	3.8	301	0.737	100	59.7	LOS E	13.0	93.9	Full	500	0.0	0.0
Approach	442	6.9		0.737		43.6	LOS D	13.0	93.9				
Intersectio n	3165			0.737		23.9	LOS C	29.2	215.8				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Lane LOS values are based on average delay per lane.
Intersection and Approach LOS values are based on average delay for all lanes.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE FLOWS

Site: [Mooringe \& marion Rd Future Pm]

Three-way intersection with "Seagull" treatment (Signals)
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Approach Lane Flows (veh/h)								
South: Marion Rd (S)								
Mov. From S To Exit:	L2 W	T1 N	Total	\%HV	Cap. veh/h	Deg. Satn v/c	$\begin{array}{cr} \text { Lane } & \text { Prob. } \\ \text { Util. SL Ov. } \\ \% & \% \end{array}$	Ov. Lane No.
Lane 1	165	450	615	6.6	855	0.719	100 NA	NA
Lane 2	-	595	595	5.0	827	0.719	100 NA	NA
Approac h	165	1044	1209	5.8		0.719		
North: Marion Rd (N)								
Mov. From N To Exit:	T1 S	R2 W	Total	\%HV	Cap. veh/h	Deg. Satn v/c	$\begin{array}{cr} \text { Lane } & \text { Prob. } \\ \text { Util. SL Ov. } \\ \% & \% \end{array}$	
Lane 1	609	-	609	2.1	1389	0.438	100 NA	NA
Lane 2	603	-	603	2.1	1374	0.438	100 NA	NA
Lane 3	-	302	302	9.4	543	0.557	1000.0	2
Approac h	1212	302	1514	3.5		0.557		
West: Mooringe Ave (W)								
Mov. From W To Exit:	L2 N	R2 S		\%HV	Cap. veh/h	Deg. Satn v/c	$\begin{array}{cr} \text { Lane } & \text { Prob. } \\ \text { Util. SL Ov. } \\ \% & \% \end{array}$	Ov Lane No.
Lane 1	220	-	220	10.0	765	0.287	1000.0	2
Lane 2	-	222	222	3.8	301	0.737	100 NA	NA
Approac h	220	222	442	6.9		0.737		
Total \%HV Deg.Satn (v/c)								
Intersec tion	3165	4.9		0.737				

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WGA SA PTY LTD TRADING AS WALLBRIDGE GILBERT AZTEC | Processed: 4 November 2019 10:29:33 AM
Project: V:\2019\190100-190199\190190 - Mooringe AvelDesign\Calculations\Traffic\SIDRA\190190-CA-TT-A-0001[B].sip7

LANE LEVEL OF SERVICE

Lane Level of Service

Site: [Mooringe \& marion Rd Future Pm]

Three-way intersection with "Seagull" treatment (Signals)
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

All Movement Classes

	South	North	West	Intersection
LOS	C	B	D	C

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Lane LOS values are based on average delay per lane.
Intersection and Approach LOS values are based on average delay for all lanes.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

DELAY (CONTROL)

Average control delay per vehicle, or average pedestrian delay (seconds)

日 Site: [Mooringe \& marion Rd Future Pm]

Three-way intersection with "Seagull" treatment (Signals)
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.
All Movement Classes

	South	North	West	Intersection
Delay (Control)	30.0	13.4	43.6	23.9
LOS	C	B	D	C

Colour code based on Level of Service
LOS A LOS B LOS C LOS D LOS E LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Heath Blacker
 PRINCIPAL

Telephone: 0882237433
Email: hblacker@wga.com.au

ADELAIDE
60 Wyatt St
Adelaide SA 5000
Telephone: 0882237433
Facsimile: 0882320967
\section*{MELBOURNE}
Level 2, 31 Market St
South Melbourne VIC 3205
Telephone: 0396969522
\section*{PERTH}
Level 1, 66 Kings Park Road
West Perth WA 6005
Telephone: 0893366528
\section*{DARWIN}
Suite 7/9 Keith Ln
Fannie Bay NT 0820
Telephone: 0889411678
Facsimile: 0889415060
WHYALLA
1/15 Darling Tce
Whyalla SA 5600
Phone: 0886440432
WALLBRIDGE GILBERT AZTEC
www.wga.com.au
Adelaide@wga.com.au

[^0]: AADT - Annual Average Daily Traffic
 SF - Seasonal Factor
 ZF - Zone Factor CV - Commercial Vehicles

[^1]: AADT - Average Annual Daily Traffic

[^2]: SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
 Organisation: WGA SA PTY LTD TRADING AS WALLBRIDGE GILBERT AZTEC | Processed: 4 November 2019 10:24:43 AM
 Project: V:\2019\190100-190199\190190 - Mooringe Ave\Design\Calculations\Traffic\SIDRA\190190-CA-TT-A-0001[B].sip7

[^3]: SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd \| sidrasolutions.com
 Organisation: WGA SA PTY LTD TRADING AS WALLBRIDGE GILBERT AZTEC | Processed: 4 November 2019 10:29:33 AM
 Project: V:|2019190100-1901991190190 - Mooringe AvelDesignlCalculations|TrafficlSIDRA1190190-CA-TT-A-0001[B].sip7

[^4]: SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
 Organisation: WGA SA PTY LTD TRADING AS WALLBRIDGE GILBERT AZTEC | Processed: 4 November 2019 10:29:32 AM
 Project: V:\2019\190100-190199\190190 - Mooringe Ave\Design\Calculations\Traffic\SIDRA\190190-CA-TT-A-0001[B].sip7

[^5]: SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd \| sidrasolutions.com
 Organisation: WGA SA PTY LTD TRADING AS WALLBRIDGE GILBERT AZTEC | Processed: 4 November 2019 10:29:34 AM
 Project: V:I20191190100-1901991190190 - Mooringe AvelDesign|Calculations|TrafficISIDRA1190190-CA-TT-A-0001[B].sip7

